Math 63: Winter 2021 Lecture 17

Total Page:16

File Type:pdf, Size:1020Kb

Math 63: Winter 2021 Lecture 17 Math 63: Winter 2021 Lecture 17 Dana P. Williams Dartmouth College Monday, February 15, 2021 Dana P. Williams Math 63: Winter 2021 Lecture 17 Getting Started 1 We should be recording. 2 Remember it is better for me if you have your video on so that I don't feel I'm just talking to myself. 3 Our midterm will be available Friday after class and due Sunday by 10pm. It will cover through Today's lecture. More details soon. 4 Time for some questions! Dana P. Williams Math 63: Winter 2021 Lecture 17 Rules To Differentiate With The following are routine consequences of the definition. Lemma If f (x) = c for all x 2 R, then f 0(x) = 0 for all x 2 R. If f (x) = x for all x 2 R, then f 0(x) = 1 for all x 2 R. Theorem Suppose that f and g are differentiable at x0. Then so are f ± g, f fg, and if g(x0) 6= 0, g . Futhermore, 0 0 0 1 (f ± g) (x0) = f (x0) ± g (x0), 0 0 0 2 (fg) (x0) = f (x0)g(x0) + f (x0)g (x0), and 0 f 0(x )g(x )−f (x )g 0(x ) 3 f 0 0 0 0 (x0) = 2 . g g(x0) Dana P. Williams Math 63: Winter 2021 Lecture 17 More Formulas Corollary Suppose that f is differentiable at x0 and c 2 R. Then cf is 0 0 differentiable at x0 and (cf ) (x0) = cf (x0). Corollary Suppose that n 2 Z and f (x) = xn. Then f 0(x) = nxn−1. Remark We are being a bit sloppy here. It is implict that if n < 0 then f is not defined at 0, and if n = 0, we are just claiming that f 0 = 0. Proof. We have already dealt with the cases that n = 0 and n = 1. If d n n−1 n ≥ 1, and we assume dx (x ) = nx , then d n+1 d n n n−1 n dx (x ) = dx (x · x ) = x + x(nx ) = (n + 1)x so the result holds for all n ≥ 0 by induction. Dana P. Williams Math 63: Winter 2021 Lecture 17 Proof Proof Continued. d n d 1 −nx−n−1 n−1 If n < 0, then dx (x ) = dx x−n = − x−2n = nx . Proposition (The Chain Rule) Suppose that U and V are open subsets of R. Let f : U ! V and g : V ! R be functions such that f is differentiable at x0 2 U and g is differentiable at f (x0) 2 V . Then g ◦ f is differentiable at x0 and 0 0 0 (g ◦ f ) (x0) = g (f (x0))f (x0): Dana P. Williams Math 63: Winter 2021 Lecture 17 Proof Proof. ( g(y)−g(f (x0)) if y 2 V and y 6= f (x0), and Let A(y) = y−f (x0) . Then 0 g (f (x0)) if y = f (x0). 0 limy!f (x0) A(y) = g (f (x0)). It follows that A is continuous at f (x0). Therefore limx!x0 A(f (x)) = A(f (x0)) since the composition of continuous functions is continuous. Therefore 0 g(f (x)) − g(f (x0)) (g ◦ f ) (x0) = lim x!x0 x − x0 f (x) − f (x ) = lim A(f (x)) 0 x!x0 x − x0 0 0 = g (f (x0))f (x0): Dana P. Williams Math 63: Winter 2021 Lecture 17 Extreme Values Proposition Suppose that U is open in R and that f : U ! R has either a maximum or minimum value at x0 2 U. Then either f is not 0 differentiable at x0 or f (x0) = 0. Proof. 0 Assume that f (x0) exists. Then ( f (x)−f (x0) if x 6= x0, and g(x) = x−x0 0 f (x0) if x = x0 0 is continuous at x0. Hence if f (x0) > 0, then is a δ > 0 such that 0 f (x0) 0 < jx − x0j < δ implies g(x) > 2 > 0. But if f (x0) is either a maximum or a minimum, then f (x) − f (x0) is either always non-positive or always non-negative. Since g(x) 6= 0 if x 6= x0, it follows that f (x) − f (x0) is always either always positive or always negative. But x − x0 can be both negative or positive. Hence g(x) 0 can't always be positive. Thus f (x0) ≤ 0. But a similar argument 0 implies f (x0) ≥ 0. Dana P. Williams Math 63: Winter 2021 Lecture 17 Rolle's Theorem Lemma (Rolle's Theorem) Suppose a < b in R, that f :[a; b] ! R is continuous and differentiable on (a; b). If f (a) = f (b), then there is a c 2 (a; b) such that f 0(c) = 0. Proof. By the Extreme-Value Theorem, f attains its maximum and minimum on [a; b]. If both these