<<

UNCERTAINTY OF MICROWAVE RADIATIVE TRANSFER

COMPUTATIONS IN RAIN

ADissertation

by

SUNGWOOKHONG SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

DOCTOROFPHILOSOPHY

August2006

MajorSubject:AtmosphericSciences

UNCERTAINTY OF MICROWAVE RADIATIVE TRANSFER

COMPUTATIONS IN RAIN

ADissertation

by

SUNGWOOKHONG SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

DOCTOROFPHILOSOPHY Approvedby: ChairofCommittee, ThomasT.Wilheit CommitteeMembers, GeraldR.North ChristianD.Kummerow KaiChang HeadofDepartment, RichardOrville August2006 MajorSubject:AtmosphericSciences iii

ABSTRACT

UncertaintyofMicrowaveRadiativeTransferComputationsinRain.(August2006)

SungWookHong,

B.S.;M.S.,SeoulNationalUniversity;

M.S.,TexasA&MUniversity

ChairofAdvisoryCommittee:Dr.ThomasT.Wilheit

Currently,theeffectoftheverticalresolutiononthebrightnesstemperature(BT) has not been examined in depth. The uncertainty of the freezing level (FL) retrieved usingtwodifferentsatellites’dataislarge.Variousradiativetransfer(RT)codesyield differentBTsinstrongscatteringconditions.

The purposes of this research were: 1) to understand the uncertainty of the BT contributed by the vertical resolution numerically and analytically; 2) to reduce the uncertainty of the FL retrieval using new thermodynamic observations; and 3) to investigatethecharacteristicsoffourdifferentRTcodes.

Firstly,aplaneparallelRTModel(RTM)ofnlayersinlightrainfallwasusedfor theanalyticalandcomputationalderivationoftheverticalresolutioneffectontheBT.

Secondly,anewtemperatureprofilebasedonobservationswasabsorbedintheTexas

A&M University (TAMU) algorithm. The Precipitation Radar (PR) and Tropical

RainfallMeasuringMission(TRMM)MicrowaveImager(TMI)datawereutilizedfor the improved FL retrieval. Thirdly, the TAMU, Eddington approximation (EDD),

iv

DiscreteOrdinate,andbackwardMonteCarlocodeswerecomparedundervariousview angles, rain rates, FLs, frequencies, and surface properties. The uncertainty of theBT decreased as the number of layers increased. The uncertainty was due to the optical thickness rather than due to relative humidity, pressure distribution, water vapor, and temperatureprofile.ThemeanTMIFLshowedagoodagreementwithmeanbrightband height.AnewtemperatureprofilereducedtheuncertaintyoftheTMIFLbyabout10%.

ThedifferencesoftheBTsamongthefourdifferentRTcodeswerewithin1Katthe current sensor view angle over the entire dynamic rain rate range of 1037 GHz. The differencesbetweentheTAMUandEDDsolutionswerelessthan0.5Kforthespecular surface.

Inconclusion,thisresearchsuggestedtheverticalresolutionshouldbeconsidered asaparameterintheforwardmodel.AnewtemperatureprofileimprovedtheTMIFLin the tropics, but the uncertainty still exists with low FL. Generally, the four RT codes agreedwitheachother,exceptatnadir,nearlimborinheavyrainfall.TheTAMUand theEDDcodeshadbetteragreementthanotherRTcodes.

v

DEDICATION

Thisworkisdedicatedtomyparents,sister,andwifewholovemeandwhomIlove.

vi

ACKNOWLEDGEMENTS

Firstandforemost,thanksshouldbegiventomyadvisor,Dr.ThomasT.Wilheit.

Hisinsight,help,andguidanceweregreatthroughthisresearch.Icannotfullyexpress my gratitude to him. I would also like to thank my other committee members, Dr.

Christian D. Kummerow, Dr. Gerald R. North and Dr. Kai Chang, for their helpful commentsthroughoutthiseffort.

Certainly not to be forgotten are all the members of the Microwave Remote

Sensing Group: Kyoungwook Jin, for sharing his knowledge with me about the atmosphericsciences;RichardWeitz,forreformattingtheoriginalTMIdatatomakeit easytouseandforgivinglotsofcommentsonmyprograms.Iamgratefulforallofhis efforts.

Mostimportantly,Iwouldliketothankmyparents(YonSeungHongandInSoon

Ahn)andyoungersisterYeSungHongfortheirendlessandamazinglovethroughout mylife.Withouttheirlove,understanding,andsupport,Icouldnothavecompletedthis study.

Most special thanks should be given to my wife, KyungHwa Baek, without a doubt the most astonishingly talented and beautiful woman I have ever known. She alwayssupportsmewithherlove.Ihopethisworkwillbeasmallprogresstowardour futuredream.TheauthoralsogratefullyacknowledgesfinancialsupportfromtheNASA

TRMMProgram.

vii

TABLE OF CONTENTS

Page

ABSTRACT………………………………………………………………………....iii DEDICATION………………………………………………………………………..v ACKNOWLEDGEMENTS…………………………………………………………vi TABLE OF CONTENTS…………………………………………………………...vii LIST OF FIGURES……………………………………………………………….....x LIST OF TABLES…………………………………………………………………xiii CHAPTER I INTRODUCTION....……………………………………………....……...... 1 1.1 Effects of Vertical Resolution on Brightness Temperature...... 2 1.2 Improved Freezing Level Retrieval in Oceanic Rainfall Algorithm...... 2 1.3UncertaintyofRadiativeTransferCalculationamongTexasA&M University,EddingtonApproximation,DiscreteOrdinate,andMonte Carlo Codes...... 3 II BACKGROUND...... ……………....………………………………….....4 2.1 Radiative Transfer Calculation...... 5 2.2 Radiative Transfer Codes...... …..…………………………...... 6 2.2.1 Texas A&M University Code...... 6 2.2.2 Eddington Approximation Code...... 7 2.2.3 Discrete Ordinate Code...... 9 2.2.4 Monte Carlo Code...... 10 2.3 Atmospheric Model...... ………………………………...... 11 2.4FreezingLevelRetrievalSchemeUsingSpaceborneMicrowave Sensors...... 13

IIIEFFECTSOFVERTICALRESOLUTIONONBRIGHTNESS TEMPERATURE...... 20

viii

CHAPTER Page 3.1 Previous Work...... 20 3.2 Methods...... 20 3.2.1 Analytical Derivation...... 20 a) Assumptions...... 20 b) Radiative Transfer Model...... 20 c) Derivation...... 22 3.2.2 Computational Derivation...... 23 a) Radiative Transfer Model...... 23 3.3 Results...... 24 3.3.1 Analytical Result...... 24 3.3.2 Computational Result...... 25 3.3.3 Water Vapor, Temperature Profile, and Relative Humidity...... 30 3.3.4 Optical Thickness...... 31 3.3.5 Effect of Number of Layers...... 35 3.4 Conclusion...... 38 IVIMPROVEDFREEZINGLEVELRETRIEVALINOCEANIC RAINFALL ALGORITHM...... 39 4.1 Previous Work...... 39 4.2 Data...... 40 4.2.1 TMI...... 41 4.2.2 PR...... 42 4.3 Methods...... 43 4.3.1 Observations...... 43 4.3.2 New Temperature Profile...... 46 4.3.3 Procedures for the Comparison...... 46 4.4 Results...... 49 4.5 Conclusion...... 54 V UNCERTAINTYOFRADIATIVETRANSFERCALCULATION AMONGTEXASA&MUNIVERSITY,EDDINGTONAPPROXIMATION, DISCRETE ORDINATE, AND MONTE CARLO CODES...... 55 5.1 Previous Work...... 55 5.2 Methods...... 56 5.3 Results...... 58 5.4 Conclusion...... 67 5.5 Future Work...... 68 VI CONCLUSION AND SUMMARY...... 72

ix

6.1 Effects of Vertical Resolution on Brightness Temperature...... 72 6.2 Improved Freezing Level Retrieval in Oceanic Rainfall Algorithm...... 72 6.3UncertaintyofRadiativeTransferCalculationamongTexasA&M University,EddingtonApproximation,DiscreteOrdinate,and Monte Carlo Codes...... 73 6.4 Future Work...... 73 REFERENCES...... 74 VITA...... 76

x

LIST OF FIGURES

FIGURE Page 2.1 TAMU RTM..…………………………………….……………………...... 11

2.2 RT relationships at 53.0º view angle using the TAMU code……….…...... 16

2.3 Example of the FLRRT chart. Each curve indicates 1 to 5 km FL...... …...... 17

2.4 Scan of returned power (dBm) at PR nadir ray……………………….…...... 18

2.5 Vertical structure of returned power. Scan number is 595.………………...... 19

3.1 Planeparallel atmospheric models for the analytical derivation……….…...... 21

3.2 DifferencesofBTsaccordingtothenumberoflayersfromtheanalyticaland computationalresults.a)Lambertiansurface,FL=1&5km,RR=0.001mm/hr, Viewangle=nadir.b)Lambertiansurface,FL=1&5km,RR=0.001mm/hr, Viewangle=49.5.c)Specularsurface,FL=1&5km,RR=0.001mm/hr, Viewangle=nadir.d)Specularsurface,FL=1&5km,RR=0.001mm/hr, View angle=49.5...... 26 3.3 Watervapor,temperatureprofile,andrelativehumidity,fortheLambertianor specularsurfacewithrespecttothedifferentFLfrom3to5km.Eachcolor presents the different number of layers……...... ….………...... 30 3.4 Forthespecularsurface,eachcolorpresentstheopticalthicknessof atmosphericgasesandabsorptionoftherainfallwithrespecttothe different FL from 1 to 5 km……………………...... 33 3.5 FortheLambertiansurface,eachcolorpresentstheopticalthicknessof atmosphericgasesandabsorptionoftherainfallwithrespecttothe different FL from 1 to 5 km…...... …………………...... ….……...34 3.6 Requirednumberoflayerslessthan0K,0.5K,and1K.a)Lambertian surfacecase:ContourofthedifferencesfromthefittingcurvesfortheBTs betweenTAMUandEDDcodes.b)Specularsurfacecase:Contourof thedifferencesfromthefittingcurvesfortheBTsbetweenTAMUand EDD codes…...... …………....………...... 36 4.1 ExamplesoforbitofTMIBTat04/17/1998.a)OneorbitofTMI1B11

xi

FIGURE Page BTdatafor10vand19v.b)OneorbitofTMI1B11BTdatafor21v,and 37v GHz ...... 44 4.2 New assumption of temperature profile…...... …………………….….....…...47

4.3 Eachpaneldepicts,respectively,anexampleoftheTMIFL(blackandblue circles)andPRFL(orange),BTsof19GHz(black)and21GHz(skyblue) channels,andtheFLRRTchartwhenTMIandPRobservationscoincideover the ocean.…………………………………….....………………...... 48

4.4 LatitudinaldistributionofPRFL,BBH,oldTMIFL,andnewTMIFL, latitudinal distribution of the differences among them...... 51 4.5 BBHversusnewFL.Eachcolorrepresentsdatafordifferentmonths.Dotted lines indicate 10% uncertainties between BBH and new FL…..…...……...... 52 4.6 Globalmapofthe5°×5°averagedFLusingthenewtemperatureprofile...... 53

5.1 TAMURTM. gtot istotalasymmetryfactor. atot istotalscattering

albedo. ktot is the total extinction coefficient...... 57 5.2 ContourofBTdifferencesusingTAMU,EDD,andDOcodesforthe Lambertian surface, respectively. The FL is assumed to be 5 km…...... …...... 60 5.3 ContourofBTdifferencesusingTAMU,EDD,andMCcodesforthe specular surface, respectively. The FL is assumed to be 1 km…....…………...61 5.4 BT differences among the RT codes to retrieve the FLs and rain rates...... 63 5.5 a)Latitudevs.FLdifferences.b)19GHzverticalchannel’sBTsvs.FL differences.c)Latitudevs.BBHFLs.Inthosecases,FLsareretrievedfrom theFLlookuptablesusingTAMU,EDD,andMCcodes.TheBTsobserved duringDec.1997,Jan.1998,Dec.1999,andJan.2000areusedasinputdata to validate the FLs...... 64 5.6 Latitudevs.FLdifferences(TAMUFL,EDDFL,andMCFL)and latitudevs.BBHFLsforDec.1997,Jan.1998,Dec.1999,andJan.2000 respectively...... 65 5.7 FLdifferencesvs.rainratesamongTAMUFL,EDDFL,DOFLusing BTsgeneratedfromTAMUcode.Inthiscase,FLsareretrievedfrom

xii

FIGURE Page their own FL lookup table...... 66 5.8 FLdifferencesvs.rainratesamongTAMUFL,EDDFL,DOFLusing BTsgeneratedfromeachcode.Inthiscase,FLsareretrievedfromonly TAMU FL lookup table...... 66 5.9 Rainratesvs.BTs.Eachcolordescribesthedifferenticethicknessfrom 0to12kmovertheFL.Andthecombinationof10,19,21,and37GHz channel’s BTs. a) TAMU code. b) EDD code. c) DO code...... 69

xiii

LIST OF TABLES

TABLE Page 3.1TotalopticalthicknessthroughatmosphericmodelfortheFLfrom1to5km and each different number of layers...... 31 3.2PrecipitablewateramountfortheFLfrom1to5kmandeachdifferent number of layers...... 32 5.1ThedifferenceamongthemeanvalueofPRFL(a),BBH(b),TAMUFL(c), EDD FL (d), DO FL (e), and MC FL (f)...... 59

5.2 The mean differences between FLs and BBH for each month...... 59

1

CHAPTER I

INTRODUCTION

Rainfall plays an enormous role in the dynamics of the Earth’s atmosphere.

