Botrychium, Ophioglossaceae) on Local to Global Scales

Total Page:16

File Type:pdf, Size:1020Kb

Botrychium, Ophioglossaceae) on Local to Global Scales Evolution of moonwort ferns (Botrychium, Ophioglossaceae) on local to global scales Thèse présentée à la Faculté des sciences Institut de biologie Laboratoire de génétique évolutive Université de Neuchâtel, Suisse Pour l’obtention du grade de DOCTEUR ÈS SCIENCES Par Benjamin Dauphin Présenté aux membres du jury de thèse: P.D. Dr Grant Jason, directeur de thèse et président du jury Prof. Daniel Croll, rapporteur Prof. Donald Farrar, rapporteur Prof. Felix Kessler, rapporteur Dr Michael Kessler, examinateur Prof. Carl Rothfels, examinateur Soutenue le 17 octobre 2017 1 2 Faculté des Sciences Secrétariat-décanat de Faculté Rue Emile-Argand 11 2000 Neuchâtel – Suisse Tél : + 41 (0)32 718 21 00 E-mail : [email protected] IMPRIMATUR POUR THESE DE DOCTORAT La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse soutenue par Monsieur Benjamin DAUPHIN Titre: “Evolution of moonwort ferns (Botrychium, Ophioglossaceae) on local to global scales” sur le rapport des membres du jury composé comme suit: ñ MER Jason Grant, directeur de thèse, Université de Neuchâtel ñ Prof. Daniel Croll, Université de Neuchâtel ñ Prof. Donald R. Farrar, Iowa State University, USA ñ Prof. Felix Kessler, Université de Neuchâtel ñ Dr Michael Kessler, Universität Zürich ñ Prof. Carl Rothfels, University of California, Berkeley, USA Neuchâtel, le 9 novembre 2017 Le Doyen, Prof. R. Bshary Imprimatur pour thèse de doctorat www.unine.ch/sciences 2 «Fais de ta vie un rêve, et d’un rêve, une réalité» Antoine de Saint-Exupéry (1900–1944) 3 4 Acknowledgments This PhD was an intense and marvelous life experience for me. I am grateful to my spouse Lisa who has provided me emotional support and full confidence during the completion of this dissertation. A very special gratitude goes out to my parents Marie-Christine and Daniel who encouraged and supported me during my university studies, especially at a time when I had other interests than science. I thank my friends for your unconditional support despite the strange world in which I work. For three years, I was lucky to work in such a scientific environment and lead a project that really meant a lot to me. Several people and institutions have contributed greatly in the success of this project and I would like to express my sincerely gratitude in the simplest words. I warmly thank you Jason for giving me confidence to carry out this project and introducing me to the fern world. Also, thanks a lot for your patience. I know, sometimes it was demanding… Thank you Don for everything! Carl, Berkeley is a captivating city, and I am lucky to have studied there on the fascinating topic of polyploidy. Many thanks for your hospitality in California and your precious collaboration, especially your tricks and secrets about the PacBio seq and the use of PURC. I am also grateful to members of the Evolutionary Genetics lab at the University of Neuchâtel, the Genetic Diversity Center from ETH Zürich, and the Rothfels lab at the University of California at Berkeley, with a special mention to Olivier Bachmann, Forrest Freund, Stella Huynh, Ingrid Jordon- Thaden, Silvia Kobel, Aria Minder, Vinciane Mossion, Frédéric Sandoz, Julien Vieu, Guillaume Wos, and Niklaus Zemp. It was fantastic to work with each of them, especially on NGS data! Without funding, we can’t go very far in academic research. Therefore, I thank the Swiss National Science Foundation, the University of Neuchâtel, and the University of California at Berkeley for supporting this thesis. Thanks to everyone for your positive spirit! 5 6 Abstract Plants have long fascinated biologists by their ability to form cryptic species, hybrids between distinct species, large and stable genome sizes, and a wide variety of mating systems among taxa that have driven to the current plant biodiversity. More than 450 million year ago, vascular plants emerged and colonized the land. Rapidly, they dispersed to explore new habitats and diversified in suitable environments to form over 300,000 extant species. A better understanding of past evolutionary forces that led to the current plant morphologies, ecologies, and genetic diversity is critical for predicting their evolution, especially with the global changes ongoing. In this context, the main goals of this thesis were