values occur at the endpoints a and b, then f is constant and f 0(c) = 0 for all c 2 (a; b). Otherwise, either the maximum or minimum must occur at some c 2 (a; b). By the previous proposition, f 0(c) = 0. Dana P. Williams Math 63: Winter 2021 Lecture 17 The Mean Value Theorem Theorem (The Mean Value Theorem) Suppose that a < b in R and that f :[a; b] ! R is continuous and differentiable on (a; b). Then there is a c 2 (a; b) such that f (b) − f (a) f 0(c) = : b − a Remark In my calculus courses, I emphasize that the MVT says that there is always a point where the instantaneous rate of change equals the average rate of change. (Picture) Dana P. Williams Math 63: Winter 2021 Lecture 17 Proof Proof. f (b)−f (a) Let F (x) = f (x) − f (a) − (b−a) (x − a). Then F is continuous on [a; b] and differentiable on (a; b). Since F (b) = F (a) = 0, there is a c 2 (a; b) such that F 0(c) = 0. The result follows from this. Corollary Suppose that f :(c; d) ! R is differentiable and f 0(x) = 0 for all x 2 (c; d). Then f is constant. Proof. It suffices to see that if a; b 2 (c; d), then f (a) = f (b). But we may assume a < b, then the MVT implies f (b)−f (a) 0 f (b) − f (a) = b−a (b − a) = f (c)(b − a) = 0. Corollary If f and g are differentiable real-valued functions on an open interval such that f 0 = g 0, then f and g differ by a constant. Dana P. Williams Math 63: Winter 2021 Lecture 17 Increasing and Decreasing Functions Definition A real-valued function on a set U ⊂ R is called increasing(strictly increasing) if a < b in U implies f (a) ≤ f (b)(f (a) < f (b)). On the other hand, f is called decreasing(strictly decreasing) if a < b in U implies f (a) ≥ f (b)(f (a) > f (b)). Proposition Suppose that a real-valued function on an open interval is such that f 0(x) > 0 for all x in the interval. Then f is strictly increasing on that interval. Proof. Suppose that a < b in the interval. Then f (b)−f (a) 0 f (b) − f (a) = b−a (b − a) = f (c)(b − a) > 0. Dana P. Williams Math 63: Winter 2021 Lecture 17 Break Time Time for a break and some questions. Dana P. Williams Math 63: Winter 2021 Lecture 17 Higher Order Derivatives Remark If f is a real-valued function which is differentiable on an open set U ⊂ R, then we can consider the function f 0 : U ! R. If f 0 is differentiable, then we say that f is twice differentiable and variously write f 00 or f (2) for the second derivative (f 0)0. Of course, we can continue the madness and consider higher order derivatives f 000 = f (3), and so on|if the derivatives exist. If f is n-times dnf (n) differentiable, we also write dxn for f . To make some formulas work, we agree that f (0) = f (the 0th-derivative). Notation We will also employ the factorial notation: 0! := 1 and (n + 1)! = (n + 1)n! for n ≥ 1. Or less pedantically, n! = 1 · 2 ··· n. Dana P. Williams Math 63: Winter 2021 Lecture 17 A Lemma It will be convenient to establish the following technical result. Lemma Suppose that f : U ! R is (n + 1)-times differentiable. If b 2 U, define a function on Rn(b; ·): U ! R by f 00(x) f (b) = f (x) + f 0(x)(b − x) + (b − x)2+ 2! f (n)(x) ··· + (b − x)n + R (b; x): n! n Then d f (n+1)(x) R (b; x) = − (b − x)n: dx n n! Dana P. Williams Math 63: Winter 2021 Lecture 17 Proof Proof Continued. Without the unusual structure, we have n X (b − x)j R (b; x) = f (b) − f (x) − f (j)(x) : n j! j=1 Therefore Rn(b; ·) is differentiable and using the product and chain rules, we have n d Xh (b − x)j−1 (b − x)j i R (b; x) = −f 0(x) + f j (x) − f (j+1)(x) dx n (j − 1)! j! j=1 which telescopes to (b − x)n = −f (n+1)(x) : n! Dana P. Williams Math 63: Winter 2021 Lecture 17 Taylor's Theorem Theorem (Taylor's Theorem) Suppose that U ⊂ R is open and that f : U ! R is (n + 1)-times differentiable on U.
