<<

Antibiotics – an update on recently approved and investigational drugs Jenner Minto, Pharm.D. Disclosures

• Nothing to disclose Learning Objectives

• Describe the use of new antibacterial agents in clinical practice

• Describe the therapeutic potential of currently in development Assessment Questions

1. Which of the following statements regarding new antibacterial agents is true? A. Most are FDA approved to treat a broad range of B. Recently approved antibiotics are likely to become first-line agents C. Many have a novel mechanism of action D. Most are reserved for infections caused by organisms that are resistant to existing antibiotics

2. The majority of antibiotics currently in development target which pathogen(s)? A. Gram-positive organisms B. Gram-negative ESKAPE pathogens C. Drug-resistant Neisseria gonorrheae D. Drug-resistant Clostridioides difficile Recently Approved Antibiotics 2018 Approvals  (Zemdri®)  Evracycline (Xerava®)  Sarecycline (Seysara®)  (Nuzyra®)  Rifamycin (Aemcolo®)

2019 Approvals  , cliastatin, (Recabrio®)  Pretomanid  (Xenleta®)  (Fetroja®) Plazomicin (Zemdri®)

Approved • June, 2019

Indications • Complicated urinary tract infections (cUTIs), including pyelonephritis, caused by:  E. coli, K. pneumoniae, P. mirabilis, Enterobacter cloacae

*Reserved for patients ≥ 18 years of age with limited or no alternative treatment options

https://zemdri.com/ https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Class • Mechanism of Action • Inhibits bacterial protein synthesis by binding the bacterial 30S ribosomal subunit Resistance • Aminoglycoside resistance results from production of aminoglycoside modifying enzymes (AMEs), alteration of ribosomal target, up-regulation of efflux pumps, and reduced permeability due to porin loss • Plazomicin is not inhibited by most AMEs that affect other

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Spectrum of Activity

• Broad activity against β-lactamase and AME-producing Enterobacteriaceae  Escherichia coli  Klebsiella pneumoniae  Proteus mirabilis  Enterobacter Cloacae

• In vitro susceptibility with unknown clinical significance  Citrobacter spp.  Enterobacter aerogenes  Klebsiella oxytoca  Morganella morganii  Proteus vulgaris  Providencia stuartii  Serratia marcescens

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Dosing and Administration Dose • 15mg/kg q24h over 30 minutes • Renal dose adjustment required

Duration • 4 to 7 days

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Warnings and Precautions • Nephrotoxicity • Ototoxicity • Neuromuscular Blockade • Fetal Harm • Hypersensitivity reactions • Clostridioides difficile-associated diarrhea • Development of Drug-Resistant

Black Box Warnings • Nephrotoxicity • Ototoxicity  Hearing loss, tinnitus, vertigo • Neuromuscular blockade • Fetal harm

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Adverse Reactions

• Decreased renal function (11%) • Diarrhea (7%) • Hypertension (7%) • Nausea/Vomiting (4%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Use in specific populations Pregnancy  Use not recommended  No available data

Lactation  Insufficient data in humans  Present in lactating rats, systemic exposure ~ 0.04% maternal exposure

Geriatric Use  Higher rates of adverse reactions in patients ≥ 65 years  40% of patients in clinical trials were ≥ 65 years  17.2 % of patients in clinical trials were ≥ 75 years

Pediatric Use  Safety and efficacy not established

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf Plazomicin (Zemdri®)

Clinical Trial Data Two comparator-controlled clinical trials in patients with cUTI, including pyelonephritis  Compared to  Non-inferior  Composite cure at day 5 (88% vs. 91.4%)  Higher % of patients had microbiologic eradication at test-of-cure visit (81.7% vs. 70.1%)  Small sample size (n=609)

Utility in clinical practice  Limited by adverse effects and limited safety & efficacy data

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf

Eravacycline (Xerava®)

Approved • August, 2018

Indications

• Complicated intra-abdominal infections (cIAI)

*Reserved for patients ≥ 18 years of age with limited or no alternative treatment options

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf. (Xerava®)

Class

• Synthetic (fluorocycline) Mechanism of Action

• Inhibits bacterial protein synthesis by binding to the 30S ribosome and preventing the incorporation of amino acids to the elongating peptide chain

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®) Resistance

• Intrinsic multi-drug-resistant (MDR) efflux and ribosomal modification

• C7 and C9 substitution allows activity against some tetracycline-specific resistance mechanisms  Efflux mediated by tet(A), tet(B), and tet(K)  Ribosomal protection encoded by tet(M) and tet(Q)

• In vitro efficacy against Entreobacteriaceae  ESBL producing  AmpC producing

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Spectrum of Activity • Gram-positive bacteria  faecalis  anginosus

• Gram-negative bacteria  Citrobacter freundii  Enterobacter cloacae  Escherichia coli  Klebsiella pneumoniae  Klebsiella oxytoca

• Anaerobic Bacteria  perfringens  Bacteroides spp.  Parabacteroides distasonis

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Dosing and Administration Dose • 1mg/kg every 12h over 60 minutes • Renal dose adjustment not required • Hepatic dose adjustment in patients with severe hepatic impairment (Child Pugh C)  1mg/kg q12h on day 1  1mg/kg q24h beginning on day 2

