Vol. 00 (0000) 1 DOI: 0000 A Bayesian computer model analysis of Robust Bayesian analyses Ian Vernon1 and John Paul Gosling2 1Department of Mathematical Sciences, Durham University, Science Laboratories, Durham, DH1 3LE, UK, e-mail:
[email protected] 2School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK, e-mail:
[email protected] Abstract: We harness the power of Bayesian emulation techniques, de- signed to aid the analysis of complex computer models, to examine the structure of complex Bayesian analyses themselves. These techniques facil- itate robust Bayesian analyses and/or sensitivity analyses of complex prob- lems, and hence allow global exploration of the impacts of choices made in both the likelihood and prior specification. We show how previously in- tractable problems in robustness studies can be overcome using emulation techniques, and how these methods allow other scientists to quickly extract approximations to posterior results corresponding to their own particular subjective specification. The utility and flexibility of our method is demon- strated on a reanalysis of a real application where Bayesian methods were employed to capture beliefs about river flow. We discuss the obvious exten- sions and directions of future research that such an approach opens up. Keywords and phrases: Bayesian analysis, Computer models, Emula- tion, Gaussian process, Robustness analysis, Sensitivity analysis. 1. Introduction Bayesian methodology is now widely employed across many scientific areas (for example, over 100 articles have been published in Nature with the word \Bayesian" in the title; Springer Nature, 2016). The uptake of Bayesian meth- ods is due both to progress in Bayesian theory and to advances in computing power combined with the development of powerful numerical algorithms, such as MCMC.