Roughlythreefourthsoftheenergyabsorbedbytheearth’satmosphereisderivedfrom latent heating, which results from condensation of water vapor to form precipitation.

Twothirdsofthisprecipitationfallsinthetropicalregions.Quantitativeunderstanding ofrainfallpatternsandamountsiscriticaltodeterminethecharacteroftheatmosphere.

Spaceborneremotesensingistheonlypracticalapproachtomeasuringtheglobalscale rainfall. Microwave radiation is minimally affected by most clouds. Accordingly, microwave radiation can be directly associated with the hydrometers themselves and therebyprovideobservationsofrainfall.

Passivemicrowaverainfallestimatesareusuallybasedonmicrowaveabsorption and scattering, that is, the brightness temperatures (BT) measured with a microwave radiometer. The BT is determined by the total absorption along the view path. For channels<23GHz,absorptionbyfrozenhydrometeorsissmall,otherwise,absorption andemissionbyliquidclouddropsandraindropscauseaBTincreaseforincreasingrain rates.Asthescatteringeffectsincrease,thefrozenhydrometersoverfreezinglevel(FL) causeBTdecrease.

Thisdissertationfollowsthestyleandformatofthe Journal of Applied Meteorology.

2

Therefore,theBTcontributedbyraincomesprimarilyfromthehydrometeorsbelowthe

FL(0°Cisotherm)when19and21GHzchannelsareusedtoretrievetheFLs.TheBTs become the important input to retrieve the interested physical properties such as FL, rainfallamountandsoon.

1.1 Effects of Vertical Resolution on Brightness Temperature

The various radiative transfer (RT) codes assume different vertical resolution in their own RT Model (RTM) to compute the BT. The vertical resolution is inversely related to the number of layers in the planeparallel atmospheric models. For the convenienceofcomputationalefficiency,smallnumbersoflayersintheatmosphereare assumedinmanyRTcodes.TheoptimalnumberoflayerintheRTMwithrespectto efficiency and accuracy has not been investigated previously. In this research, the quantitativeeffectofthenumberoflayers(orverticalresolution)onBTswasexamined, andwhatnumberofassumedlayersintheplaneparallelatmosphereisreasonablefora

BTdifferenceoflessthan0.5Kasacriteriontodeterminetheminimumrangenumber oflayersthroughouttheangularrangeusingdifferentRTcodes.

1.2 Improved Freezing Level Retrieval in Oceanic Rainfall Algorithm

The FL in passive microwave rainfall retrievals determines atmospheric water vapor,and,mostimportantly,aroughestimateoftheheightoftheliquidwatercolumn.

Therefore, the FL is a crucial parameter in passive microwave rainfall estimations. A correct FL retrieval in passive microwave retrieval techniques is very important to

3 determinewhetherornotarainfallretrievalalgorithmisreasonable.Thisinvestigation characterized the FL differences between spaceborne radiometerbased FL and spaceborneradarbasedFL,attemptstoexplainitonaphysicalbasis,andproposesafix intheoperationalsoftware.

1.3 Uncertainty of Radiative Transfer Calculation among Texas A&M University,

Eddington Approximation, Discrete Ordinate, and Monte Carlo Codes

IntheGlobalPrecipitationMeasurement(GPM)mission,anaturaloutgrowthof

TropicalRainfallMeasuringMission(TRMM),therewillbeavarietyofradiometerson the constellation satellites. Accordingly, GPM can provide various measurements in terms of frequency and other viewing parameters. For this reason, a parametric

Bayesianstructureiscurrentlyplanned.AkeyelementoftheBayesianstructureisthe uncertainty associated with each radiance used. Understanding the uncertainties associated with the RT computation for the Bayesian structure is required. There are manydifferentRTcodestocalculatetheBTsundervariousconditionsbysolvingthe radiativetransferequation(RTE).Generally,theyhavedifferentapproachesforsolving thescatteringeffectsintheRTE,butthecalculatedBTsareutilizedtoretrievetheFL andtherainfall.Therefore,thediscrepancyofBTsfromthemicrowaveRTcodesunder variousconditionsisusefultoestimatethecharacteristicsofeachRTcodes.

4

CHAPTER II

BACKGROUND

The radiance emitted at a wavelength λ by a blackbody with an absolute temperature T isdescribedbythePlanckfunctionasfollows:

2 2hc 1 B (T ) = ⋅ (1) λ 5 hc λ exp( )−1 λkT

where Bλ (T ) is the blackbody radiation, h is Planck’s constant, k is Boltzmann’s constant,and c isvelocityoflight.Inthemicrowaverangeandattemperaturestypical

hc of the Earth, <<1. The Rayleigh Jeans approximation gives λkT

2hc 2 λkT 2ck B (T ) ≈ ⋅ = ⋅ T .Therefore,wecandirectly usetheBT(TB )insteadof λ λ5 hc λ4

the radiance ( Bλ ) using TB ∝ Bλ (T ) in the microwave region and at typical temperaturesoftheEarth’satmosphere.

TomeasureBTsovertheoceanandland,satellitebornemicrowaveradiometers are operating. Those BTs are the basis for estimating the FLs and rainfall in most microwaverainfallretrievalschemeswhichdependontheRTE.

The RTE enables satellite observations of microwave radiances to be used to estimatetheFLsandrainfall.

5

2.1 Radiative Transfer Calculation

Theradiancestransferredthroughhydrometeorsinanatmospherearedetermined by the following RTE (Weinman and Davies, 1978 and Kummerow and Weinman,

1988):

∂I ∂I ∂I sinθ cosφ + sinθ sinφ + cosθ = −k(I − J) (2) ∂x ∂y ∂z where φ is the azimuth angle, and θ is the polar angle. k is the extinction

coefficient, I is the radiance ( TB is the BT) in the θ , φ direction , and J is the sourcefunction.

Thesourcefunction J isgivenasfollows:

2π 1 1 J[x, y, z,θ,φ] = 1( − a)T (x, y, z) + a ∫ ∫ P(θ,φ,θ ,' φ )' I(θ ,' φ )' d(cosθ )' dφ' (3) 0 −1 4π where a is the albedo for single scattering, T (x, y, z) is the temperature, and

P(θ ,φ ,θ ,' φ )' is the phase function for the probability of scattering from a given direction (θ ,' φ )' toagivendirection (θ ,φ ) .

Only the z component of (2) needs to be considered in a planeparallel, vertically stratifiedatmosphere.TheRTE(2)consequentlybecomes

dI cos θ = − k ( I − J ) (4) dz

ThechangeoftheBT overaninfinitesimaldistance ds ( =dz/cosθ )canbedescribed using(3),(4),andBTinsteadoftheradianceasfollows:

dT ' ' ' ' ' B = k T(s) + k ∫ P(θ,φ,θ ,φ )T (θ ,φ )d −(k + k )T (θ,φ) (5) ds a s B a s B

6

where T (s) is the thermodynamic temperature of the layer, TB stands for the

microwaveBTinthedirectionofthepolarangle, ka istheabsorptioncoefficient, k s isthescatteringcoefficient,and, P(θ,φ,θ φ )',' isthephasefunction,and d isthesolid angle.

Inthiscase,thephasefunctionisconsideredsymmetricandnormalizedto1such that:

∫ P(θ,φ,θ ,' φ )' d' = ∫ P(θ,φ,θ ,' φ )' d=1(6)

Thisform(5)ismathematicallyequivalentto(4).

2.2 Radiative Transfer Codes

2.2.1 Texas A&M University Code

In the Texas A&M University (TAMU) code (Wilheit et al., 1994), the RTE is organizedasfollows:

dT B = A + S (7) ds

where A ≡ ka ⋅{T(s) −TB (θ,φ)} represents the absorption and concomitant emission,

' ' ' ' ' S ≡ ks ⋅{∫ P(θ,φ,θ ,φ )TB (θ ,φ )d −TB (θ,φ)} represents the loss of the radiance due to scatteringoutofthebeamandgainoftheradianceduetoscatteringofradiancetraveling inotherdirectionsbeingscatteredintothebeamwithnonetchangeinthetotalradiation.

TheTAMUcodesolvesfortheBTsbyusinganiterativemethodtointegratetheRTE withthismodel.

7

2.2.2 Eddington Approximation Code

Kummerow (1993) described the Eddington approximation (EDD) code. TB in theRTE(4)canbeexpandedinaseriesofLegendrepolynomials:

TB (z,θ) = I 0 (z) + I z (z)cosθ + ⋅⋅⋅ (8)

The EDD code can be obtained if this series is truncated after first two terms. The azimuthallyaveragedphasefunctioncanbesimilarlyexpandedinthiscode:

2π 2π 1 ' ' 1 P(, )' = ∫ P(θ ,φ,θ ,φ )dφ = ∫ P(cos Θ)dφ 2π 0 2π 0

=1+ 3g' (9)

1 ' 1 where = cosθ and '= cosθ , and g = ∫ P( , )' d is the asymmetry 2 −1 factorofthephasefunction.

' ' Thephasefunction P(θ,φ,θ ,φ ) = P(cosΘ) isnormalizedsuchthat:

1 ' ' ' 1 ' ' ∫ P(θ ,φ,θ ,φ )d = ∫ P(θ ,φ,θ ,φ )d = 1 (10) 4π 4π where P(θ,φ,θ ' ,φ ' ) is 4π timeslargerthanthephasefunctiondefinedintheTAMU code.

Inserting(8)and(9)into(3)andconsideringsymmetryin φ yields

J [ z,θ ] = 1( − a)T ( z) + a( I 0 + g ⋅ I z cos θ ) (11)

2π 1 1 Equation(4)integratedbyapplying ∫ ∫ ⋅⋅⋅ d (cosθ )dφ using(5)and(7)yields 0 −1 4π

8

dI z = −3k 1( − a)(I − T (z)) (12) dz 0

2π 1 1 Equation(4)integratedby ∫ ∫ ⋅⋅⋅ cos θ ⋅ d (cos θ )dφ yields 0 −1 4π

dI 0 = −k 1( − ag )I (13) dz z

Consequently,thediffuseradiances, I 0 ,ineachlayercanbefoundfrom

d 2 I 0 = λ2 ( I − T ( z)) (14) dz 2 0 where λ2 = 3k 2 1( − a)(1 − ag ) .