Duration • 4 to 14 days

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Warnings and Precautions

• Hypersensitivity reactions • Tooth discoloration and enamel hypoplasia • Inhibition of bone growth • Clostridioides difficile - Associated Diarrhea • Potential for microbial overgrowth • Development of drug-resistant bacteria

Adverse Reactions

• Infusion reactions (7.7%) • Nausea (6.5%) • Vomiting (3.7%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Drug interactions

• Strong CYP3A4 inducers  Decrease exposure of eravacycline • Anticoagulants  Eravacycline may depress plasma prothrombin activity  Decrease dose of anticoagulant recommended

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Use in specific populations Pregnancy  Avoid in 2nd and 3rd trimester  Discoloration of teeth  Inhibition of bone formation

Lactation  Avoid during treatment and for 4 days after discontinuation  No human data available

Geriatric Use  No difference in safety and efficacy

Pediatric Use  No safety or efficacy data available

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Eravacycline (Xerava®)

Clinical Trial Data Two comparator-controlled clinical trials in patients with cUTI, including pyelonephritis

• Study 1  Non-inferior to  Clinical cure (86.8% vs. 87.6%) • Study 2  Non-inferior to meropenem  Clinical cure (90.8% vs. 91.2%)

Utility in clinical practice  Marketed as an alternative to minimize use

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf

Sarecycline (Seysara®)

Approved • August, 2018

Indications

• Non-nodular moderate to severe in patients 9 years of age and older

Limitations of use  Efficacy beyond 12 weeks not established  Safety beyond 12 months not established

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf. Sarecycline (Seysara®)

Class • Tetracycline (fluorocycline) Mechanism of Action • Mechanism for treating acne vulgaris is unknown

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf Sarecycline (Seysara®)

Dosing and Administration Dose • Dosing based on body weight  33-54 kg 60 mg  55-84 kg 100mg  85-136 kg 150 mg

Duration • 12 weeks, then reassess treatment

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf Sarecycline (Seysara®)

Warnings and Precautions

• Hypersensitivity reactions • Tooth discoloration and enamel hypoplasia • Inhibition of bone growth • Clostridioides difficile - Associated Diarrhea • Central Nervous System Effects • Intracranial Hypertension • Photosensitivity • Potential for microbial overgrowth • Development of drug-resistant bacteria

Adverse Reactions

• Nausea (3.1%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf Sarecycline (Seysara®)

Drug interactions

• P-gp Substrates  Sarecycline may increase concentrations of P-gp substrates  Dose reduction may be required • Anticoagulants  Sarecycline may depress plasma prothrombin activity  Decrease dose of anticoagulant recommended

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf Sarecycline (Seysara®)

Use in specific populations Pregnancy  Avoid in 2nd and 3rd trimester  Discoloration of teeth  Inhibition of bone formation

Lactation  Avoid use in breastfeeding women  No human data available

Geriatric Use  No safety or efficacy data available

Pediatric Use  No safety or efficacy data available for patients < 9 years of age  Safe and effective for patients ≥ 9 years

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf Sarecycline (Seysara®)

Clinical Trial Data • Study 1  Superior to placebo  IGA success (21.9% vs. 10.5%)  % reduction (52.2% vs. 35.2%) • Study 2  Superior to placebo  IGA success (22.6% vs. 15.3%)  % reduction (50.8% vs. 36.4%)

Utility in clinical practice  Narrow spectrum tetracycline ( strains)  Reduces exposure to broad-spectrum antibiotics ()  Anti-inflammatory properties

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209521s000lbl.pdf

Omadacycline (Nuzyra®)

Approved • August, 2018

Indications

• Community-acquired bacterial pneumonia (CABP) • Acute bacterial skin and skin structure infections (ABSSSI)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf. Omadacycline (Nuzyra®) Class • Tetracycline (aminomethylcycline) Mechanism of Action

• Inhibits bacterial protein synthesis by binding to the 30S ribosome and blocks protein synthesis Resistance • Overcomes resistance by  Tetracycline resistance active efflux pumps (tetK and tetL)  Ribosomal protection proteins (tetM) • Active against  Some S. aureus, S. pneumo and H. influenzae strains with resistance genes (erm A, erm B, ermC)  Some strains with ciprofloxacin resistance genes (gyrA and parC)  β-lactamase positive H. influenzae

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®)

Spectrum of Activity - CABP

• Gram-positive bacteria   Staphylococcus aureus (MSSA)

• Gram-negative bacteria  Haemophilus influenzae  Haemophilus parainfluenzae

• Other microorganisms  Chlamydophila pneumoniae  Legionella pneumophilia 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf https://www.nuzyra.com/hcp/antimicrobial-activity Omadacycline (Nuzyra®)

Spectrum of Activity - ABSSSI

• Gram-positive bacteria   Staphylococcus aureus (MSSA and MRSA)  Staphylococcus lugdunensis  Streptococcus anginosus grp  Streptococcus intermedius  Streptococcus constellatus 