to investigate the phylogenetic relationships among the early divergent Botrychium taxa and how allopolyploidy and the alternation of mating systems have led to the speciation of these species. In a multidisciplinary framework, we combined phylogenetics with population genetics and flow cytometry to provide relevant cellular and molecular data for exploring key biological mechanisms taking place at local or global scale. As the backbone of our project, we reconstructed the plastid phylogeny of the genus Botrychium based on a worldwide sampling to investigate relationships among diploid taxa and the maternal origins of allopolyploids. As a second step, we estimated the genome sizes of Botrychium diploids and polyploids to study fluctuations of DNA amounts after allopolyploidization and between ploidy levels. Then, we applied PacBio sequencing to infer a nuclear phylogeny for revealing the evolutionary history for both, the maternal and the paternal lineages of allopolyploids, and drawing the timescale of their bi-parental inheritance based on divergence time estimates. Focusing at a local and regional scale, we genotyped B. lunaria populations in Alps using co-dominant allozymes and ddRADseq data to identify the predominant mode of reproduction as well as its demographic history during the last glacial maximum. We found unexpected results and major discoveries for the understanding of the biology of early vascular plants. For the species diversity itself, we identified thirteen possibly new taxa and characterized the exceptional haplotype diversity occurring in the Lunaria complex. Also, we presented evidence for multiple origins of several polyploid taxa and highlighted incontestable cases of inter-continental dispersal from North America to Europe and Asia. With flow cytometry, we reported a new hexaploid in Botrychium and described different genome sizes between diploid species of the two major clades Lanceolatum and Lunaria. Besides, our results supported the genome size stability after allopolyploidization, therefore rejecting the scenario of genome downsizing widespread accepted for angiosperms. Probably the most striking outcome of our phylogenetic investigations is the recurrent allopolyploidy in that genus and the strong bias of parental donors in the formation of allopolyploid taxa. Furthermore, our divergence time estimates revealed the recent and rapid 7 speciation via allopolyploidy in the last two million years, which constitutes a first case of radiation in the old lineage of Ophioglossaceae. For our population genetics study, we found unprecedented genetic diversity within B. lunaria populations with a large number of heterozygotes that supports the outcrossing mating system. Thus, we presented the capabilities of dispersion and diversification of these Botrychium species to better understand the ancestral vascular plant mating system. Being a key element of this speciation model, we found a genetic signature indicative of a refuge for B. lunaria in the central Alps during the last glacial maximum, which has hosted individuals having a high allele richness that was secondarily dispersed after deglaciation with the maintenance of outcrossing in alpine grasslands. Undeniably, the genus Botrychium offers a unique opportunity to address the role of allopolyploidy and the importance of alternation of mating systems in plant speciation. This work is intended to be the starting point for further studies in evolutionary biology that ultimately will provide a better understanding of the life style of these enigmatic fern species. Key words: Botrychium; ddRAD sequencing; divergence time dating; ferns; flow cytometry; genome size; low-copy makers; mating system; molecular phylogeny; Ophioglossaceae; PacBio; polyploidy; polyploid network; population genetics; PURC; reticulate evolution. 