Thesolutionof I 0 hastheform

I 0 = D+ exp( λz) + D − exp( −λz) + T (z) (15)

where D+ and D− areconstantstobedeterminedfromtheboundaryconditionsofthe fluxesatthetopandbottomofthelayer.

The source function J becomes using a linear temperature profile

(T(z) = B0 + B1 ⋅ z ,where B0 issurfacetemperature, B1 isthelapserate)asfollows:

3ag 3ag 3ag (16) J z,( ) =(B0 + B1 ) + B1z + 1[( + )aD+ ]exp(λz) +[(1− )aD−]exp(−λz) 2γ 2γ 2γ

TheEDDcodeobtainstheBTsusingtheconstants D+ and D− foreachlayer andtheboundaryconditions.

9

2.2.3 Discrete Ordinate Code

TheEddingtonapproximationmethodisanexampleforanapproximationmethod fortheDiscreteOrdinate (DO)method.Theapproximationliesintheradiancevector andphasefunctiontothefirstorder.Therefore,onlyoneangleisneededandradianceis

decomposedintoisotropic( I 0 )andanisotropic( I z )term,respectively.

In the DO method (Liou, 1992 and Stamnes et al. 1988), the scattering phase

functionisexpandedintermsofLegendrepolynomials Pl suchthat:

N P(cosΘ) = ∑l=0ϖ l Pl (cosΘ) (17)

2 2/1 2 2/1 where cos Θ is '+ 1( − ) 1( − ' ) cosφ and ϖ l is the moment determined fromtheorthogonalitypropertyofLegendrepolynomialsasfollows:

2l + 1 1 ϖ l = ∫ P(cos Θ)Pl (cos Θ)d cos Θ (18) 2 −1

Fromasimplecalculation, ϖ 0 = 1 and ϖ1 =3g canbeobtained. g istheasymmetry factor.UsingtheadditionaltheoremforLegendrepolynomial,Equation(17)iswritten as

N P( , )' = ∑ l =0 ϖ l Pl ( )Pl ( )' (19)

Applying(19)andtheGaussianquadratureto(4)and(5),theDOisobtainedintheform

dT (τ , ) a N n B i i (20) i = T(τ i , i ) − ∑ϖ l Pl (i ) × ∑ TB (τ i , j )Pl ( j )a j − 1( − a)T(z) dτ 2 l =0 − j=−n

where the quadrature point − j = − j , j ≠ ,0 i = ±1,...,±n , and the weight

n a = a and . − j j ∑ j =− n a j = 2

10

TheDOcalculatestheBTsusingtheboundaryconditionsandafinitedifference approximationifthequadraturesetsaregiven.

2.2.4 Monte Carlo Code

IntheMonteCarlo(MC)method,virtualphotonspropagatethroughthemedium basedonrandomnumbersandprobability(Robertietal.,1994).Therearebothforward andbackwardmethodsfortheapplicationoftheMCmethod.ThebackwardMCcodeis moretimeefficient,asitmakesuseofthereciprocitytheorem,andthushasonlytodeal withthephotonsthatareseenbythevirtualobserver.Inthiscode,thephotonsaretraced backward through the medium, following probabilistic interaction laws which are sampledbytheselectionofnumbersfromaquasirandomsequence.Whenthephotonis absorbed,itcontributes aBT equaltothephysicaltemperatureofthe mediumatthat point. The net result is the average of many photons. The MC code can account for atmospheric emission, surface emission, cosmic background radiation, and multiple scatteringwitharbitrarilycomplexgeometry.

The MC has three steps to calculate the BTs. The first step is to determine the distance to collision. The next step is to decide whether it is a scattering event or an absorption event. For a scattering event, the scattered direction is determined. If the photonescapesfromthetopofthecloud,itisabsorbedofthetemperatureofthecosmic background.Inthelaststep,thetemperaturesatwhichallthephotonsareabsorbedare averagedtoproducethenetBT.

11

2.3 Atmospheric Model

A planeparallel atmospheric model based on the TAMU RTM is selected. The

TAMURTMassumesaMarshallPalmerdropsizedistributionfromthesurfaceuptothe

FL.Thelapserateispresumedtobe6.5K/kmasintheU.S.StandardAtmosphere.The relative humidity is assumed to be 80% at the surface, and to increase linearly up to

100%attheFL.Themodelatmosphereisdividedinto200layers,witheachbeing100m thick.Figure2.1summarizestheTAMURTM.

T Top of Atmosphere B

Ice layers Lapse rate=6.5 K/Km Freezing Level Non-precipitating 0.5 km Marshall Palmer 100% RH cloud 0.5g/m3 Raindrops Lapse rate=6.5K/Km Adjusted for 80% RH Density

Surface (Lambertian or Specular)

Fig. 2.1 TAMU RTM

12

In the TAMU RTM, the emissivity of the ocean surface is given by Fresnel relationsusingLaneandSaxton(1952)dielectricdata.Theupdatedoxygenandwater vaporabsorptionmodelsofRosenkranz(1993,1998)areusedinthisresearch.

TheMarshallPalmerdropsizedistributionisassumedintheRTMasfollows:

− ⋅Λ r N(r) = N0e (21)

−4 − .0 21 where N 0 is 0.16 cm , Λ is 81.56R , R is the nominal rain rate in mm / hr , and r is in units of cm. The true rain rate R' is calculated by ignoring the vertical movementoftheairas

4π 3 R (' r) = ∫V (r) ⋅ r ⋅ N(r)dr (22) 3 where V (r) isthespeedofaraindropwithradius r .

The extinction (absorption plus scattering) cross section of a dielectric sphere suchasaliquidwaterdrop(GunnandEast,1954)isgivenby

2 λ ∞ σ ext = − Re ∑ 2( n + 1)(an + bn ) (23) 2π n=1 thescatteringcrosssectionisgivenby

2 ∞ λ 2 2 σ sca = − ∑ 2( n +1)( an + bn ) (24) 2π n=1

n where an ,bn arethemagneticandelectric 2 polecoefficients.Inthelimitofacloud

droplet,andforthemicrowavescale,onlytheelectricdipoleterm, b1 ,isimportant.Ifthe scatteringisnegligible,theextinctioncrosssectionisequivalenttotheabsorptioncross section. In the limit of small droplets (radius less than about 100 m ) and for a

13 wavelengthof1.55cmitfollowsthat:

8π 2 r 3  k − 1  σ abs ≈ σ ext = Im  (25) λ  2 + k  where r istheradiusofthedroplet,and k isthecomplexdielectricconstantofliquid water. The absorption cross section is proportional to the volume ofthedroplet since r 3 ∝ volume .Thisindicatesthattheabsorptioncrosssectionisproportionaltothemass ofthedroplet.Theextinctioncoefficientofraindropscanbeexpressedas

γ N (r) ⋅ σ dr (26) ext = ∫ ext where N(r) isthenumberdensityofraindropsperunitvolumebetween r and r + dr .

TheintegrationoftheRTEintheabsenceofscatteringisperformedfromthetop ofthemodelatmosphere,withacosmicbackgroundtemperatureof2.7 °K,totheocean surface. After that calculation, the opposite integration is calculated from the ocean surfacetothetopoftheatmosphere.Thisintegrationprocedureiscommonamongthe fourRTcodes.TheTAMUcodeusesafirstguessanditeratestheintegrationoftheRTE untiltheBTvaluesatthetopconverge.

2.4 Freezing Level Retrieval Scheme Using Space-borne Microwave Sensors

TheRTcalculationyieldsdifferentrainrate–BT(RT)relationshipsforeachFL and channel. In this approach, the FL acts as a proxy variable for both the rain layer thickness and the atmospheric water vapor content because RT relationships are primarilyaffectedbywatervaporandrainfall.Thecombinationof19vand21vGHzR

T relationships leads to a FLRRT (Freezing Level Rain Rate Temperature) chart to

14 estimatetheFL.TheobservedBTsareusedasinputvariablestoretrievetheFL.

TheTRMMsatelliteprovidestwodifferentobservationalresultswiththePRand theTMIrespectively.OneistousetheBTsobservedbytheradiometeronthesatellite.

The other is to use the bright band height (BBH) caused by melting snowflakes as measuredbyradaronthesatellite.

ThebasisoftheLevel3(5°x5°x1monthaverages)oceanicrainfallalgorithmsfor

TMIonTRMM(3A11)andAMSREonAquaisgiveninWilheitetal.,(1991).TheFLs forthesealgorithmsareestimatedbyacombinationofthe19.35(18.7)and21.3(23.4)

GHzBTsmeasuredbyTMI(AMSRE).Theyarebasedontheclosecouplingbetween theFLandthetotalintegratedwatervapor(precipitablewater)underrainingconditions as reflected in the TAMU RTM (Wilheit et al., 1977). This same FL algorithm is applied in the TMI (2A12) and AMSRE Level2 (individual pixel) oceanic rain algorithmsaswell.

TheFLforthePRonTRMM(2A25)algorithmisestimatedbytheradarreturned power(reflectivity).AlthoughsnowflakesthemselvesabovetheFLhavelowreflectivity, theirdielectricconstantincreasestothatofwaterwhenmelting.Thus,theBBHexhibits alargeincreaseofreturnedpowerduetothethinfilmofwaterthatcoatsthesnowflakes astheymeltfromtheoutside.BelowtheBBH,thereturnsignalisdecreasedbecauseof the reduced size of the particles and their increased terminal velocity. Consequently, returned power is reduced. A mirror image is extremely valuable when detecting the existenceofatrueBBHinthereturnedpowerofPR.Thisisbecauseitpreventsusfrom misidentifyingconvectiverainasstratiformrain.Convectiverainmanytimesappearsto

15 have a profile similar to that of stratifom rain due to attenuation in areas of strong precipitationnearthetopsoftheconvectivecore.Theseconvectivecasesdonotdisplay anapparentBBHinthemirrorreturn.ThepresenceorabsenceofBBHinthemirror imageallowsfordefinitionandseparationofstratiformandconvectiverain.

OnlythenadirrayisusedfordetectingtheexistenceofaBBHandtheFLinthe stratiformraincasesbecauseonlythenadirrayincludesthemirrorimage.Comparison of the passive and the active microwave rainfall retrieval reveals that there is a discrepancybetweenthetwo.TheuncertaintyofretrievedFLleadsinturntouncertainty in the rainfall estimate because overestimation (underestimation) of the FL causes the underestimation(overestimation)oftherainfall.

Figure2.2showsanexampleofRTrelationshipsforeachverticalchannelfrom1 to 5 km FL with 53° incidence angle. Each color represent the FLs from 1 to 5 km.

Figure2.3showsanexampleofusingtheFLRRTchartcreatedfromFigure2.2.The colored area in Figure 2.3 represents the occurrences of the observed BTs during

December, 1999 for latitudes from +10° to 10° and longitudes from 130° to 180° whentheBTofthe21GHzchannelishigherthan240K.Thissampledregionislocated in the tropics where the FL is relatively constant. In this example, a mean FL can be estimatedasabout4.7kmoverthesamplearea.Figure2.4showsaverticalprofileofthe returnedpowerobservedbythePRatnadirincidenceon28Jan1998.Figure2.5shows howtodeterminetheBBHandtheFLusingthePRdata.Inthisexample,theFLis4km.