• Gram-negative bacteria  Enterobacter cloacae  Klebsiella pneumoniae

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf https://www.nuzyra.com/hcp/antimicrobial-activity Omadacycline (Nuzyra®)

Dosing and Administration Dose • CABP  Loading dose: 200mg IV over 60 minutes or 100mg IV over 30 minutes q12h x 2 doses  Maintenance dose: 100mg IV over 30 minutes daily or 300mg PO daily • ABSSSI  Loading dose: 200mg IV over 60 minutes or 100mg IV over 30 minutes q12h x 2 doses  Maintenance dose: 100mg IV over 30 minutes daily or 300mg PO daily Or  Loading dose 450mg PO q24h x 2 doses  300mg PO daily

• Renal and hepatic dose adjustment not required

Duration • 7 to 14 days

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®) Warnings and Precautions • CABP - Increase risk of mortality compared to moxifloxacin (2% vs. 1%)  Cause not established • Tooth discoloration and enamel hypoplasia • Inhibition of bone growth • Hypersensitivity reactions • Clostridioides difficile - Associated Diarrhea • Intracranial Hypertension • Photosensitivity • Development of drug-resistant bacteria

Adverse Reactions • Nausea (21.9%) • Vomiting (11.4%) • Infusion site reactions (4.1%) • LFT elevation (3.7% - 4.1%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®)

Drug interactions

• Anticoagulants  Omadacycline may depress plasma prothrombin activity  Decrease dose of anticoagulant recommended • Antacids and Iron containing products  Absorption is impaired by aluminum, calcium, magnesium, iron

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®)

Use in specific populations Pregnancy  Avoid in 2nd and 3rd trimester  Discoloration of teeth  Inhibition of bone formation  Limited data available

Lactation  Avoid during treatment and for 4 days after discontinuation  No human data available

Geriatric Use  Insufficient data  Lower clinical success rates in patients ≥ 65 years

Pediatric Use  No safety or efficacy data available

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®)

Clinical Trial Data - ABSSSI  Trial 1  IV for 3 days, with the option to transition to PO (omadacycline vs. )  Non-inferior to linezolid  Clinical success at early clinical response (84.8% vs. 85.5%)  Clinical response at post-therapy evaluation (87.3% vs. 82.2%)

 Trial 2  PO omadacycline vs. PO linezolid  Non-inferior to linezolid  Clinical success at early clinical response (84.8% vs. 85.5%)  Clinical response at post-therapy evaluation (87.3% vs. 82.2%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf Omadacycline (Nuzyra®)

Clinical Trial Data - CABP  IV for 3 days, with the option to transition to PO (omadacycline vs. moxifloxacin)  Non-inferior to moxifloxacin  Clinical success at early clinical response (81.1% vs. 82.7%)  Clinical response at post-therapy evaluation (87.6% vs. 85.1%)

Utility in clinical practice  Treats CAP caused by resistant S. pneumoniae  Broad spectrum - empiric monotherapy for ABSSSI

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211109lbl.pdf

Rifamycin (Aemcolo®)

Approved • November, 2018 Indications • Traveler’s diarrhea caused by noninvasive strains of E. coli in adults Limitations of use • Not for use in patients with diarrhea complicated by fever or bloody stool • Indicated for E. coli only

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf. Rifamycin (Aemcolo®)

Class • Ansamycin Mechanism of Action

• Blocks DNA transcription by inhibiting DNA-dependent RNA polymerase Resistance • Point mutations in the RNA polymerase beta subunit associated withresistance

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf Rifamycin (Aemcolo®)

Dosing and Administration Dose  388mg (2 tablets) PO BID for 3 days

• Safety and efficacy in renal and hepatic impairment not studied

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf Rifamycin (Aemcolo®) Warnings and Precautions • Risk of persistent or worsening diarrhea complicated by fever and/or bloody stool • Clostridioides difficile - Associated Diarrhea • Development of drug-resistant bacteria

Adverse Reactions • Constipation (3.5%) • Headache (3.3%)

Drug interactions • None studied

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf Rifamycin (Aemcolo®)

Use in specific populations Pregnancy  No human data available  No evidence of fetal harm in animal studies

Lactation  No human data available

Geriatric Use  Insufficient data  Minimal absorption, minimal difference in safety/efficacy expected

Pediatric Use  No safety or efficacy data available

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf Rifamycin (Aemcolo®)

Clinical Trial Data  Rifamycin 388mg PO BID for 3 days  Time to last unformed stool  Superior to placebo (46h vs. 68h)  Clinical cure  Superior to placebo (80.4% vs. 56.9%)

Utility in clinical practice  Alternative to fluoroquinolones for Traveler’s diarrhea

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210910s000lbl.pdf

Imipenem, cilastatin, relebactam (Recabrio®)

Approved

• July, 2019

Indications

• Complicated urinary tract infections (cUTI) • Complicated intra-abdominal infections (cIAI) • Hospital-acquired bacterial pneumonia (HABP) • Ventilator-acquired bacterial pneumonia (VABP)

*Reserved for patients ≥ 18 years of age with limited or no alternative treatment options

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086080/#:~:text=This%20review%20focuses%20on%20the,2019)%20are%20new%20therapeutic%20options. Imipenem, cilastatin, relebactam (Recabrio®)