Recommended publications
  • Selected Solutions to Assignment #1 (With Corrections)
    Math 310 Numerical Analysis, Fall 2010 (Bueler) September 23, 2010 Selected Solutions to Assignment #1 (with corrections) 2. Because the functions are continuous on the given intervals, we show these equations have solutions by checking that the functions have opposite signs at the ends of the given intervals, and then by invoking the Intermediate Value Theorem (IVT). a. f(0:2) = −0:28399 and f(0:3) = 0:0066009. Because f(x) is continuous on [0:2; 0:3], and because f has different signs at the ends of this interval, by the IVT there is a solution c in [0:2; 0:3] so that f(c) = 0. Similarly, for [1:2; 1:3] we see f(1:2) = 0:15483; f(1:3) = −0:13225. And etc. b. Again the function is continuous. For [1; 2] we note f(1) = 1 and f(2) = −0:69315. By the IVT there is a c in (1; 2) so that f(c) = 0. For the interval [e; 4], f(e) = −0:48407 and f(4) = 2:6137. And etc. 3. One of my purposes in assigning these was that you should recall the Extreme Value Theorem. It guarantees that these problems have a solution, and it gives an algorithm for finding it. That is, \search among the critical points and the endpoints." a. The discontinuities of this rational function are where the denominator is zero. But the solutions of x2 − 2x = 0 are at x = 2 and x = 0, so the function is continuous on the interval [0:5; 1] of interest.
    [Show full text]
  • 2.4 the Extreme Value Theorem and Some of Its Consequences
    2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f , (1) the values f (x) don’t get too big or too small, (2) and f takes on both its absolute maximum value and absolute minimum value. We’ll see that it gives another important application of the idea of compactness. 1 / 17 Definition A real-valued function f is called bounded if the following holds: (∃m, M ∈ R)(∀x ∈ Df )[m ≤ f (x) ≤ M]. If in the above definition we only require the existence of M then we say f is upper bounded; and if we only require the existence of m then say that f is lower bounded. 2 / 17 Exercise Phrase boundedness using the terms supremum and infimum, that is, try to complete the sentences “f is upper bounded if and only if ...... ” “f is lower bounded if and only if ...... ” “f is bounded if and only if ...... ” using the words supremum and infimum somehow. 3 / 17 Some examples Exercise Give some examples (in pictures) of functions which illustrates various things: a) A function can be continuous but not bounded. b) A function can be continuous, but might not take on its supremum value, or not take on its infimum value. c) A function can be continuous, and does take on both its supremum value and its infimum value. d) A function can be discontinuous, but bounded. e) A function can be discontinuous on a closed bounded interval, and not take on its supremum or its infimum value.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Chapter 12 Applications of the Derivative
    Chapter 12 Applications of the Derivative Now you must start simplifying all your derivatives. The rule is, if you need to use it, you must simplify it. 12.1 Maxima and Minima Relative Extrema: f has a relative maximum at c if there is some interval (r, s) (even a very small one) containing c for which f(c) ≥ f(x) for all x between r and s for which f(x) is defined. f has a relative minimum at c if there is some interval (r, s) (even a very small one) containing c for which f(c) ≤ f(x) for all x between r and s for which f(x) is defined. Absolute Extrema f has an absolute maximum at c if f(c) ≥ f(x) for every x in the domain of f. f has an absolute minimum at c if f(c) ≤ f(x) for every x in the domain of f. Extreme Value Theorem - If f is continuous on a closed interval [a,b], then it will have an absolute maximum and an absolute minimum value on that interval. Each absolute extremum must occur either at an endpoint or a critical point. Therefore, the absolute max is the largest value in a table of vales of f at the endpoints and critical points, and the absolute minimum is the smallest value. Locating Candidates for Relative Extrema If f is a real valued function, then its relative extrema occur among the following types of points, collectively called critical points: 1. Stationary Points: f has a stationary point at x if x is in the domain of f and f′(x) = 0.