16

Fig 2.2 R-T relationships at 53.0º view angle using the TAMU code

17

280

260

5 Km

240

Tb21v(K) 4 Km

220 3 Km

2 Km

0 55 110 165 220 200 Occurrence 1 Km

180 200 220 240 260 280 Tb19v(K)

Fig. 2.3 Example of the FLRRT chart. Each curve indicates 1 to 5 km FL

18

Returned Power(dBm) at Nadir Ray

6

4

2

0 Height(km)

-2

-4

-6 580 590 600 610 620 Scan number(every 0.6 sec along the track)

Fig 2.4 Scan of returned power (dBm) at PR nadir ray

19

Power vs. Height at1B21.980128.977.5.HDF.normal_sample.596 10

5 Freezing Level

Bright Band

0 Surface Height(km)

Mirror Image

-5

-10 -110 -100 -90 -80 -70 -60 -50 Returned power(dBm) (lat, lon)=(-31.8870,-132.297) Scan Time=19 28 14 FL=4.00000 BBH=3.50000

Fig. 2.5 Vertical structure of returned power. Scan number is 595

20

CHAPTER III

EFFECTS OF VERTICAL RESOLUTION ON BRIGHTNESS

TEMPERATURE

3.1 Previous Work

Different RT codes to solve the RTE assume different numbers of layers (vertical resolution).TheeffectoftheverticalresolutionintheRTMontheBTsandtheoptimal numberoflayerintheRTMfortheaspectsoftheefficiencyandaccuracyhasnotbeen investigatedexplicitly.

3.2 Methods

3.2.1. Analytical Derivation a) Assumptions

For the analytical derivation of effect of vertical resolution on the BT, some assumptions are necessary. A very light rain system is considered in order to have very weakscattering.Thissituationenablesusnottoconsideranyparticulardependencyonthe

RTcodestocalculatethedifferencesoftheBTs.Thus,theopticalthicknessofeachlayer

(τ i ) is very small. Total optical thickness ( τ ) is almost constant independent of the numberoflayers.

b) Radiative Transfer Model

Fortheanalyticalderivation,aplaneparallelatmosphericmodelbasedontheTAMU

21

RTMisassumedtoinvestigatetheeffectsofnumberoflayersontheBTs.Thelapserate

( Γ ) is presumed to be constant. The total thickness of atmosphere is set to Z km. The

RTMisdividedintonlayers,witheachbeing Z mthick.Eachlayerisnumberedfrom1 n ton.Thesurfacereflectivityisrepresentedby R . Figure3.1summarizestheRTMforthe analyticalderivation.

T 0 TB (n) = J n Top of Atmosphere

n=1T 1 T A1 J n −1

n=2T 2 T A2

T 3 Freezing Level

Lapserate

J 1 n=nTAn T n J 0 Surface (R:reflectivity )

Fig. 3.1 Plane-parallel atmospheric models for the analytical derivation

22 c) Derivation

The transmission of layer 1 is assumed to be e −τ1 and emission is assumed to be

−τ (1 − e − τ 1 ). The downwelling BT emerging from layer 1 is T = (T −T )e 1 +T . Next step, 1 0 A1 A1 thedownwellingBTfromlayer2is

T = (T − T )e−(τ1 +τ 2 ) − (T − T )e−τ 2 + T (27) 2 0 A1 A1 A2 A1 where

Z Let (TA − TA ) = Γ ⋅ (Z1 − Z 2 ) = Γ ⋅ Z = Γ ⋅  →C (28) 1 2 n

IftheBTisconsecutivelycalculatedfromthetoptothesurface,itis

T = (T − T )e−τ + T + C ⋅ Φ (29) n 0 A1 An

− (τ +L+τ ) − (τ +τ ) −τ where Φ = e 2 n + L + e n −1 n + e n (30)

TheBTemittedtotheatmospherefromthesurfaceisdescribedinturnas:

J 0 = (Tn − Ts )R + Ts ,

J = (J − T )e−τ1 + T , 1 0 A1 A1

J = (J − T )e −(τ1 +τ 2 ) − (T − T )e −τ1 + T , 2 1 A2 A1 A2 A1

M

Finally,theBTatthetopofatmospherebecomes

J = (J − T )e −τ − C ⋅ Ξ + T (31) n 1 An A1

−τ − (τ +τ ) − (τ +τ +L+τ ) where Ξ = e 1 + e 1 2 + L + e 1 2 n (32)

Iftheaboverelationshipsarecombined,thefinalBTemergingatthetopoftheatmosphere

23 isobtainedasfollows:

T (n) =T ⋅ R⋅e−2τ + 1( −R⋅e−2τ )⋅T +C ⋅ R⋅[e−τ ⋅Φ−Ξ]−C ⋅ 1( −R)⋅e−τ ( 3 3 ) B 0 A1 1 2

Z where C = T − T = Γ ⋅ ( ) ,(34) 1 Ai −1 Ai n

C = T − T ,(35) 2 An s

T L T : Temperatures of each layer (36) A 1 A n

3.2.2 Computational Derivation

ThenumberoflayerseffectintheRTcalculationisinvestigatedusingtheTAMU andEDDcodes.10,19,and37GHzchannelsareconsideredforthispurpose.Viewangles fromnadirto80ºin5ºincrementsareused.ThesurfaceisassumedtobeLambertianor specular.TheFLsareassumedtobe1or5km.Anicelayerisalsoassumedeventhough thescatteringeffectisveryweakForthetest,numberoflayersareassumedtobe20,40,

80,100,200,400,and800layers.TheanalyticalresultisusedtofittheBTscalculated fromdifferentnumberoflayers.

a) Radiative Transfer Model

TheTAMURTMisselectedtoinvestigatetheeffectofnumberoflayers.Itassumes aMarshallPalmerdropsizedistributionfromthesurfaceuptotheFL.Thelapserateis presumed to be 6.5 K/km as in the U.S. Standard Atmosphere. The relative humidity is assumedtobe80%atthesurface,andtoincreaselinearlyupto100%attheFL.Themodel

24

atmosphereisdividedinto n layers,witheachbeing 20 kmthick.TheTAMUandthe n

EDDcodesareappliedtotheTAMURTM.

3.3 Results

3.3.1 Analytical Result

Inordertofindtheeffectofthenumberoflayers(verticalresolution)ontheBT,two differentnumbersoflayers, n and 2 n ,areconsideredforthecomparison.Thedifference ofBTscanbeexpressedas,

T = TB (n) − TB 2( n) −2τ ' −τ ' ' = 1( − R ⋅ e )[T − T ] + R ⋅ e [C Φ − C 1Φ ] A1 A1 1 ' ' ' −τ −[C1Ξ −C 1Ξ ]−[C2 −C 2 ](1− R)e (37) where

Γ ⋅ Ζ [T − T ' ] = ,(38) A1 A1 2 n

' ' Γ ⋅ Ζ −ℑ τ 1 [C Φ − C 1Φ ] ≈ [e ⋅ − ] ,(39) 1 n 4 2

Γ ⋅ Ζ τ ' ' ,(40) [C 1Ξ − C 1Ξ ] ≈ − ⋅ n 4

' Γ ⋅ Ζ [C − C ] = − (41) 2 2 2n

Finally,wecanobtaintheeffectofnumberoflayersontheBTasfollows.

1 τ 1 1 τ 1 ∴T = ⋅Γ⋅ Z ⋅[( − ) ⋅ R⋅ e−2τ + ( − R)e−τ + ( + )] n 4 2 2 4 2

25

1 ∝ ( Q⋅Γ,Z, R are constants, and τ is almost constant) (42) n

Consequently,theuncertaintyoftheBTcontributedbythenumberoflayersdecreasesas theverticalresolutionincreasesbecausetheverticalresolutionisinverselyproportionalto thenumberoflayers.

3.3.2 Computational Result

The fitting curves using analytic result (42) ( T = a + T form, where a is B n 0

sensitivityconstant, T0 islimitingtemperatureconstant, n isthenumberoflayers,and TB istheBT)agreewellwiththeBTcomputedfromTAMUandEDDcodes.Asthenumber oflayer(verticalresolution)becomessmaller,theBTdifferencebecomeslarger.TheBT differenceincreaseasthefrequencybecomeshigher.Thistendencyisthesameregardless oftheFL.

Figure3.2showsthedifferencesofBTsaccordingtothenumberoflayerswithgood agreementbetweenanalyticalandcomputationalresults.ThesolidcurvesaretheBTfrom the RT calculation for various view angles, FL, channels, and codes. The dotted curves depictthefittedresultsusingtheanalyticdescription.

For an example of analytic derivation, we can consider a case of Γ =6.5 K/km,

Z =20km, R =0.5, τ = 0.2 for 37 GHz and FL =5km, and n =100. The difference of the BT difference ( T ) is 0.737 K in this example. This value agrees well with the computationaluncertaintyoftheBT.

26

Fig. 3.2 Differences of BTs according to the number of layers from the analytical and computational results. a) Lambertian surface, FL=1 & 5 km, RR=0.001 mm/hr, View angle=nadir

27

Fig. 3.2 Continued. b) Lambertian surface, FL=1 & 5km, RR=0.001 mm/hr, View angle=49.5º

28

Fig. 3.2 Continued. c) Specular surface, FL=1 & 5 km, RR=0.001 mm/hr, View angle=nadir

29

Fig. 3.2 Continued. d) Specular surface, FL=1 & 5km, RR=0.001 mm/hr, View angle=49.5º

30

3.3.3 Water Vapor, Temperature Profile, Relative Humidity

Water vapor, temperature profile, and relative humidity were not changed by the verticalresolution,butaffectedbytheFL.Figure3.3showsthebehaviorsofthosevalues forthedifferentFLs,thedifferentnumberoflayers,anddifferentsurfacereflections.

WV: 5km TEMP: 5km RH: 5km 20 20 20

15 15 15

10 10 10 Altitude (km) Altitude (km) Altitude (km) 5 5 5

0 0 0 0 5 10 15 20 200 220 240 260 280 300 0.7 0.8 0.9 1.0 1.1 WV (g/m^3) TEMP (K) RH (%) WV: 4km TEMP: 4km RH: 4km 20 20 20

15 15 15

10 10 10 Altitude (km) Altitude (km) Altitude (km) 5 5 5

0 0 0 0 5 10 15 20 200 220 240 260 280 300 0.7 0.8 0.9 1.0 1.1 WV (g/m^3) TEMP (K) RH (%) WV: 3km TEMP: 3km RH: 3km 20 20 20

15 15 15

10 10 10 Altitude (km) Altitude (km) Altitude (km) 5 5 5

0 0 0 0 5 10 15 20 200 220 240 260 280 300 0.7 0.8 0.9 1.0 1.1 WV (g/m^3) TEMP (K) RH (%)

Fig. 3.3 Water vapor, temperature profile, and relative humidity for the Lambertian or specular surface with respect to the different FL from 3 to 5 km. Each color presents the different number of layers

31

3.3.4 Optical Thickness

The optical thickness is a function of the thickness of each layer in the RTM.

Consequently,theBTsvaryasafunctionofthenumberoflayersintheRTM.Figures3.4 and3.5showthevariationofthosevaluesforthedifferentsurfaceproperties.Thesevalues are departures from the 400 layer case. Table 3.1 describes the total optical thickness throughatmosphericmodelfortheFLfrom1to5kmandeachdifferentnumberoflayers.

Table3.2summarizestheprecipitablewateramountfortheFLsfrom1to5kmforeach numberoflayers.