Class

• Carbapenem/β-lactamase inhibitor Mechanism of Action

• Inhibits bacterial synthesis (Imipenem)

• β-lactamase inhibitor (relebactam)  Protects imipenem from degradation by β-lactamases SVH, TEM, CTX-M, Enterobacter cloacae P99, PDC, KPC

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf Imipenem, cilastatin, relebactam (Recabrio®) Resistance

• No cross-resistance with other classes of antibacterial drugs  Some isolates resistant to and are susceptible to imipenem/cilastatin/relebactam

• β-lactam resistance mechanisms in gram-negative organisms:  β-lactamase production  Up-regulation of efflux pumps  Loss of outer membrane porins

• Resistant to most isolates containing metalo-beta-lactamases and oxacillinases with carbapenemase activity

• Resistant Enterobacteriaceae  MBL or oxacillinase producing

• Resistant  MBL, KPC, PER, GES, VEB, PDC producing

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf Imipenem, cilastatin, relebactam (Recabrio®)

Spectrum of Activity

• Aerobic gram-negative bacteria  Acinetobacter baumannii complex  Enterobacter cloacae complex  Escherichia coli  Haemophilus influenzae  Klebsiella spp.  Pseudomonas aeruginosa  Serratia marcescens

• Anaerobic Bacteria  Bacteroides spp.  Fusobacterium nucleatum  Parabacteroides distasonis

https://www.merckconnect.com/recarbrio/mechanism-of-action/?#AntimicrobialActivity Imipenem, cilastatin, relebactam (Recabrio®)

Dosing and Administration Dose • 1.25g IV q6h over 3 hours  Imipenem 500mg, cilastatin 500mg, relebactam 250mg  Renal dose adjustment required  CrCl < 60 mL/min

Duration • 4 to 14 days

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf https://www.merckconnect.com/recarbrio/dosing-administration/ Imipenem, cilastatin, relebactam (Recabrio®)

Pharmacokinetics Elimination • Half-life of ~1hr

Metabolism • Cilastatin inhibits metabolism of imipenem by dehydropeptidase in the kidneys • Relebactam is minimally metabolized

Excretion • Renal

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Imipenem, cilastatin, relebactam (Recabrio®)

Warnings and Precautions

• Hypersensitivity reactions • Seizures and CNS reactions • Increased seizure potential with Valproic Acid • Clostridioides difficile–associated diarrhea (CDAD)

Adverse Reactions

• Diarrhea (6%) • Nausea (6%) • Headache (4%) • Vomiting (3%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Imipenem, cilastatin, relebactam (Recabrio®)

Use in specific populations Pregnancy  Embryonic loss observed in monkeys treated with imipenem/cilastatin  Fetal abnormalities in mice treated with relebactam  Insufficient human data

Lactation  Insufficient data in humans  Relebactam present in milk of lactating rats

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf Imipenem, cilastatin, relebactam (Recabrio®)

Use in specific populations Geriatric Use  No difference in safety and efficacy  31% of patients in clinical trials were ≥ 65 years  11.6 % of patients in clinical trials were ≥ 75 years

Pediatric Use  No data

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Imipenem, cilastatin, relebactam (Recabrio®)

Clinical Trial Data – HABP/VABP  Trial 1  Imipenem/cilastatin/relebactam vs. /  Non-inferior to Piperacillin/Tazobacctam  All cause mortality at 28 days (15.9% vs. 21.3%)  Higher mortality in HABP alone (12.7% vs. 11.5%)  Lower mortality with VABP and ventilated HABP (19.7% vs. 30.9%)

 Trial 2  Imipenem/cilastatin/relebactam vs. imipenem/cilastatin +  Non-inferior  All-cause mortality (9.5% vs 30%)  Clinical response at day 28 (71.4% vs. 40%)  Small sample size (n=30)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Imipenem, cilastatin, relebactam (Recabrio®)

Clinical Trial Data – cUTI and cIAI  Two individual trials  Imipenem/cilastatin + placebo vs Imipenem/cilastatin/relebactam  Designed to identify side effects  Increased diarrhea, LFT elevation with Imipenem/cilastatin/relebactam

Utility in clinical practice  Reserved for MDR organisms

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub

Cefiderocol (Fetroja®)

Approved

• November 11, 2019

Indications

• Complicated urinary tract infections (cUTI)  Reserved for use in patients ≥ 18 years of age with limited treatment options • Hospital-acquired bacterial pneumonia • Ventilator-associated bacterial pneumonia

https://www.fetroja.com/mechanism-of-action/ Cefiderocol (Fetroja®)

Class

• Siderophore

Mechanism of Action

• Inhibits bacterial cell wall synthesis

• Functions as a siderophore to gain access via the bacteria’s iron-transport system  Binds to extracellular free ferric iron  Evades resistance by overcoming porin channel alterations

https://www.fetroja.com/mechanism-of-action/ Cefiderocol (Fetroja®) Structure

https://www.fetroja.com/overcoming-carbapenem-resistance Cefiderocol (Fetroja®)