    [Show full text]
  • Notes on Euler's Work on Divergent Factorial Series and Their Associated
    Indian J. Pure Appl. Math., 41(1): 39-66, February 2010 °c Indian National Science Academy NOTES ON EULER’S WORK ON DIVERGENT FACTORIAL SERIES AND THEIR ASSOCIATED CONTINUED FRACTIONS Trond Digernes¤ and V. S. Varadarajan¤¤ ¤University of Trondheim, Trondheim, Norway e-mail: [email protected] ¤¤University of California, Los Angeles, CA, USA e-mail: [email protected] Abstract Factorial series which diverge everywhere were first considered by Euler from the point of view of summing divergent series. He discovered a way to sum such series and was led to certain integrals and continued fractions. His method of summation was essentialy what we call Borel summation now. In this paper, we discuss these aspects of Euler’s work from the modern perspective. Key words Divergent series, factorial series, continued fractions, hypergeometric continued fractions, Sturmian sequences. 1. Introductory Remarks Euler was the first mathematician to develop a systematic theory of divergent se- ries. In his great 1760 paper De seriebus divergentibus [1, 2] and in his letters to Bernoulli he championed the view, which was truly revolutionary for his epoch, that one should be able to assign a numerical value to any divergent series, thus allowing the possibility of working systematically with them (see [3]). He antic- ipated by over a century the methods of summation of divergent series which are known today as the summation methods of Cesaro, Holder,¨ Abel, Euler, Borel, and so on. Eventually his views would find their proper place in the modern theory of divergent series [4]. But from the beginning Euler realized that almost none of his methods could be applied to the series X1 1 ¡ 1!x + 2!x2 ¡ 3!x3 + ::: = (¡1)nn!xn (1) n=0 40 TROND DIGERNES AND V.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • MA123, Chapter 6: Extreme Values, Mean Value
    MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity • Apply the Extreme Value Theorem to find the global extrema for continuous func- Chapter Goals: tion on closed and bounded interval. • Understand the connection between critical points and localextremevalues. • Understand the relationship between the sign of the derivative and the intervals on which a function is increasing and on which it is decreasing. • Understand the statement and consequences of the Mean Value Theorem. • Understand how the derivative can help you sketch the graph ofafunction. • Understand how to use the derivative to find the global extremevalues (if any) of a continuous function over an unbounded interval. • Understand the connection between the sign of the second derivative of a function and the concavities of the graph of the function. • Understand the meaning of inflection points and how to locate them. Assignments: Assignment 12 Assignment 13 Assignment 14 Assignment 15 Finding the largest profit, or the smallest possible cost, or the shortest possible time for performing a given procedure or task, or figuring out how to perform a task most productively under a given budget and time schedule are some examples of practical real-world applications of Calculus. The basic mathematical question underlying such applied problems is how to find (if they exist)thelargestorsmallestvaluesofagivenfunction on a given interval. This procedure depends on the nature of the interval. ! Global (or absolute) extreme values: The largest value a function (possibly) attains on an interval is called its global (or absolute) maximum value.Thesmallestvalueafunction(possibly)attainsonan interval is called its global (or absolute) minimum value.Bothmaximumandminimumvalues(ifthey exist) are called global (or absolute) extreme values.
    [Show full text]
  • Euler and His Work on Infinite Series
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 44, Number 4, October 2007, Pages 515–539 S 0273-0979(07)01175-5 Article electronically published on June 26, 2007 EULER AND HIS WORK ON INFINITE SERIES V. S. VARADARAJAN For the 300th anniversary of Leonhard Euler’s birth Table of contents 1. Introduction 2. Zeta values 3. Divergent series 4. Summation formula 5. Concluding remarks 1. Introduction Leonhard Euler is one of the greatest and most astounding icons in the history of science. His work, dating back to the early eighteenth century, is still with us, very much alive and generating intense interest. Like Shakespeare and Mozart, he has remained fresh and captivating because of his personality as well as his ideas and achievements in mathematics. The reasons for this phenomenon lie in his universality, his uniqueness, and the immense output he left behind in papers, correspondence, diaries, and other memorabilia. Opera Omnia [E], his collected works and correspondence, is still in the process of completion, close to eighty volumes and 31,000+ pages and counting. A volume of brief summaries of his letters runs to several hundred pages. It is hard to comprehend the prodigious energy and creativity of this man who fueled such a monumental output. Even more remarkable, and in stark contrast to men like Newton and Gauss, is the sunny and equable temperament that informed all of his work, his correspondence, and his interactions with other people, both common and scientific. It was often said of him that he did mathematics as other people breathed, effortlessly and continuously.
    [Show full text]
  • OPTIMIZATION 1. Optimization and Derivatives
    4: OPTIMIZATION STEVEN HEILMAN 1. Optimization and Derivatives Nothing takes place in the world whose meaning is not that of some maximum or minimum. Leonhard Euler At this stage, Euler's statement may seem to exaggerate, but perhaps the Exercises in Section 4 and the Problems in Section 5 may reinforce his views. These problems and exercises show that many physical phenomena can be explained by maximizing or minimizing some function. We therefore begin by discussing how to find the maxima and minima of a function. In Section 2, we will see that the first and second derivatives of a function play a crucial role in identifying maxima and minima, and also in drawing functions. Finally, in Section 3, we will briefly describe a way to find the zeros of a general function. This procedure is known as Newton's Method. As we already see in Algorithm 1.2(1) below, finding the zeros of a general function is crucial within optimization. We now begin our discussion of optimization. We first recall the Extreme Value Theorem from the last set of notes. In Algorithm 1.2, we will then describe a general procedure for optimizing a function. Theorem 1.1. (Extreme Value Theorem) Let a < b. Let f :[a; b] ! R be a continuous function. Then f achieves its minimum and maximum values. More specifically, there exist c; d 2 [a; b] such that: for all x 2 [a; b], f(c) ≤ f(x) ≤ f(d). Algorithm 1.2. A procedure for finding the extreme values of a differentiable function f :[a; b] ! R.