8 Résumé Les plantes ont depuis longtemps fasciné les biologistes par leur capacité à former des espèces cryptiques, des hybrides entre des espèces distinctes, de grandes tailles de génomes stables, et une large variété de systèmes reproducteurs parmi les taxons qui ont conduit à l’actuelle biodiversité des plantes. Il y a plus de 450 millions d’années, les plantes vasculaires ont émergé et colonisé la terre. Rapidement, elles se sont dispersées pour explorer de nouveaux habitats et se sont diversifiées dans des environnements favorables pour former plus de 300 000 espèces vivantes. Une meilleure compréhension des forces évolutives passées qui ont mené aux morphologies, aux écologies, et aux diversités génétiques actuelles des plantes est essentielle pour prédire leur évolution, particulièrement dans le contexte des changements globaux. Ainsi, les objectifs principaux de cette thèse consistaient à étudier les relations phylogénétiques parmi les taxons de Botrychium et comment l’allopolyploïdie et l’alternance des systèmes reproducteurs ont mené à la spéciation de ces espèces. Dans un cadre multidisciplinaire, nous avons combiné la phylogénétique avec la génétique des populations et la cytométrie en flux pour produire des données cellulaires et moléculaires pertinentes pour l’exploration des mécanismes biologiques clefs prenant place à des échelles locales ou globales. Etant les fondements
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements
    Draft Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements Prepared by: Minnesota Department of Transportation Prepared for: US Forest Service, Chippewa National Forest Minnesota Department of Natural Resources May 2014 US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation This Biological Evaluation was prepared pursuant to the National Environmental Policy Act, National Forest Management Act, and other applicable laws and regulations. For additional information, please contact the team leader for the US Trunk Highway 2 Passing Lane and Turn Lane Improvements Project. Ms. Christine Brown Chippewa National Forest Address: 200 Ash Avenue NW Cass Lake, MN 56633 Phone: (218) 335-8600 TTY: (218) 335-8632 FAX: (218)335-8637 Prepared by: ______________________________________ _______________ Antony Randazzo, HDR Engineering, Inc. Date Reviewed by: ______________________________________ _______________ Kirk W. Larson, U.S. Forest Service Date Chippewa National Forest Reviewed by: ______________________________________ _______________ Cory Mlodik, U.S. Forest Service Date Chippewa National Forest May 2014 Signature Page Page i US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation Table of Contents 1.0 Introduction ............................................................................................................................ 1-1 1.1 Purpose of this Report ..............................................................................................................................
    [Show full text]
  • Northwest Native Plant Journal a Bi-Monthly Web Magazine (Formerly NW Native Plant Newsletter)
    Volume 4, Issue 2, 2006 April 2006 NorthwestNorthwest NativeNative PlantPlant JournalJournal A Bi-Monthly Web Magazine (formerly NW Native Plant Newsletter) Reminder: April 22 is Earth Day! Unusual! Strange! Intriguing! A new way to look at NW Native Plants When is a native more than a native? Fresh new photos! The WildPublished Garden: Hansen’s by Northwest The NativeWild Plant Garden: Database Hansen’s Northwest Native Plant PageDatabase 1 Northwest Native Plant Journal A Bi-Monthly Web Magazine (formerly NW Native Plant Newsletter) Contents Departments Shaping nature About this Journal............................3 Native plants never dreamed On the Cover....................................4 they’d look like this!...........................9 Rare Plant Puzzle Wondrous works Name this plant!..................5 Photos by Don Eastman.................21 Garden chores to do now................6 Living fences Sparky’s Corner................................7 No paint needed!.............................27 Wally’s personal notes..................36 Native Plant Resources Information on the Web.................33 Jennifer Rehm, Editor, author, webmaster for The Wild Garden: Hansen’s Northwest Native Plant Database website: www.nwplants.com e-Mail: [email protected] All rights reserved. This entire publication Copyright © 2012 The Wild Garden: Hansen’s Northwest Native Plant Database. No part of this work may be reproduced or used in any form or by any means--graphic, electronic, or mechanical--without the written permission of Jennifer Rehm,The Wild Garden, except for reviewers who may quote brief passages. Any request for photocopying, recording, taping or information storage and retrieval systems of any part of this publication shall be directed in writing to the publisher: Jennifer Rehm, The Wild Garden: Hansen’s Northwest Native Plant Database.