Mechanism of Action

https://www.fetroja.com/mechanism-of-action/ Cefiderocol (Fetroja®) Resistance

• No cross-resistance with other classes of antibacterial drugs

• Stable against all classes of β-lactamases

• Overcomes efflux pump up-regulation

https://www.fetroja.com/mechanism-of-action/ Cefiderocol (Fetroja®) Resistance

https://www.fetroja.com/mechanism-of-action/ Cefiderocol (Fetroja®)

Spectrum of Activity

• Aerobic gram-negative  Acinetobacter baumannii complex  Escherichia coli  Enterobacter cloacae complex  Klebsiella pneumoniae  Proteus mirabilis  Pseudomonas aeruginosa  Serratia marcescens

 In vitro activity  Citrobacter freundii complex, Citrobacter koseri, Klebsiella aerogenes, Klebsiella oxytoca, Morganella morganii, Proetus vulgaris, Providencia rettgeri, Stenotrophomonas maltophilia

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®)

Dosing and Administration Dose • 2g IV q8h over 3 hours  Renal dose adjustment required  CrCl < 60 mL/min  CrCl ≥ 120 mL/min

Duration • 7 to 14 days

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®)

Pharmacokinetics Elimination • Half-life of 2-3 hours • Clearance ~ 5L/hr

Metabolism • Minimal metabolism

Excretion • Renal

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®)

Warnings and Precautions

• Increase in all-cause mortality in patients with carbapenem-resistant gram-negative infections • Hypersensitivity reactions • Clostridioides difficile–associated diarrhea (CDAD) • Seizures and other CNS reactions • Development of Drug-Resistant bacteria

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®) Adverse Reactions • Diarrhea (4%) • Infusion site reactions (4%) • Constipation (3%) • Rash (3%)

Drug/Laboratory Test Interactions • False-positive dipstick tests  Urine protein, ketones, occult blood

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®)

Use in specific populations Pregnancy  No data available  Cephalosporins typically safe for use in pregnancy

Lactation  No data in humans  Detected in milk of lactating rats (6% of peak plasma level)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Cefiderocol (Fetroja®)

Use in specific populations Geriatric Use  No difference in safety and efficacy

Pediatric Use  No data

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub

Lefamulin (Xenleta®)

Approved

• August, 2019

Indications

• Community Acquired Bacterial Pneumonia

Future Indications

• Acute Bacterial SSTI  Phase 2 trials complete • Complicated UTI  Phase 1 trials initiated

Novel Antibiotics | Lefamulin | Nabriva.com. Lefamulin (Xenleta®)

Class  antibacterial agent Mechanism of Action  Inhibits bacterial protein synthesis through interaction with the A- and P- sites of the of the 23S rRNA of the 50S subunit  Interacts via hydrogen bonds, hydrophobic interactions, and Van der Waals forces

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf Lefamulin (Xenleta®) Resistance

• Modifications of the ribosomal target ABC-F proteins  Vga (A,B,E), Isa(E), sal (A), Cfr methyl transferase  Cfr methyltransferase can mediate cross-resistance between lefamulin and , oxazolidinones, and • Mutation of ribosomal proteins L3 and L4

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Spectrum of Activity Gram-positive Bacteria  Streptococcus pneumoniae  Staphylococcus aureus (MSSA)

Gram-negative Bacteria  Haemophilus influenzae

Other Bacteria  Mycoplasma pneumoniae  Chlamydophila pneumoniae  Legionella pneumophilia

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Potential Spectrum of Activity Gram-positive Bacteria  Staphylococcus aureus (MRSA)   Streptococcus anginosus  Streptococcus mitis  Streptococcus pyogenes  Streptococcus salivarius

Gram-negative Bacteria  Haemophilus parainfluenzae  Moraxella catarrhalis

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Dosing and Administration Dose • 150mg IV q12h over 60 minutes • 600mg PO q12h  Administer 1 hours before or 2 hours after meals

Duration • 5-7 days

Dose adjustment

• Hepatic Impairment  150mg IV q24h over 60 minutes (Child-Pugh Class C)  Tablets not recommended with moderate or severe hepatic impairment (Child-Pugh Class B or C)

• Renal dose adjustment not required

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®) Pharmacokinetics Absorption  Decreased bioavailability when administered with food (PO)

Metabolism  CYP3A4 metabolism

Elimination  Elimination half-life ~ 8 hours

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Warnings and Precautions

• QT Prolongation • Embryo-Fetal Toxicity  Verify pregnancy status before initiation • Clostridioides difficile-associated diarrhea (CDAD) • Development of drug resistant bacteria

Adverse Reactions

• Diarrhea (12%) • Infusion site reaction (7%) • Nausea (5%)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Lefamulin (Xenleta®)

Drug Interactions  Strong CYP3A4 inducers/inhibitors  Strong P-gp inducers/inhibitors

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209445s000lbl.pub Lefamulin (Xenleta®)

Use in specific populations Pregnancy  May cause fetal harm  Pregnancy pharmacovigilance program established for Xenleta

Lactation  No human data  Concentrated in mild of lactating rats  Recommend pumping and discarding milk during administration and for 2 days after discontinuation of lefamulin