Table 3.1 Total optical thickness through atmospheric model for the FL from 1 to 5 km and each different number of layers

FL FQ\#of 20 40 80 100 200 400 layer 5 km 10GHz 0.024 0.024 0.024 0.024 0.024 0.024 19GHz 0.180 0.179 0.179 0.178 0.178 0.178 37GHz 0.200 0.197 0.196 0.195 0.195 0.194 4 km 10GHz 0.019 0.019 0.019 0.019 0.019 0.019 19GHz 0.125 0.125 0.125 0.124 0.124 0.124 37GHz 0.146 0.144 0.143 0.142 0.142 0.142 3 km 10GHz 0.016 0.016 0.016 0.016 0.016 0.016 19GHz 0.088 0.087 0.087 0.087 0.087 0.087 37GHz 0.111 0.109 0.108 0.108 0.107 0.107 2 km 10GHz 0.014 0.014 0.014 0.014 0.014 0.014 19GHz 0.062 0.062 0.061 0.061 0.061 0.061 37GHz 0.088 0.086 0.085 0.085 0.085 0.084 1 km 10GHz 0.013 0.013 0.013 0.013 0.013 0.013 19GHz 0.045 0.045 0.044 0.044 0.044 0.044 37GHz 0.074 0.072 0.071 0.071 0.070 0.070

32

Table 3.2 Precipitable water amount for the FL from 1 to 5 km and each different number of layers

FL\#of layer 20 40 80 100 200 400 5 km 7.69554 7.72257 7.72935 7.73016 7.73124 7.73153 4 km 5.18605 5.20596 5.21096 5.21155 5.21235 5.21237 3 km 3.42919 3.44362 3.44724 3.44767 3.44825 3.44839 2 km 2.22082 2.23111 2.23370 2.23400 2.23441 2.23451 1 km 1.40512 1.41234 1.41416 1.41438 1.41467 1.41473

33

TAU_ATM :10v E_TAU :10v TB:10v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers TAU_ATM :19v E_TAU :19v TB:19v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers TAU_ATM :37v E_TAU :37v TB:37v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers

Fig. 3.4 For the specular surface, each color presents the optical thickness of atmospheric gases and absorption of the rainfall with respect to the different FL from 1 to 5 km

34

TAU_ATM :10v E_TAU :10v TB:10v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers TAU_ATM :19v E_TAU :19v TB:19v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers TAU_ATM :37v E_TAU :37v TB:37v 1.0 0.004 0.004 0.8 0.002 0.002 0.6

0.000 0.000

TAU TAU 0.4

-0.002 -0.002 0.2

-0.004 -0.004 0.0 Brightness Temperature difference (K) 100 200 300 400 100 200 300 400 100 200 300 400 Number of Layers Number of Layers Number of Layers

Fig. 3.5 For the Lambertian surface, each color presents the optical thickness of atmospheric gases and absorption of the rainfall with respect to the different FL from 1 to 5 km

35

3.3.5 Effect of Number of Layers

The good agreement between the analytic derivation and the BTs from the RTM codescanbeusedtoinvestigatehowmanylayersismosteffectivetobalancespeedversus accuracy.Forthispurpose,thefittedrelationshipwasappliedtothevariousconditions.The number of layers ranged from 1 to 200. The same TAMU RTM was assumed. To investigate the effect of number of layers, view angles from the nadir to 60° were consideredtosimulatethecurrentsatelliteinstruments.ABTdifferenceoflessthan0.5K throughout the angular range was taken as the criterion for determining the minimum numberoflayers.

Figure3.6showstherequirednumberoflayersfortheRTcalculationusingTAMU and EDD codes with the Lambertian and specular surface properties respectively. Each numberonthefiguresrepresentstherequirednumberoflayerstomeetthe0.5Kcriterion.

TotaldifferencesofBTswereaveragedfromthesumofresultsforeachfrequency.Forthe

Lambertiancase,therequirednumberoflayerisapproximately44.Thisnumberoflayers meanstherequiredverticalresolutionis455m.Thisvalueisroughlydoubleofthevertical resolutionofthePR.Forthespecularcase,therequirednumberoflayersisapproximately

162.Thisnumberoflayersmeanstheverticalresolutionis123m.Thisvalueisroughlyhalf oftheverticalresolutionofthePRontheTRMMsatellite.Fromthesefigures,therequired number of layers for the specular surface assumption is larger than for the Lambertian surfacecase.

36

T-E:10v FL: 5km T-E:19v FL: 5km T-E:37v FL: 5km TOTAL: FL: 5km

0.0 0.5 0.5 1.0 0.5

-4.0

4.0 4.0 0.0 4.0 0.0 0.0

-0.5 -4.0 -4.0 -4.0

100 -64.0 100 100 100 1.0 1.0 1.0

-1.0 -1.0 -1.0 -1.0 0.5

-16.0 0.0

-4.0 -0.5 -0.5 -0.5 16.0

1.0 0.0 0.0 -0.5 0.0 0.0 -1.0 0.5 0.5 0.5 1.0 1.0 1.0 10 0.5 10 10 10 4.0 4.0 1.0 4.0 Number of layer Number of layer Number of layer Number of layer

16.0 16.0 16.0 4.0 16.0 1 41 1 54 1 57 1 44 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 4km T-E:19v FL: 4km T-E:37v FL: 4km TOTAL: FL: 4km

0.5 0.0 1.0 1.0 1.0

0.5 0.5 0.0 -0.5 -4.0 0.0 -4.0 -4.0

100 -64.0 100 100 100 0.0 4.0 0.0 1.0 0.0

-1.0 -1.0 -1.0 -1.0 4.0 0.5

-1.0

16.0

-16.0 -4.0 0.0 0.5 4.0 -4.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 0.5 0.5 0.5 1.0 1.0 1.0 10 10 10 10 0.5 4.0 4.0 4.0 Number of layer 1.0 Number of layer Number of layer Number of layer

16.0

4.0 16.0 16.0 16.0 1 4.0 11 1 47 1 51 1 37 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 3km T-E:19v FL: 3km T-E:37v FL: 3km TOTAL: FL: 3km

0.5 0.0 1.0 0.5 0.5 0.0

1.0 0.5 0.0 0.0 1.0

-0.5 -1.0 -1.0

100 -64.0 100 0.0 100 100 -16.0 1.0 0.5

-1.0 -0.5 -0.5 -4.0 4.0 1.0 4.0

16.0

-16.0 -4.0 0.5 0.0

-4.0 -1.0

0.0

0.0 0.0 -0.5 0.0 -0.5 0.0 -1.0 0.0 16.0 0.5 0.5 0.5 1.0 1.0 1.0 10 10 10 10 0.5 4.0

Number of layer Number of layer 4.0 Number of layer Number of layer 1.0 4.0

16.0

4.0

16.0 16.0 1 4.0 9 1 39 1 45 1 3116.0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 2km T-E:19v FL: 2km T-E:37v FL: 2km TOTAL: FL: 2km

0.5 0.0 1.0

1.0 1.0 0.5

-0.5 -0.5

100 -64.0 100 -16.0 100 100 0.5 0.0

-1.0 -4.0 -4.0 4.0 0.0 4.0 0.0 4.0 -0.5 1.0 -4.0 -1.0 0.5 1.0 0.0 0.5 -4.0 0.0 -1.0 0.0 0.0

-1.0 4.0 0.0 0.0 -0.5 0.0 16.0 -1.0 -16.0 16.0

-0.5 -16.0 0.5

0.5 0.5 0.0 1.0 10 10 1.0 10 10 1.0 0.5

Number of layer Number of layer Number of layer 4.0 Number of layer 1.0 4.0 1.0 4.0 16.0 4.0

1 8 1 31 16.0 1 16.0 38 1 25 16.0 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 1km T-E:19v FL: 1km T-E:37v FL: 1km TOTAL: FL: 1km

0.0 1.0

0.5 0.0

-0.5 0.0 -4.0

-0.5

100 -64.0 100 -16.0 100 100 -16.0 4.0 4.0 0.0

-1.0 -0.5 -4.0 -1.0 -0.5 1.0 1.0 -1.0 -0.5 -4.0 -1.0 -1.0 4.0 0.5 0.0 0.5 0.5 -4.0 0.0 -1.0 -0.5 0.0 -1.0 16.0 0.0 1.0 0.5 0.0 4.0 0.0 16.0 16.0 -4.0 -0.5 -16.0 0.5 0.5 0.0 0.5

1.0 0.0 10 10 1.0 10 10 1.0 0.5 Number of layer Number of layer Number of layer Number of layer 16.0 4.0 1.0 0.5 4.0 4.0

4.0

1.0 16.0

16.0 1 8 1 23 1 3316.0 1 22 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle Fig 3.6 Required number of layers less than 0 K, 0.5 K, and 1 K. a) Lambertian surface case: Contour of the differences from the fitting curves for the BTs between TAMU and EDD codes

37

T-E:10v FL: 5km T-E:19v FL: 5km T-E:37v FL: 5km TOTAL: FL: 5km

0.0 0.5 0.5 1.0

-0.5 -1.0 -4.0

4.0 1.0 0.5 0.0 4.0 4.0 0.5

-0.5

-0.5 -0.5

0.0 0.0

100 100 -16.0 100 -16.0 100 -16.0 1.0 1.0 4.0 0.0

-16.0

-4.0 -4.0 -4.0

-0.5 -1.0

0.0 0.5 -1.0 0.5 -1.0 -1.0 0.5 0.0 1.0 1.0 1.0

10 0.5 10 10 10 4.0 4.0 1.0 4.0 Number of layer Number of layer Number of layer Number of layer

-4.0

16.0

0.51.0 4.0

-1.0-0.5

0.0 -16.0 16.0 16.0 4.0 16.0 1 28 1 146 1 146 1 162 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 4km T-E:19v FL: 4km T-E:37v FL: 4km TOTAL: FL: 4km

0.0 1.0 0.5 1.0

-0.5 -1.0 -4.0

4.0 1.0 0.5 0.0 0.5 4.0 0.5

-0.5 -0.5 -0.5

0.0

100 100 -16.0 100 -16.0 100 -16.0 4.0 0.0 1.0 4.0 0.0

-16.0

-4.0 -4.0 -4.0

-0.5 -1.0

-1.0 -1.0 -1.0

0.0

0.5 0.0 0.5 0.5 0.0 1.0 1.0 1.0 10 10 10 10 0.5 4.0 4.0

Number of layer Number of layer Number of layer Number of layer 4.0

-4.0

1.0 16.0

0.51.0 4.0

-1.0-0.5

0.0

-16.0

16.0 16.0 16.0 1 4.0 21 1 174 1 195 1 16.0 87 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 3km T-E:19v FL: 3km T-E:37v FL: 3km TOTAL: FL: 3km

4.0 1.0 0.5 0.0 1.0 1.0 4.0 1.0

-4.0

0.0 0.5 0.5 0.5

-0.5 -0.5 -0.5

0.0 0.0 -0.5

-16.0 100 100 -16.0 100 -16.0 100 0.0 4.0 0.0 4.0 0.0 0.0

-16.0

-4.0 -4.0 -4.0

-0.5 -1.0

-1.0 0.5 -1.0 -1.0 0.5 0.0 0.5 1.0 1.0 1.0 10 10 10 10 0.5 4.0 Number of layer Number of layer Number of layer Number of layer

-4.0 4.0 1.0 4.0

-1.0

16.0 16.0

4.0

0.51.0

-16.0

4.0

4.0 -0.5 16.0

0.0 16.0 1 16 1 16.0 97 1 100 1 68 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 2km T-E:19v FL: 2km T-E:37v FL: 2km TOTAL: FL: 2km

4.0 1.0 0.5 0.0 1.0 4.0 0.5 0.0

-4.0 -0.5 -1.0

0.0 0.5

-0.5 -0.5

0.0

-0.5

-16.0 100 100 -16.0 100 -16.0 100 0.0 4.0 1.0 0.5 0.0 4.0 0.0 0.0

-16.0

-4.0 -4.0 -4.0 1.0 -0.5 -1.0 -0.5

-1.0 -1.0

0.5 0.0 0.5 0.5 1.0 1.0 10 10 10 10 1.0 0.5 Number of layer Number of layer Number of layer Number of layer -4.0 4.0 -1.0

-1.0 -0.5 16.0 4.0 16.0 1.0 4.0

0.51.0 0.00.51.04.0 -16.0 4.0

4.0 -0.5

16.0 16.0

0.0

0.51.04.0

1 14 1 73 1 16.0 82 1 53 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle T-E:10v FL: 1km T-E:19v FL: 1km T-E:37v FL: 1km TOTAL: FL: 1km

4.0 1.0 0.0 0.0 1.0 0.0

-4.0 -0.5 -0.5

0.5 0.0 4.0 1.0 0.0 0.5 0.5 0.0

-0.5

0.0

-0.5 -0.5 -1.0 -0.5 -1.0

100 100 -16.0 100 -16.0 100 -16.0 0.0 4.0 0.0

-16.0

-4.0 0.5 -0.5 -1.0 -4.0 -4.0 4.0 1.0

-1.0

0.5 0.5 0.5 1.0 10 10 1.0 10 10 1.0 0.5 Number of layer Number of layer Number of layer Number of layer

-4.0 -0.5 -0.5

16.0 16.0

0.00.51.04.0 4.0 0.00.51.04.0

-1.0 -4.0 -4.0

16.0

4.0

0.51.0 1.0 -16.0 4.0 -0.5 -1.0 -1.0 4.0 16.0 0.0 4.0 1 12 1 51 1 68 1 42 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 View angle View angle View angle View angle Fig 3.6 Continued. b) Specular surface case: Contour of the differences from the fitting curves for the BTs between TAMU and EDD codes

38

3.4 Conclusion

This research explains the effect of vertical resolution in the RT algorithm for the purpose of the computational efficiency and uncertainty through the intercomparison among the different codes. The assumed number of layers (vertical resolution) in the passivemicrowaveRTcodesleadtoslightlydifferentBTsevenifthesameRTMisused.