    [Show full text]
  • Botrychium Simplex E. Hitchc. (Ophioglossaceae) – a New Species for the Native Flora of Ukraine
    Biodiv. Res. Conserv. 43: 7-12, 2016 BRC www.brc.amu.edu.pl DOI 10.1515/biorc-2016-0015 Submitted 8.04.2016, Accepted 23.09.2016 Botrychium simplex E. Hitchc. (Ophioglossaceae) – a new species for the native flora of Ukraine Ivan Yu. Parnikoza1* & Zbigniew Celka2 1Institute of Molecular Biology and Genetics NAS of Ukraine, Zabolotnoho 150, 03680 Kyiv, Ukraine 2Department of Plant Taxonomy, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland * corresponding author (e-mail: [email protected]) Abstract. The work presents the results of herbarium survey that resulted in findingBotrychium simplex E. Hitchc. – a new for the native Ukrainian flora species of the family Ophioglossaceae. A specimen of this taxon was found in the National Herbarium of Ukraine in the M. G. Kholodny Institute of Botany of National Academy of Sciences of Ukraine in Kyiv (KW) among the specimens of Botrychium lunaria (L.) Sw. originating from the surroundings of Kharkiv. Thus, this finding indicates the most south-eastern locality of B. simplex in Europe found so far. Key words: least moonwort, common moonwort, rare species, Ukraine, herbarium, Kyiv, KW 1. Introduction have been conducted in Ukraine for over 10 years (see Parnikoza 2002, 2010; Chorney et al. 2004; Parnikoza The genus Botrychium Sw. is represented in the & Tsukanova 2005; Melnik 2009, Bezsmertna & Heluta world flora by 25 species (Mabberley 2008), while 2013; Votkalchuk et al. 2014; Parnikoza & Celka 2016). in Europe by seven (Valentine & Moore 2007). The The aim of this work is to provide information on majority of European species of Botrychium belong Botrychium simplex, a species not previously identified to threatened taxa on the scale of whole Europe (e.g., and listed in the native flora of Ukraine.
    [Show full text]
  • Notes on Japanese Ferns II. by T. Nakai
    Notes on Japanese Ferns II. By T. Nakai (I.) PolypodiaceaeR. BROWN, Prodr. F1. Nov. Holland. p. I45 (i8io), pro parte. Plzysematiurn KAULFVSS in Flora (1829) p. 34I. The species of this genus have not articulation at the stipes of fronds. The indusium is complete sac, bursting irregularly in its maturity. DIEi.S took this for Woodsia on account of the lack of articulation at the stipes of Woodsia polystichoides. The ordinary Woodsiahas horizontal articulation in the middle of the stipes of the frond. But in Woodsiapolystichoides articulation comes at the upper end of the stipes. It is oblique and along the segmental line many lanceolate paleae arrange in a peculiar mode. DIETShas overlooked this fact, and perhaps CHRISTENSENhad the same view. By this peculiar mode of articulation Woodsiapolystichoides evidently repre- sents a distinct section Acrolysis NAKAI,sect. nov. However, the indusium of Woodsiapolystichoides is Woodsia-type; incomplete mem- brane covering the lower part of sorus and ending with hairs. This mode of indusium is fundamentally different from I'hysennatium,and I take Woodsia distinct from Plzysematzum. Among the numbers of species of Japanese Woodsia only one belongs to Pliysenzatium. P/zysernatiulnmanclzuricnse NAKAI, comb. nov. Woodsiamanclzuriensis W. J. HOOKER,2nd Cent. t. 98 (i86i). Diacalpe manclzuriensisTREVISAN Nuo. Giorn. Bot. Ital. VII. p. I6o (I875). Hab. Japonia, Corea, Manchuria et China bor. Vittaria formosana NAKAI,sp. nov. (Eu-Vittaria). Vittaria elongata (non SWARTZ)HARRINGTON in Journ. Linn. Soc. XVI. p. 3 3 (1878); pro parte, quoad plantam ex Formosa. BAKER July,1925 NAKAI-NOTESON JAPANESE FERNS II 177 in BRITTEN,Journ. Bot.
    [Show full text]
  • Ferns of Utah
    BULLETIN OF THE UNIVERSITY OF UTAH Vol. 35 November 15, 1944 No. 7 FERNS OF UTAH BY SEVILLE FLOWERS BIOLOGICAL SERIES, Vol. IV, No. 6 PUBLISHED BY THE UNIVERSITY OF UTAH SALT LAKE CITY THE UNIVERSITY PRESS UNIVERSITY OF UTAH SALT LAKE CITY PREFACE* The distribution of many species of our ferns is not well known in Utah. Collectors have centered their work around certain localities and many blank spots appear on the distribu­ tional map. One might presume certain species to be present in some of these unexplored areas but specimens are still to be collected. Distributional data beyond Utah were taken mainly from Broun’s Index to North American Ferns. In citing the collections for each species the name of the collector or herbarium is given followed by the catalog num­ bers and localities. B. Y. designates the herbarium of Brig­ ham Young University at Provo, and I. H. indicates the Intermountain Herbarium at the Utah State Agricultural College at Logan, Utah. Specimens collected by W. P. Cottam, A. M. Woodbury and S. Flowers are deposited in the University of Utah Herbarium. I wish to acknowledge the use of the specimens collected by Professors A. 0. Garrett, Bertram Harrison and Bassett Maguire and their associates. Many of the specimens examined were identified by Dr s. William R. Maxon, R. T. Clausen, F. K. Butters, K. M. Weigand and J. H. Schaffner. S. F l o w e r s . * The publication of this bulletin is financed from the University of Utah Research Committee. PARIS*) PRESTON/* ( FISH HAVEN^*vJ3 SNOWVILLE* CLARKSTON ( LAK O TA.T-'^ GARDEN CITY_.*|Hg fCACH? J IDEAL BEACH^ ♦ LAKETOWN COLLINSTON KELTON 1 TREMONTON V At L?GAN RANDOLPH.