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Use in specific populations Geriatric Use  No difference in safety and efficacy  41.5% of patients in clinical trials were ≥ 65 years

Pediatric Use  Safety and efficacy not established

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf Lefamulin (Xenleta®)

Clinical Trial Data Two multicenter, multinational, double-blind, double-dummy, non-inferiority trials • Trial 1  Lefamulin (5-10 days) compared to Moxifloxacin ± Linezolid (7-10 days)  IV administration of all antibiotics for at least 3 days before transition to PO  Non-inferior to Moxifloxacin ± Linezolid  Early Clinical Response 87.3% vs. 90.2%  Clinical Response at Test of Cure 80.8% vs. 83.6% • Trial 2  PO Lefamulin (5 days) compared to PO Moxifloxacin (7 days)  Non-inferior to Moxifloxacin ± Linezolid  Early Clinical Response 90.2% vs. 90.2%  Clinical Response at Test of Cure 87.0% vs. 89.1%

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf

Pretomanid

Approval • August, 2019 Indications • Mycobacterium tuberculosis  Approved only in combination with bedaquiline and linezolid in drug-resistant tuberculosis Class  Nitroimidazooxazine antimycobacterial drug Mechanism of Action  Blocks mycobacterial cell wall production by inhibiting mycolic acid biosynthesis

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Pretomanid Resistance

• Mutations in M. tuberculosis genes  ddn, fgd l, fbiA, fbiB, fbiC  Products of these genes are involved in bioreductive activation of pretomanid • Other resistance mechanism?  Not all resistant isolates have mutations in the identified M. tuberculosis genes

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Pretomanid

Dosing and Administration Dose • Pretomanid 200mg tablet daily  Administer with  Linezolid 1200mg daily x 26 weeks  Bedaquiline 400mg PO x 2 weeks, then 200mg 3x/week for 24 weeks  Duration may be extended beyond 6 weeks

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Pretomanid Warnings and Precautions

• Hepatotoxicity  Discontinue if:  ALT/AST + bilirubin > 2 x ULN  ALT/AST > 8 x ULN  ALT/AST > 5 x ULN for longer than 2 weeks • Myelosuppression  Monitor blood counts  Known adverse reaction to linezolid • Peripheral and optic neuropathy  Neuropathy associated with linezolid • Lactic Acidosis  Associated with linezolid • QT Prolongation  Associated with bedaquiline use Drug Interactions  Strong CYP3A4 inducers  Avoid co-administration

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Pretomanid

Use in specific populations Pregnancy  Insufficient data  No associated embryofetal effects a 2 times the AUC in humans

Lactation  No human data  Detected in milk of lactating rats

Geriatric Use  Insufficient data

Pediatric Use  Safety and efficacy not established

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Pretomanid

Clinical Trial Data

• Open-label study in three centers  N = 109, 51% HIV-positive  Pretomanid + bedaquiline + linezolid for 6 months  Extended to 9 months in 2 patients  89% culture negative 6-months after treatment

https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf Antibiotics in Development Antibiotics in Development Overview 40 antibiotics currently in development  13 in Phase 3  12 in Phase 2  15 in Phase 1

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2020/04/tracking-the-global-pipeline-of-antibiotics-in-development Antibiotics in Development Overview

Target Organisms

• Gram-negative ESKAPE Pathogens  Enterococcus faecium  Staphylococcus aureus  Klebsiella pneumoniae  Acinetobacter baumannii  Pseudomonas aeruginosa  Enterobacter Spp.

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2020/04/tracking-the-global-pipeline-of-antibiotics-in-development Antibiotics in Development Overview

Target Organisms

WHO Critical Threat Pathogens  Acinetobacter baumannii – Carbapenem resistant (CRAB)  Pseudomonas aeruginosa – Carbapenem resistant (CRPA)  Enterobacteriaceae – Carbapenem resistant, ESBL-producing

CDC Urgent threat pathogens  Acinetobacter baumannii – Carbapenem resistant (CRAB)  Candida auris  Clostridioides difficile  Enterobacteriaceae – Carbapenem resistant  Neisseria gonorrheae – Drug resistant

https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Antibiotics in Development Overview History  1 in 5 infectious disease drugs that reach human trials are approved

Current landscape  11 antibiotics in development have a novel mechanism of action or drug class  35 companies with antibiotics in clinical development  1 ranks in the top 50 pharmaceutical companies by sales  75% are pre-revenue  Too few antibiotics in development to meet anticipated need

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2020/04/tracking-the-global-pipeline-of-antibiotics-in-development Antibiotics in Development

• Phase 3  + enmetazobactam • Sulopenem & sulopenem-etzadroxil-  Cefepime + taniborbactam probenecid  Cefilavancin • • Tebipenem & tebipenem pivoxil  Contezolid & contezolid acefosamil hydrobromide  Cespotidacin • Zolidflodacin  Iclaprim  Ridinilazole  + durlobactam Antibiotics in Development Cefepime + enmetazobactam Current Status  Phase 3 Class  Benzoquinolozine fluoroquinolone Mechanism of Action  Targets DNA gyrase preferentially over topoisomerase IV Indication  SSTI  Hospital Acquired Bacterial Pneumoniae Target organisms  ESKAPE pathogens  S. aureus, including MRSA  Does not cover CDC urgent or WHO critical threat pathogens

