AutoAI-TS: AutoAI for Time Series Forecasting Syed Yousaf Shah, Dhaval Patel, Long Vu, Xuan-Hong Dang, Bei Chen, Peter Kirchner, Horst Samulowitz, David Wood, Gregory Bramble, Wesley M. Gifford, Giridhar Ganapavarapu, Roman Vaculin, and Petros Zerfos IBM Thomas J. Watson Research Center Yorktown Heights, NY
[email protected],
[email protected],
[email protected],
[email protected] [email protected],
[email protected],
[email protected],
[email protected],
[email protected] [email protected],
[email protected],
[email protected],
[email protected] ABSTRACT 2021. AutoAI-TS: AutoAI for Time Series Forecasting. In Proceedings of A large number of time series forecasting models including tra- ACM Conference (Conference’17). ACM, New York, NY, USA, 13 pages. https: ditional statistical models, machine learning models and more re- //doi.org/10.1145/nnnnnnn.nnnnnnn cently deep learning have been proposed in the literature. However, choosing the right model along with good parameter values that 1 INTRODUCTION performs well on a given data is still challenging. Automatically The task of constructing and tuning machine learning pipelines providing a good set of models to users for a given dataset saves [7, 21, 37] for a given problem and data set is a complex, man- both time and effort from using trial-and-error approaches with a ual, and labor-intensive endeavor that requires a diverse team of wide variety of available models along with parameter optimiza- data scientists and domain knowledge (subject matter) experts. It tion. We present AutoAI for Time Series Forecasting (AutoAI-TS) that is an iterative process that involves design choices and fine tun- provides users with a zero configurationzero-conf ( ) system to effi- ing of various stages of data processing and modeling, including ciently train, optimize and choose best forecasting model among data cleansing, data imputation, feature extraction and engineering, various classes of models for the given dataset.