    [Show full text]
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • Botrychium Lunaria
    Botrychium lunaria Family: Ophioglossaceae Genus: Botrychium Subgenus: Botrychium (syn. Eubotrychium) Species: Botrychium lunaria (L.) Swartz Common Name: Common Moonwort Ploidy: Diploid Published description: Trophophore stalk 0- 1 mm; blade dark green, oblong, 1-pinnate, to 10 x 4 cm, thick, fleshy. Pinnae to 9 pairs, spreading, mostly overlapping except in shaded forest forms, distance between 1st and 2nd pinnae not or slightly more than between 2nd and 3rd pairs, basal pinna pair approximately equal in size and cutting to adjacent pair, broadly fan-shaped, undivided to tip, margins mainly entire or undulate, rarely dentate, apical lobe usually cuneate to spatulate, notched, approximate to adjacent lobes, apex rounded, venation like ribs of fan, midribs absent. Sporophores 1-2 pinnate, 0.8- 2 times length of trophophore. 2n = 90. (Wagner and Wagner 1993) Identification Botrychium lunaria is most easily differentiated from other moonworts by the breadth of its pinnae. Typically the basal pinnae span an arc of nearly 180 degrees and the third pinna pair has a span of approximately 90 degrees. The upper pinnae angle upward—the lower side margin creates a large angle (nearly 90°) with the rachis, the upper side margin is nearly parallel to the rachis. Although it is occasionally short stalked, the trophophore of B. lunaria is typically sessile, the stalk length seldom equaling or exceeding the distance between the first pinna pair as it usually does in B. minganense. Plants are green to dark green with a surface that is lustrous to dull, but never glaucous. The sporophore is long stalked, the stalk, at spore release, exceeding the length of the trophophore.
    [Show full text]
  • An Illustrated Key to the Ferns of Oregon
    AN ABSTRACT OF THE THESIS OF Helen Patricia O'Donahue Pembrook for the Master of Arts (Name) (Degree) Systematic Botany (Major) Date thesis is presented March 8, 1963 Title AN ILLUSTRATED KEY TO THE FERNS OF OREGON Abstract approved IIIII (Major professor) The purpose of the work is to enable students of botany to identify accurately Oregon ferns, both as living plants and as dried speci- mens. Therefore, it provides vegetative keys to the families, genera and species of the ferns (Class FILICINAE) found in Oregon. Correct names have been determined using the latest available information and in accordance with 1961 edition of the International Code of Botan- ical Nomenclature. The synonomy, a description, and original draw- ings of each species and subspecific taxon are included. An illustrated glossary and a technical glossary have been prepared to explain and clarify the descriptive terms used. There is also a bibliography of the literature used in the preparation of the paper. The class FILICINAE is represented in Oregon by 4 families, 20 genera, 45 or 46 species, 4 of which are represented by more than one subspecies or variety. One species, Botrychium pumicola Coville, is endemic. The taxa are distributed as follows: OPHIO- GLOSSACEAE, 2 genera: Botrychium, 7 species, 1 represented by 2 subspecies, 1 by 2 varieties; Ophioglossum, 1 species. POLYPODI- ACEAE, 15 genera: Woodsia., 2 species; Cystopteris, 1 species; Dryopteris, 6 species; Polystichum, 5 species, 1 represented by 2 distinct varieties; Athyrium, 2 species; Asplenium, 2 species; Stru- thiopteris, 1 species; Woodwardia, 1 species; Pitrogramma, 1 spe- cies; Pellaea, 4 species; Cheilanthes, 3 or 4 species; Cryptogramma, 1 species; Adiantum, 2 species; Pteridium, 1 species; Polypodium, 2 species, 1 represented by 2 varieties.