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Cefepime + enmetazobactam

Current Status  Phase 3

Class  β-lactam (cephalosporin) + β- lactamase inhibitor

Mechanism of Action  Targets Binding Protein (PBP) and β-lactamase

Indication  Complicated intra-abdominal infections  Complicated UTI (including pyelonephritis)  Hospital Acquired Bacterial Pneumonia  Ventilator Associated Bacterial Pneumonia

Target organisms  ESKAPE Pathogens  K. pneumoniae, P. aeruginosa, Enterobacter  Possibly S. aureus  CDC urgent or WHO critical threat pathogens  ESBL producing organisms, possibly CRE

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Cefepime + taniborbactam Current Status  Phase 3 Class  β-lactam (cephalosporin) + β- lactamase inhibitor (cyclic boronate) Mechanism of Action  Inhibits cell wall synthesis - targets Penicillin Binding Protein (PBP)  Inhibits β-lactamase Indication  Complicated UTI (excluding pyelonephritis) Target organisms  ESKAPE pahtogens  K. pneumoniae, P. aeruginosa, Enterobacter spp.  Possibly S. aureus  CDC urgent or WHO critical pathogens  CRE, possibly CRPA https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Cefilavancin Current Status  Phase 3 Class  Glycopeptide-β-lactam hybrid Mechanism of Action  Inhibits cell wall synthesis - targets Penicillin Binding Protein (PBP)  Inhibits chain elongation Indication  Complicated UTI (excluding pyelonephritis) Target organisms  ESKAPE pathogens  S. aureus (MRSA)  Does not cover CDC urgent or WHO critical pathogens

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Ceftobiprole Current Status  Phase 3

Class  β-lactam (cephalosporin)

Mechanism of Action  Inhibits cell wall synthesis - targets Penicillin Binding Protein (PBP)

Indication  SSTI  Community Acquired Bacterial Pneumonia  Hospital Acquired Bacterial Pneumonia  S. aureus bacteremia

Target organisms  ESKAPE pathogens  S. aureus (MRSA), K. pneumoniae, Enterobacter spp.  Does not cover CDC urgent or WHO critical pathogens

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Contezolid & contezolid acefosamil Current Status  Phase 3 Class  Oxazolidinone Mechanism of Action  Inhibits protein synthesis  Targets bacterial 50S ribosomal subunit Indication  SSTI Target organisms  ESKAPE pathogens  E. faecium, S. aureus (MRSA)  Does not cover CDC urgent or WHO critical pathogens

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Gespotidacin Current Status  Phase 3

Class  Triazaacenaphthylene

Mechanism of Action  Inhibits DNA synthesis  Targets bacterial topoisomerase II at a novel A subunit site

Indication  Uncomplicated UTI  Uncomplicated urogenital gonorrhea

Target organisms  ESKAPE pathogens  S. aureus (MRSA)  CDC urgent or WHO critical pathogens  Drug-resistant N. gonorrhoeae  Possibly ESBP https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Iclaprim

Current Status  Phase 3

Class  2,4 diaminopyrimidine

Mechanism of Action  Dihydrofolate reductase inhibitor

Indication  Clostridioides difficile

Target organisms  Does not cover ESKAPE pathogens  CDC urgent or WHO critical pathogens  C. difficile https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Ridinilazole Current Status  Phase 3 Class  Bis-benzimidazole Mechanism of Action  Inhibits cell division  Reduces toxin production Indication  Clostridioides difficile infection Target organisms  Does not cover ESKAPE pathogens  CDC urgent or WHO critical pathogens  C. difficile https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Sulbactam + durlobactam

Current Status  Phase 3

Class  β-lactam + β-lactamase inhibitor

Mechanism of Action  Inhibits cell wall synthesis by targeting Penicillin Binding Protein (PBP)  β-lactamase inhibitor

Indication  Bacteremia  Complicated UTI (including pyelonephritis)  Hospital Acquired Bacterial Pneumoniae  Ventilator Associated Bacterial Pneumoniae

Target organisms  ESKAPE pathogens  A. baumannii  CDC urgent or WHO critical pathogens  CRAB

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Sulopenem & sulopenem-etzadroxil-probenecid Current Status  Phase 3 Class  β-lactam (carbapenem) Mechanism of Action  Inhibits cell wall synthesis by targeting Penicillin Binding Protein (PBP) Indication  Prostatitis  Community Acquired Bacterial Pneumonia  Complicated intra-abdominal infections  Complicated UTI  Gonococcal urethritis  Pelvic inflammatory disease  Uncomplicated UTI https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Sulopenem & sulopenem-etzadroxil-probenecid

Target organisms  ESKAPE pathogens  K. pneumoniae, Enterobacter spp.  CDC urgent or WHO critical pathogens  ESBL producing organisms  Drug-resistant N. gonorrhoeae