    [Show full text]
  • Calc. Transp. Correl. Chart
    Calculus Transparencies to Accompany LARSON/HOSTETLER/EDWARDS •Calculus with Analytic Geometry, Seventh Edition •Calculus with Analytic Geometry, Alternate Sixth Edition •Calculus: Early Transcendental Functions, Third Edition Calculus: Early Calculus, Transcendental Transparency Calculus, Alternate Functions, Third Figure Seventh Edition Sixth Edition Edition Number Transparency Title Figure Figure Figure 1The Distance Formula A.16 1.16 A.16 A.17 1.17 A.17 2 Symmetry of a Graph P. 7 1.30 P. 7 3 Rise in Atmospheric Carbon Dioxide P. 11 1.34 P. 11 ----- 1.35 ----- 4The Slope of a Line P. 12 1.38 P. 12 P. 14 1.40 P. 14 5Parallel and Perpendicular Lines P. 19 1.44 P. 19 6Vertical Line Test for Functions P. 26 1.50 P. 26 7 Eight Basic Functions P. 27 1.51 P. 27 8 Shifts and Reflections P. 28 1.52 P. 28 ----- 1.53 ----- 9Trigonometric Functions A.37 8.13 A.37 10 The Tangent Line Problem 1.2 2.2 1.2 11 A Formal Definition of Limit 1.12 2.29 1.12 12 Two Special Trigonometric Limits 1.22 8.20 1.22 Proof of Proof of Proof of Thm 1.9 Thm 8.2 Thm 1.9 13 Continuity 1.25 2.14 1.25 ----- 2.15 ----- 14 Intermediate Value Theorem 1.35 2.20 1.35 1.36 2.21 1.36 15 Infinite Limits 1.40 2.24 1.40 16 The Tangent Line as the Limit of the 2.3 3.3 2.3 Secant Line 2.4 3.4 2.4 17 The Mean Value Theorem 3.12 4.10 3.12 18 The First Derivative Test Proof of Proof of Proof of Thm 3.6 Thm 4.6 Thm 3.6 19 Concavity 3.24 4.20 3.24 20 Points of Inflection 3.28 4.24 3.28 21 Limits at Infinity 3.34 4.30 3.34 22 Oxygen Level in a Pond 3.41 4.34 3.41 23 Finding Minimum Length 3.57 4.47 3.58 3.58 Tech p.
    [Show full text]
  • On the Euler Integral for the Positive and Negative Factorial
    On the Euler Integral for the positive and negative Factorial Tai-Choon Yoon ∗ and Yina Yoon (Dated: Dec. 13th., 2020) Abstract We reviewed the Euler integral for the factorial, Gauss’ Pi function, Legendre’s gamma function and beta function, and found that gamma function is defective in Γ(0) and Γ( x) − because they are undefined or indefinable. And we came to a conclusion that the definition of a negative factorial, that covers the domain of the negative space, is needed to the Euler integral for the factorial, as well as the Euler Y function and the Euler Z function, that supersede Legendre’s gamma function and beta function. (Subject Class: 05A10, 11S80) A. The positive factorial and the Euler Y function Leonhard Euler (1707–1783) developed a transcendental progression in 1730[1] 1, which is read xedx (1 x)n. (1) Z − f From this, Euler transformed the above by changing e to g for generalization into f x g dx (1 x)n. (2) Z − Whence, Euler set f = 1 and g = 0, and got an integral for the factorial (!) 2, dx ( lx )n, (3) Z − where l represents logarithm . This is called the Euler integral of the second kind 3, and the equation (1) is called the Euler integral of the first kind. 4, 5 Rewriting the formula (3) as follows with limitation of domain for a positive half space, 1 1 n ln dx, n 0. (4) Z0 x ≥ ∗ Electronic address: [email protected] 1 “On Transcendental progressions that is, those whose general terms cannot be given algebraically” by Leonhard Euler p.3 2 ibid.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]