    [Show full text]
  • Botrychium Lunaria (L.) Sw
    New England Plant Conservation Program Botrychium lunaria (L.) Sw. Moonwort Conservation and Research Plan for New England Prepared by: Arthur V. Gilman Marshfield, Vermont For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2003 1 SUMMARY _____________________________________________________________ Moonwort (Botrychium lunaria (L.) Sw.) is a rare fern in the Ophioglossaceae. It occurs in a very few locales in northern New England, where it is at the southern edge of its range. The reasons for its rarity are not well understood, but it appears to have always been very rare in the region and does not appear to have suffered declines due to land-use practices. The species is a poor competitor and its habitats are typically small patches (tens to hundreds of square feet) where some soil disturbance has occurred or where other factors prevent dense turf or thick duff layers from occurring. Such habitats occur in maritime grasslands along the coast of eastern Maine, in northern white cedar forests in northern Maine, and possibly on forested hilltop areas in southeastern Vermont. Calcareous soils, whether derived from bedrock, calcareous till deposits, or from ongoing calcium deposition from ocean debris (i.e., mussel shells) or sea-spray are required for this species. Four current (within the past 20 years) sites are known only in Maine, of which two are confirmed as this species. Although no vouchers have been seen for the other two current Maine sites, they are presumed to be of Botrychium lunaria.
    [Show full text]
  • Botrychium Simplex
    Botrychium simplex Family: Ophioglossaceae Genus: Botrychium Species: Botrychium simplex E. Hitchcock Varieties: simplex, compositum Common Name: Least Moonwort Ploidy: Diploid map = var. simplex Technical description: Trophophore stalk 0- 3 cm, 0-1.5 times length of trophophore rachis; blade dull to bright green to whitish green, linear to ovate oblong to oblong to fully triangular with pinnae arranged ternately, simple to 2(-3) pinnate, to 7 x 0.2 cm, fleshy to thin, papery or herbaceous. Pinnae or well-developed lobes to 7 pairs, spreading to ascending, approximate to widely separated, distance between 1st and 2nd pinnae frequently greater than between 2nd and 3rd pairs, basal pinna pair commonly much larger and more complex than adjacent pair, cuneate to fan-shaped, strongly asymmetric, undivided to divided to tip, basiscopic margins ± perpendicular to rachis, acroscopic margins strongly B. simplex var. simplex ascending, basal pinnae often divided into 2 unequal parts, margins usually entire or shallowly sinuate, apex rounded, undivided and boat-shaped to strongly divided and plane, venation pinnate or like ribs of fan, with midrib. Sporophores mainly 1-pinnate, 1-8 times length of trophophores, 2n = 90. (Wagner and Wagner 1993). B. simplex var. compositum st Small plant with lower pinnae undivided Unusually large plant with 1 and 2nd pinna pair divided. Taxonomy Botrychium simplex was described by E. Hitchcock in 1823 (Amer. J. Sci. Arts 6:103) based on plants from Massachusetts. Following publication of the species, many botanists called attention to the conspicuous variation within the species. Clausen (1938) treated this variation by recognizing four varieties: var. typicum (= var.
    [Show full text]
  • Monitoring for Botrychium Pumicola in the BPA Powerline Corridor
    Summary of 2008-2013 Monitoring for Pumice Grapefern, Botrychium pumicola in the BPA Power Line Corridor Deschutes National Forest Crescent Ranger District Photo courtesy of Keir Morse January 10, 2014 Christina Veverka, Botanist, USFS Liz Ballenger, Biological Science Technician, USFS 1 Table of Contents Abstract ....................................................................................................................................................................................................... 2 Introduction ............................................................................................................................................................................................... 2 Methods ....................................................................................................................................................................................................... 4 Sites and Surveys ................................................................................................................................................................................ 4 Weather data ........................................................................................................................................................................................ 5 Results .......................................................................................................................................................................................................... 6 Population data
    [Show full text]