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Solithromycin Current Status  Phase 3 Class  Macrolide Mechanism of Action  Inhibits bacterial protein synthesis  Targets the bacterial 50S ribosomal subunit Indication  Community Acquired Bacterial Pneumonia  Uncomplicated urogenital gonorrhea Target organisms  Does not cover ESKAPE pathogens  CDC urgent or WHO critical pathogens  Drug-resistant N. gonorrhoeae

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Tebipenem & tebipenem pivoxil hydrobromide

Current Status  Phase 3  Approved for use in Japan (Orapenem®) for pneumonia, otitis media, sinusitis

Class  Carbapenem

Mechanism of Action  Inhibits cell wall synthesis by targeting Penicillin Binding Protein (PBP)

Indication  Complicated UTI (including pyelonephritis)  Community Acquired Bacterial Pneumonia  Diabetic foot infection

Target organisms  ESKAPE pathogens  K. pneumoniae  Possibly A. baumannii, P. aeruginosa  CDC urgent or WHO critical pathogens  ESBL producing organisms

https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Antibiotics in Development Zoliflodacin Current Status  Phase 3 Class  Spiropyrimidinetrione

Mechanism of Action  Inhibits bacterial DNA synthesis  Targets bacterial type II topoisomerase

Indication  Uncomplicated gonorrhea Target organisms  ESKAPE pathogens  S. aureus  CDC urgent or WHO critical pathogens  Drug-resistant N. gonorrhoeae https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2014/antibiotics-currently-in-clinical-development Questions? Assessment Questions

1. Which of the following statements regarding new antibacterial agents is true? A. Most are FDA approved to treat a broad range of infections B. Recently approved antibiotics are likely to become first-line agents C. Many have a novel mechanism of action D. Most are reserved for infections caused by organisms that are resistant to existing antibiotics

2. The majority of antibiotics currently in development target which pathogen(s)? A. Gram-positive organisms B. Gram-negative ESKAPE pathogens C. Drug-resistant Neisseria gonorrheae D. Drug-resistant Clostridioides difficile References

1. Aemcolo [package insert]. San Diego, Ca: Aries Pharmaceuticals, Inc; 2018.

2. Antibiotics Currently in Global Clinical development. Data Visualization April 15, 2020. PEW website. Available at: Antibiotics Currently in Clinical Development | The Pew Charitable Trusts (pewtrusts.org). Accessed February 28, 2021.

3. Clinical study of S-649266 for the treatment of nosocomial pneumonia caused by gram-negative pathogens (APEKS-NP). Available at: https://clinicaltrials.gov/ct2/show/NCT03032380. Accessed Jan. 20, 2020.

4. Fetroja [package insert]. Florham Park, NJ: Shionogi Inc; 2019.

5. Food and Drug Administration. FDA Antibacterial Susceptibility Test Interpretive Criteria. Cefiderocol injection. https://www.fda.gov/drugs/development-resources/cefiderocol-injection. Accessed Feb. 10, 2020.

6. Hagwat SS, et al. Levonadifloxacin, a novel broad-spectrum Anti-MRSA benzoquinolizine quinolone agent: review of current evidence. Drug Des Devel Ther 2019, 13: 4351-4365.

7. Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother 2017;62:e01454-17.

8. Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60:7396-7401.

9. Katsube T, Echols R, Wajima T. Pharmacokinetic and pharmacodynamic profiles of cefiderocol, a novel siderophore cephalosporin. Clin Infect Dis 2019;69(Suppl7):S552-S558. References

10. Mulani S, Kamble EE, Kumkar SN, Tawre SM, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of : A Review. Front Microbiol 2019;10:539.

11. Nuzyra [package insert]. Boston, MA: Paratek pharmaceuticals, Inc; 2018.

12. Nuzyra website. Available at:https://www.nuzyra.com/hcp/. Accessed February 26, 2021.

13. Pretomanid [package insert]. South San Francisco, CA: Achaogen, Inc; 2018.

14. Seysara [package insert]. Madison, NJ: Allergan USA, Inc; 2018.

15. Moore AY, Charles JE, Moore S. Sarecycline: a narrow spectrum tetracycline for the treatment of moderate- to-severe acne vulgaris. Future Microbiology 2019;14;4. Available at: https://www.futuremedicine.com/doi/10.2217/fmb-2019-0199. Accessed February 28, 2021.

16. Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis 2018;18: 1319-1328.

17. Sato T, Yamawaki K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis 2019;69(Suppl 7):S538-S543.

18. Tracking the Global Pipeline of Antibiotics in Development, April 2020. PEW website. Available at: https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2020/04/tracking-the-global-pipeline-of- antibiotics-in-development. Accessed February 28, 2020. References

18. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. World Health Organization website. Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of- bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed February 10, 2021.

19. Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin Infect Dis 2019;69(Suppl7):S544-S551.

20. Xenleta [package insert]. Nabriva Therapeutics US; 2019.

21. Xerava [package insert]. Watertown, MA: Tetraphase Pharmaceuticals, Inc; 2018.

22. Xerava™ website. Available at: https://www.xerava.com/. Accessed February 26, 2021.

23. Zemdri [package insert]. South San Francisco, CA: Achaogen, Inc; 2018.

24. Zemdri website. Available at: https://zemdri.com/. Accessed February 26, 2021.