TheverylightrainfallcasewasinvestigatedfortheeffectofverticalresolutionontheBTs inordertohaveaweakscatteringeffect.Theresultsofthisresearchareveryusefulfor understanding the internal structure of the RT algorithm to obtain the FL and rainfall retrieval although it is not applied directly to the heavy rainfall condition because the assumptionswouldbecomplicatedasscatteringeffectincreases.

The uncertainty of the BT from the vertical resolution decreases as the assumed number of layers increase; This is common to both the TAMU and EDD codes. Fewer layers are needed to obtain the same uncertainty (≤ 0.5 K) for both codes for the

Lambertiansurfacethanthespecularsurface.Thoseverticalresolutionsareapproximately halfordoublethevalueofthePRresolution,respectively.

Theuncertaintiesareduetotheopticalthicknessbecausethelayeropticalthickness isafunctionoftheverticalresolution.

Thisresearchisthefirstusefultrialtodeterminetheeffectofverticalresolutionin theRTMalthoughtheeffectofnumberoflayersisweakintheRTcalculations.

39

CHAPTER IV

IMPROVED FREEZING LEVEL RETRIEVAL IN OCEANIC

RAINFALL ALGORITHM

4.1 Previous Work

For the aspect of radar reflectivity, the FL is the height to begin the increase in reflectivityoffallingparticlesbecauseparticles becomewetandtheirdielectric constant becomesthatofwater.TheBBHistheheightofmaximumreflectivity.AbovetheBBH,the particles are melting from outside. Accordingly, the reflectivity is increasing. Below the

BBH, the return signal is decreasing because particle size is reducing and the terminal velocityisincreasingsothatitspreadsthedropsoveralargevolume.Thus,thereflectivity decreases.

ChiuandChang(2000)showedthatFLsderivedfromtheSSM/Iusingamodified version of Wilheit’s method compared with those estimated from a general circulation model are too high in the midlatitude winter hemisphere. Ikai and Nakamara (2003) investigatedtheestimationofFLbyTMIincomparisonwiththeBBHfromPRusing3 monthaveraged global data. They found that the TMIFL is higher than BBH by about

300500mwhenTMIFL(orBBH)ishigh.However,whenTMIFL(orBBH)islow,this

3monthaveraged TMIFL is higher by about 15002000 m than the 3monthaveraged

BBH.ThisresearchimpliesTMIFLisoverestimated.

Thuraietal.(2003)madeacomparisonbetween theBBHobtainedfromthePRand the annual average of the FL available in International Telecommunications Union

40

Radiometeorology Recommendation(ITUR)P.8393( Rainheightmodelforprediction methods ), which provides contours that are generated on a 1.5° by 1.5° latitude by longituderesolutiongrid.AccordingtoThuraietal.(2003),theBBHtypicallyoccurs300m belowtheFL.Whentheseheightsarelow,additionalerrorsoccurduetothedifficultyin detectingtheBBHatrangeswheresurfaceechoescontributetotheradarbackscatter.At present,someoftherangegatesbelow2kmareconsideredashavingsignificantclutter contaminationand,foragivenprofile,theradarreflectivityisassumedconstantbelowthis height. When the BBH lies significantly below 2 km, the current algorithm used for the event classification will be unable to identify the event as stratiform precipitation. As a result,theestimatedBBHishigherthanitstruevalue.

PreviousstudiesshowcommonlythattheTMIFLisreasonableinthetropics,and overestimatedinthemidlatitude.Accordingly,thevalidatedrainratesareacceptableinthe tropics,andunderestimatedinthemidlatitude.Thisisrelatedtothefactthaterrorinthe retrieved FL results, in turn, in error in the rainfall estimate because overestimation

(underestimation)oftheFLcausestheunderestimation(overestimation)oftherainfall.

4.2 Data

TheprimaryrainfallmeasuringinstrumentsonboardTRMMaretheTMIandthePR to measure rainfall and latent heat released through condensation in the tropical and subtropicalregions.

An orbit of TRMM is defined each time the subsatellite track reaches its southernmostlatitude.Theaverageorbitwas91.5minutesor5490secondsbeforeAugust

41

7, 2001 and 92.5 minutes or 5550s after August 24, 2001 since the orbit was adjusted duringthatperiod.Thefirstpartialorbitafterlaunchisorbit1,sothefirstfullorbitisorbit

2.

AgranuleisdefinedasoneorbitforPRinstrument.FortheTMI,agranuleisdefined asoneorbitplusanoverlapbeforetheorbit,knownasthepreorbitoverlap,plusanoverlap aftertheorbit,thepostorbitoverlap.Theoverlapsizeisfixedatexactly50scans.Sincethe

PRscansthroughnadirandTMIscansata49 °angleoffofnadir,collocationisneededto compare the two different measurements. The collocated measurements occur around a minuteapart.

TheTRMMsatellitestructuralaxesaredefinedsothat+ZisthesidewherePRis mountedandisthedirectionnormallypointedtowardthenadir(straightdowntotheEarth).

+XisthesidetowardwhichtheTMIismounted,andthesidetowardwhichtheTMItakes measurements.TheTRMMsatelliteflieswiththe+Xaxisforwardhalfofthetime,and withthe–Xaxisforwardduringtheotherhalfofthetime.The+Yaxisissuchthat+X,+Y, and+Zcompletearighthandsystem.ForTMI,scansarealwayslefttorightinthe+X spacecraftdirectionasthemicrowaveantennarotatesaboutthe+Zaxis.ThusTMIscans arelefttorightlookingforwardalongthegroundtrackinthe+Xforwardmode.PRscans electronicallyrighttoleftwith+Xforward.

4.2.1 TMI

TMIreceivesmicrowaveradiationfrom49 °offnadir.Thismeasuredradiationcanbe thoughtofastheBT,whichisrelatedtothetotalamountofliquidwaterintheatmospheric

42 column. Therefore, estimates of surface rain rates are based on the height of the liquid column,namely,thefreezinglevel.DifferentchannelsofTMImeasuredifferentBTsfrom the same regional position. The TMI is a microwave radiometer using five different channels(10,19,21,37,and85GHz).Figure4.1showsexamplesoforbitsofTMIBT data for each of the vertically polarized channels. The 19GHz channel responses are dominated by emission processes and respond primarily to increases in the liquid water columnoveroceans.Sothischannelisphysicallyrelatedtorainfallontheseasurface.The

21GHzchannelisassociatedwiththewatervaporabsorption.TheTMILevel1B11,“TMI

BT”,ispresentedinaSwathStructureandformattedinHDF.

4.2.2 PR

The PR is the first precipitation radar to be used on a satellite, and operates at a frequencyof13.8GHz.ThePRLevel1B21data,whichcontainsthereceivedpower(dBm) at the PR receiver, will be used. The PR has the complex sampling strategy. Each scan contains49rayssampledoveranangularsectorof34 °.Foragivenray,thesatellitebegins recording samples at a fixed distance from the satellite and records a certain number of samplesevery125malongtheray.Thestarting distanceandthenumberofsamplesare different for each ray. The extra data in the nadir ray are known as the mirror image, because they record energy reflected not once from a target, but three times (surface to targettosurface).Normalsampleshaveaspacingof250malongtheray.Themirrorimage iscontainedinthenormalsample.Arangebinnumberisdefinedasadistancefromthe satellitealongtheray.Itstartsat1roughly327km(381kmafterAugust24,2001)fromthe

43 satellite, increments by 1 roughly every 250m, and increases to a maximum of 400 at roughly377kmfromthesatellite.ThePRLevel1B21dataincludetheexactvalueforthe startingdistance.RetrievingtheFLfromPRdataisbasedontheuseoftheBBHandthe mirror image for stratiform rain cases. The definition of the BBH is clear, but could be subjective.

1B21dataforthePRand1A11datafortheTMIareusedfromDecember,1997to

January,1998andfromDecember,1999toJanuary,2000.1B21datacontainthereceived poweratthePRreceiver.1A11datacontainTMIBTs.

4.3 Methods

4.3.1 Observations

Rangno and Hobbs (2005) investigated the microstructures and development of precipitation in cumuliform over the tropical Pacific warm pool based on in situ measurements in the TRMM/Kwajalein Experiment (KWAJEX). Their temperature measurementsinrainaregivenintheirpaper.Theaveragelapserateis5.26K/km.

Bergetal.(2002)comparedthestructureofprecipitationsystemsbetweenselected east and west Pacific regions along the intertropical convergence zone (ITCZ) using a combinationofsatelliteobservationsincludingverticalprofileretrievalsfromtheTRMM

PR.Ifthelapserateisderivedfromtemperatureprofilesintheirpaper,itisapproximately

5.3K/km.ThisvalueisveryclosetothelapseratederivedfromRangnoandHobbs.(2005).

44

Fig. 4.1 Examples of orbit of TMI BT at 04/17/1998. a) One orbit of TMI 1B11 BT data for 10v and 19v

45

Fig. 4.1 Continued. b) One orbit of TMI 1B11 BT data for 21v, and 37v GHz

46

4.3.2 New Temperature Profile

TheTAMUalgorithmbasedonWilheitetal.(1977)algorithmhasassumedthe temperature profile in the RTM using the lowest section of the U.S. Standard

Atmospherewherethelapserateis6.5K/km.Thisisatypicalvaluefromsealevelto10 or15kmaltitude.Itisnotnecessarilytypicalofrainingconditions.

Anewlapserateisassumedtobe5.3K/kmbelowthe FL andtobe6.5K/km abovetheFL.Itisjustifiedbytheobservationsinthetropics.Thisintroducesadifferent lapse rate, closer to the moist adiabatic lapse rate than lapse rate in the U.S standard atmosphere. Above the FL, the old 6.5 K/km, lapse rate was retained. Figure 4.2 describesanewtemperatureprofileinthecurrentTAMURTM.

4.3.3 Procedures for the Comparison

Firstly,forthePRFLretrieval,individualpixelsclassifiedasstratiformarefound usingthedefinitionoftheBBHandthemirrorimageusingPRdata.Thenadirdirection is selected to detect the existence of bright band (BB) and the mirror images that are features of FLs. The detection of the BB and FL is made by a spatial filter, which is basedonthefirstderivativeofthereturnedpower(dBm)withrespectivetorange,and byimposingseveralconditionsontheBBandFLasfollows.

(1)ThepowerabovetheBBpeakshoulddecreaseappreciably.

(2)Thepowerbelowthemirrorimageshoulddecreaseappreciably.

(3)TheFListhelocationofthesteepestslopewithrespecttoheightabovethe

peakofBB.

47

(4)Thelargestpeakvalueindicatesthesurface.

(5)ThedistancebetweenthesurfaceandtheBBHshouldbeequaltothe

distancebetweenthesurfaceandthemirrorimage.

(6)Afterlookingforstratiformraincasesautomatically,allthecasesare

manuallyinspectedtodeterminewhetherornottheyareacceptableas

stratiformraincases.

(7)Whentheaboveconditionsaresatisfied,theraintypecanbeclassifiedas

stratiformrain.

Top of Atmosphere

Lapserate= 0 K/km T=210K Lapserate= 6.5 K/km Freezing Level 100%RH

Lapserate: 5.3 K/km

80%RH

Surface

Fig. 4.2 New assumption of temperature profile

48

Secondly, matching TMI measurements with PR observations spatially and temporallyisindividuallyimplementedusingthelatitude,longitude,timeinformationof eachpixel.Next,TheTMI BTs areusedasinputparameterstoretrievetheTMIFLs usingalookuptable.

Thirdly,thetworetrievedFLsarecompared.Figure4.3showsanexampleofTMI

FL,PRFL,andcorrespondingBTsof19vand21vchannels.

TMI FL vs PR FL T19v FLRRT Chart 7 300 300

6 280 280

5 260 260 4 240 240

3 Tb21v(K) retrieved FL 220 220

2 Brightness Temperature (K) 200

200 1 180

0 160 180 4 2 0 -2 4 2 0 -2 180 200 220 240 260 280 300 Latitude Latitude Tb19v(K)

Fig. 4.3 Each panel depicts, respectively, an example of the TMI FL (black and blue circles) and PR FL (orange), BTs of 19GHz (black) and 21GHz (sky-blue) channels, and the FLRRT chart when TMI and PR observations coincide over the ocean

49

4.4 Results

The total number of coincident BB, and mirror images is 544 cases. Those are usedforthecomparisontoinvestigatetheeffectofanewtemperatureprofileontheFL retrieval.ThedifferenceamongthemeanvaluesofthePRFL(a),theBBH,(b)andthe

TMIFLusingthecurrentlapserate(c),andnewlapserate(d)areasfollows:

(a)is0.44kmhigherthan(b).

(a)is0.44kmhigherthan(d).

(c)is0.73kmlowerthan(a).

ThemeandifferencebetweenthePRFLandtheBBHis459mduringDec.1997,

445mduringJan.1998,444mduringDec.1999,and446mduringJan.2000.Themean differencebetweenthe PRFLandthe BBHis slightlyhigherintheElNiño(1997~

1998) than in the normal years (1999 ~ 2000) when we use previous results. The averageddifferenceindicatedthattheBBHoccursatheightsrangingfrom440~460m belowthePRFL.FromFigure4.4,itoccursatheightsfrom250m~1000mbelowtheFL.

Thefollowingcomparisonsshowthemonthlyaverageddifferencesamongthevalues.

FortheDec.1997, (a)is0.459kmhigherthan(b).

(a)is0.517kmhigherthan(d).

(c)is0.812kmlowerthan(a).

FortheJan.1998, (a)is0.445kmhigherthan(b).

(a)is0.473kmhigherthan(d).

50

(c)is0.728kmlowerthan(a).

FortheDec.1999, (a)is0.444kmhigherthan(b).

(a)is0.444kmhigherthan(d).

(c)is0.745kmlowerthan(a).

FortheJan.2000, (a)is0.446kmhigherthan(b).

(a)is0.397kmhigherthan(d).

(c)is0.674kmlowerthan(a).

Fromtheresults,TMIFLisstilllowerthanPRFLbut,thedifferenceisreduced.

ThenewtemperatureprofileyieldsgoodagreementbetweentheTMIFLandtheBBH fromPRobservation.Figure4.5showsBBHsversusnewTMIFLs.

ConsideringtheverticalresolutionofPRis250m,themaximumuncertaintyofPR

FLiscloseto250m.ThisindicatesthattheTMIFLisreasonablerelativetothePRFLif themeanFLvalueistakenintoaccount.

51

Dec 1997 Differences Jan 1998 Differences 2.0 2.0

5 5 1.5 1.5

1.0 1.0 4 4

0.5 0.5

3 3 0.0 0.0

-0.5 -0.5 2 2

Retrieved Freezing Level (Km) Old TMI FL Retrieved Freezing Level (Km) PF FL - Old TMI FL Retrieved Freezing Level (Km) Old TMI FL Retrieved Freezing Level (Km) PF FL - Old TMI FL BBH -1.0 PF FL - BBH BBH -1.0 PF FL - BBH New TMI FL New TMI FL PF FL PF FL - New TMI FL PF FL PF FL - New TMI FL 1 1 -1.5 -1.5 -20 0 20 -20 0 20 -20 0 20 -20 0 20 Latitude (degree) Latitude (degree) Latitude (degree) Latitude (degree) Dec 1999 Differences Jan 2000 Differences 2.0 2.0

5 5 1.5 1.5

1.0 1.0 4 4

0.5 0.5

3 3 0.0 0.0

-0.5 -0.5 2 2

Retrieved Freezing Level (Km) Old TMI FL Retrieved Freezing Level (Km) PF FL - Old TMI FL Retrieved Freezing Level (Km) Old TMI FL Retrieved Freezing Level (Km) PF FL - Old TMI FL BBH -1.0 PF FL - BBH BBH -1.0 PF FL - BBH New TMI FL New TMI FL PF FL PF FL - New TMI FL PF FL PF FL - New TMI FL 1 1 -1.5 -1.5 -20 0 20 -20 0 20 -20 0 20 -20 0 20 Latitude (degree) Latitude (degree) Latitude (degree) Latitude (degree)

Fig. 4.4 Latitudinal distribution of PR FL, BBH, old TMI FL, and new TMI FL, latitudinal distribution of the differences among them

52

5

4

3 Retrieved Freezing Level (Km)

Jan 2000 Dec 1999 2 Jan 1998 Dec 1997

2.0 2.5 3.0 3.5 4.0 4.5 5.0 Bright Band Height (Km)

Fig. 4.5 BBH versus new FL. Each color represents data for different months. Dotted lines indicate 10% uncertainties between BBH and new FL

53

Fromtheseresults,theoldtemperatureprofileisanerrorsourcetoinducealarge discrepancy between PR FL and TMI FL as previous works mentioned. Accordingly, there exists a large overestimation of the TMIbased rainfall retrieval. When the new temperatureprofileassumptionisappliedtotheglobalFLretrievalusingtheTMIBTsas inputs,thenewretrievedTMIFLagreeswiththefeaturesofrainfalldistributioninterms ofthepatternbecausetheuncertaintyofFLisinverselyproportionaltotheuncertainty oftherainfall.Figure4.6showstheglobalmapsusingthenewTMIFL.Thosefigures

showgeneralfeaturesinElNiñoandnormalyears.

2.00 2.75 3.50 4.25 5.00 2.00 2.75 3.50 4.25 5.00 TMI Freezing Level (Dec. 1997) TMI Freezing Level (Dec. 1999)

2.00 2.75 3.50 4.25 5.00 2.00 2.75 3.50 4.25 5.00 TMI Freezing Level (Jan. 1998) TMI Freezing Level (Jan. 2000)

Fig. 4.6 Global map of the 5° × 5° averaged FL using the new temperature profile

The5ºlatitudeaveragedFLshowstheexpectedseasonalcharacteristics.During theborealwinter,theretrievedTMIFLinthenorthernhemisphereislowerthaninthe southernhemisphere.ElNiñoperiodsshowslightlyhigherTMIFLsthanNormalyears for the tropics. However, it is hard to find a difference between two periods for the higherlatitudes.

54

4.5 Conclusion

AnewtemperatureprofilebasedonnewobservationsresultsinanimprovedFL retrieval. The uncertainty of the TMI FL retrieval is reduced to within approximately

10%. This uncertainty is much smaller than the uncertainty due to the earlier thermodynamicassumptions.Accordingly,theuncertaintyofrainfallestimationbecomes smaller.

ThisnewtemperatureprofileassumptionintheTAMURTMcanrepresenttypical characteristicsoftropicsbecauseitisbasedonobservationsinthetropics.Thisresearch emphasizes the role of the temperature profile on the BT calculation in the passive microwave algorithm. However, the FL uncertainty is relatively larger in the low FL regionsincethecurrentTMIFLandPRFLhavealowresolutionastheFLbecomes lower.Ifthetemperaturevariabilityissmallasinthetropics,thedifferencebetweenthe

TMI FL and PR FL is very stable.Thus, a reasonable comparison can be made.This analysiscanbeextendedtotheBayesianalgorithmformicrowaveprecipitationretrieval.

AdditionalresearchonthelowFLcasesisrequiredtounderstandtheuncertaintiesof bothFLandrainfallretrievalinthemidandhighlatitudes.

55

CHAPTER V

UNCERTAINTY OF RADIATIVE TRANSFER CALCULATION

AMONG TEXAS A&M UNIVERSITY, EDDINGTON

APPROXIMATION, DISCRETE ORDINATE, AND MONTE

CARLO CODES

5.1 Previous Work

Kummerow (1993) compared an EDD and Nstream DO solution in the microwaveregimethroughaplaneparallelmedium.Hefoundthedifferencesbetween aneightstreamDOsolutionandananalyticalEDDsolutionrangedfrom0to6Kwhen only one uniform layer of hydrometeors was considered. When realistic, multilayered cloudhydrometeorprofileswereused,thedifferencesbetweenthesetwomodelsnever exeeded3Kovertheentirerangeof6.6183GHz.Themodelsagreedtowithin0.2Kin theabsenceofscatteringconstituents.Robertietal.(1994)compared3DDO,3DMC, and two different variations of plane parallel EDD methods. They found the discrepanciesarerootedinnumericalproblemsoftheDOsolutionwithadditionalnoise inthe±1KrangebeingcomputedbytheMCsolution.Althoughthe3DDOmethodhas much better agreement with the MC results than plane parallel modeling gives, the maximumdifferencesbetweentwomodelscanstillbeaslargeas18.6Kfor85GHz.

Planeparallelresultsarewarmerthan3Dcalculationsinheavyrainatlowfrequencies

(10.7 and 19 GHz). Plane parallel result are generally colder than 3D calculations at

56 highfrequencies(37and85.6GHz).Smithetal.(2002)comparedmicrowavemultiple scatteringRTcodesusedingeneratingdatabasesforsatelliterainfallretrievalalgorithms.

Simulationsweretobecarriedoutfornadirandoffnadir(53.1º)observationanglesat frequenciesbetween10and85GHz.AmongtheRTMweretwostream,multiplestream and MC models. They showed the largest discrepancies occurred at high frequencies whereatmosphericscatteringismostpronouncedandatnadirobservation.Ifthesame surfaceboundaryconditions,thesamemultiplestreamresolutionandthesamescaling proceduresareused,themodelswereveryclosetoeachotherwithdiscrepanciesbelow

1K.

5.2 Methods

AllcodeswereappliedtothesameTAMURTM.Viewanglesrangedfromnadir to80°.Rainrateswereexaminedfrom0.001mm/hrtoabout140mm/hr.TheFLwas variedfrom1kmto5kmin1kmincrements.Watervapor,oxygengas,andcloudliquid water were included in the RTM. Ice layers were also assumed in some cases.

Lambertianandspecularsurfaceswereconsidered.10,19and37GHzchannelswere tested.

FortheDOcode,the16streamcasewasconsidered.FortheEDD,DO,andMC codes, the total asymmetry factors, total extinction coefficients, and total single scattering albedos in each layer were calculated from the TAMU RTM using Mie scattering.

For the MC code, the cloud is modeled with (2×2) horizontally finite and

57 vertically layered subclouds, surrounded by a background plane parallel atmosphere.

Both the height and the number of the layers were assumed to be the same from subcloudtosubcloud.Thehorizontaldimensionofthesubcloudwasassumedtobe24 km×24 km. 3×3 points to compute the BT for each subcloud were located in each subcloud. 2×104 photons were used for the test in the MC code. This number of photonsprovides0.71%uncertainty.Figure5.1summarizestheTAMURTM.

T 0 TB (n) Top of Atmosphere

n=1(ktot ),1( atot ),1( gtot ))1( T A1 (k ),2( a ),2( g ))2( n=2tot tot tot T A2

ktot = kliq + kice + katm

atot = (aliq ⋅kliq +aice ⋅kice /) ktot

Freezing Level gtot =(gliq ⋅aliq ⋅kliq +gice ⋅aice ⋅kice /() atot ⋅ktot ) Nonprecipitating0.5km MarshallPalmer 100%RH cloud0.5g/m3 Raindrops Lapserate=6.5 °/Km Adjustedfor 80%RH Density

n=n(ktot (n), atot (n), gtot (n)) TAn Surface (Lambertian orSpecular)

Fig. 5.1 TAMU RTM. gtot is total asymmetry factor. atot is total scattering albedo. ktot is the total extinction coefficient

58

5.3 Results

AllRTcodesshow goodagreementwithinthe rainratedynamicrangeofeach channel at view angles from nadir to more than60º but not near the limb. Generally, these codes show relatively large uncertainty of BTs pat the saturation point of each channel due to heavy rainfall. Figures 5.2 and 5.3 show the differences of the BTs amongthecodesfortheLambertianorspecularsurface,respectively.Fromthefigures, theeffectoficelayerontheBTislimitedtoheavyrainfallforeachchannel.

To investigate the impact of RT codes on the retrieval of FLs, the previously discussedTMIdata(Dec.1997,Jan.1998,Dec.1999,andJan.2000)areutilized.546 cases,whereBBsandmirrorimagescoexistsimultaneously,areusedforthecomparison among TAMU FL, EDD FL, DO FL and MCFL. Low FLs, below 2 km, have large uncertainty in both TMI and PR. If only FLs over 2 km are considered, and FLRRT chartsaremadeforthecurrentsensorviewangle(53º)usingtheTAMU,EDD,DO,and

MC codes, the uncertainties of the FLs due to the BTs among the RT codes can be estimated.ThedifferenceamongthemeanvalueofPRFL(a),BBH(b),TAMUFL(c),

EDD FL (d), DO FL (e), and MC FL (f) are summarized in Table 5.1. The mean differencesbetweenFLsandBBHforeachmontharearesummarizedinTable5.2.

59

Table 5.1 The difference among the mean value of PR FL (a), BBH (b), TAMU FL (c), EDD FL (d), DO FL (e), and MC FL (f)

(a) - (b) (a) - (c) (a) - (d) (a) – (e) (a) - (f) Difference (km) 0.44 0.45 0.48 0.17 0.62

Table 5.2 The mean differences between FLs and BBH for each month

Difference (km) (b) - (c) (b) - (d) (b) - (e) Dec. 1997 0.06 0.10 0.25 Jan. 1998 0.03 0.07 0.23 Dec. 1999 0.00 0.04 0.18 Jan. 2000 0.05 0.02 0.09

60

0.0 -1.0 0.0-0.50.5 1.02.0

-4.0 -2.0 -1.0 -0.5

-0.5

0.5 4.0

0.0 2.0

1.0

1.0 0.5 0.0 1.0 -1.0 0.0-0.5 1.00.5 2.0 -4.0 -2.0 -0.5 -1.0

-1.0

-2.0

0.5

0.0

-0.5

16.0 -2.0 -1.0 -0.5 8.0 0.0 0.5 1.0 4.0 -0.5 2.0 -0.5 1.0 0.0 0.51.0 2.0 0.5 -8.0 0.0 -4.0 -2.0 -0.5

-1.0 -1.0

-2.0

0.5 -0.5

0.0

Fig. 5.2 Contour of BT differences using TAMU, EDD, and DO codes for the Lambertian surface, respectively. The FL is assumed to be 5 km

61

0.5

-2.0 1.0 0.5 -1.0

0.0

-0.5

-1.0

0.5 -2.0 -1.0 2.0 -1.0 1.0 0.5

0.0

0.0

-0.5

16.0 -16.0 -8.0 -4.0 8.0 -2.0 -0.5-1.0

4.0 2.0 1.0 0.5

-0.5

0.5

0.0

Fig. 5.3 Contour of BT differences using TAMU, EDD, and MC codes for the specular surface, respectively. The FL is assumed to be 1 km

62

Fromtheresults,theTAMUFLsarealmostthesameastheEDDFLsbut,the

EDDFLsareslightlylowerthanTAMUFLs.TheMCFLsare,onaverage,180mlower thanBBH.ThisvalueisstillwithinthereasonableuncertaintyoftheBBHbecausethe verticalresolutionofthePRis250m.

Figure5.4showstheBTdifferencesamongtheRTcodesusedtoretrievetheFLs andrainrates.For3,4,and5kmFLs,theTAMUcodeandEDDcodeagreetobetter than1K.TheTAMUcodeandDOcodeagreefrom1Kto3K.TheTAMUcodeand

MCcodeagreefrom1Kto3.5K.Figure5.5depictsa)Latitudevs.FLdifferences,b)

19GHzverticalchannel’sBTvs.FLdifferences,c)latitudevs.BBHFLs.Inthosecases,

FLsareretrievedfromtheFLlookuptablesusingTAMU,EDD,andMCcodes.The

BTsobservedduringDec.1997,Jan.1998,Dec.1999,andJan.2000areusedasinput datatovalidatetheFLs.Figure5.6showsa)therelationshipbetweenthelatitudeandFL differencesamongTAMUFL,EDDFL,andMCFLandb)therelationshipbetweenthe latitudeandBBHFLsforDec.1997,Jan.1998,Dec.1999,andJan.2000respectively.

In Figure 5.7, FL differences vs. rain rates among TAMU FL, EDD FL, DO FL are shownusingBTsgeneratedfromTAMUcode.Inthiscase,FLsareretrievedfromtheir own FL lookup table. Figure 5.8 describes the FL differences vs. rain rates among

TAMUFL,EDDFL,andDOFLretrievedusingtheTAMUFLlookuptableBTs.

Collectively,theBTdifferencesarelessthan3Kamongthe4RTcodeswithintherange of the physical FL and rain rate retrievals. The relatively large discrepancies of BTs amongtheRTcodesoccurathighlatitude,highBTs,lowFLsandheavyrainfall.Those arecausedbydifferentapproachestosolvingthescatteringtermintheRTE.

63

TAMU-EDD TAMU-DO TAMU-MC

4 4 4

2 2 2

0 0 0 T21v difference(K) T21v difference(K) T21v difference(K)

-2 -2 -2

-4 -4 -4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 T19v difference(K) T19v difference(K) T19v difference(K)

Fig. 5.4 BT differences among the RT codes to retrieve the FLs and rain rates

64

FL differences T19v vs. FL differences BBH - FLs 1.0 1.0 1.5

1.0

0.5 0.5

0.5

0.0 0.0 0.0 FL differences (km) FL differences (km) FL differences (km) -0.5

-0.5 -0.5

-1.0

FL(TAMU)-FL(MC) FL(TAMU)-FL(MC) BBH-FL(MC) BBH-FL(EDD) FL(TAMU)-FL(EDD) FL(TAMU)-FL(EDD) BBH-FL(TAMU) -1.0 -1.0 -1.5 -40 -20 0 20 40 200 210 220 230 240 250 260 -40 -20 0 20 40 Latitude T19v (K) Latitude

Fig. 5.5 a) Latitude vs. FL differences. b) 19 GHz vertical channel’s BTs vs. FL differences c) Latitude vs. BBH-FLs. In those cases, FLs are retrieved from the FL lookup tables using TAMU, EDD, and MC codes. The BTs observed during Dec. 1997, Jan. 1998, Dec.1999, and Jan. 2000 are used as input data to validate the FLs

65

Dec 1997 Differences Jan 1998 Differences 1.5 1.5

5 5 1.0 1.0

4 0.5 4 0.5

0.0 0.0 3 3

-0.5 -0.5 2 2

Retrieved Freezing Level (Km) TAMU FL Retrieved Freezing Level (Km) Retrieved Freezing Level (Km) TAMU FL Retrieved Freezing Level (Km) EDD FL -1.0 EDD FL -1.0 BBH - TAMU FL BBH - TAMU FL MC FL BBH - EDD FL MC FL BBH - EDD FL BBH BBH 1 BBH - MC FL 1 BBH - MC FL -1.5 -1.5 -20 0 20 -20 0 20 -20 0 20 -20 0 20 Latitude (degree) Latitude (degree) Latitude (degree) Latitude (degree) Dec 1999 Differences Jan 2000 Differences 1.5 1.5

5 5 1.0 1.0

4 0.5 4 0.5

0.0 0.0 3 3

-0.5 -0.5 2 2

Retrieved Freezing Level (Km) TAMU FL Retrieved Freezing Level (Km) Retrieved Freezing Level (Km) TAMU FL Retrieved Freezing Level (Km) EDD FL -1.0 EDD FL -1.0 BBH - TAMU FL BBH - TAMU FL MC FL BBH - EDD FL MC FL BBH - EDD FL BBH BBH 1 BBH - MC FL 1 BBH - MC FL -1.5 -1.5 -20 0 20 -20 0 20 -20 0 20 -20 0 20 Latitude (degree) Latitude (degree) Latitude (degree) Latitude (degree)

Fig. 5.6 Latitude vs. FL differences (TAMU FL, EDD FL, and MC FL) and latitude vs. BBH-FLs for Dec. 1997, Jan. 1998, Dec.1999, and Jan. 2000 respectively

66

FL(TAMU)-FL(EDD) FL(TAMU)-FL(MC) FL(TAMU)-FL(DO)

0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0 FL diff(km) FL diff(km) FL diff(km)

-0.2 -0.2 -0.2

-0.4 -0.4 -0.4

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 RR(mm/hr) RR(mm/hr) RR(mm/hr)

Fig. 5.7 FL differences vs. rain rates among TAMU FL, EDD FL, DO FL using BTs generated from TAMU code. In this case, FLs are retrieved from their own FL lookup table

FL(TAMU)-FL(EDD) FL(TAMU)-FL(MC) FL(TAMU)-FL(DO)

0.4 0.4 0.4

0.2 0.2 0.2

0.0 0.0 0.0 FL diff(km) FL diff(km) FL diff(km)

-0.2 -0.2 -0.2

-0.4 -0.4 -0.4

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 RR(mm/hr) RR(mm/hr) RR(mm/hr)

Fig. 5.8 FL differences vs. rain rates among TAMU FL, EDD FL, DO FL using BTs generated from each code. In this case, FLs are retrieved from only TAMU FL lookup table

67

5.4 Conclusion

TheBTdifferencesbetweentheTAMUcodeandtheEDDcodearelessthan0.5

Kforthe10v,19v,and37GHzchannelsandvariousFLsatallviewangles,exceptnear thelimbirrespectiveofthesurfaceproperties.TheBTsbetweentheEDDandDOcodes differbylessthan1Kforthe10v,19v,and37GHzchannelsandallFLsatthecurrent sensor view angle (53º) with the Lambertian surface. This result agrees with the descriptioninthepreviousworkdonebyKummerow(1993).Atthenadirandlimb,BT discrepanciesarearound2K.TheEDDandMCcodesforthespecularsurfaceagree with each other less than 1 K for the 10v, 19v, and 37 GHz channels and low FLs,

Otherwise,theBTdifferencebetweentwocodesincreasesupto4KastheFLincreases.

This result indicates the plane parallel results are warmer in heavy rain than MC calculations at 19 and 37 GHz, but the plane parallel results are colder than MC calculationsat10GHz.PlaneparallelresultsaregenerallycolderthanMCcalculations atmostrainratesthroughthewhloerangeofviewangleirrespectiveoftheFLs.This analysisagreesquitewellwiththepreviouswork.

FortheFLsandrainfallretrievalinthetropics,4RTcodescanleadtothesimilar resultsbecausetheBTdifferencesamongtheRTcodesarelessthan3Katthe35km

FLs.TheselectionoftheRTcodesshouldbeconsideredduetovariousviewanglesin theGPM.Fromthisresearch,theTAMU,EDD,andMCcodesshowgoodagreement through the whole range of view angles within the rain rate dynamic range of each channel.TheBTdifferencesamong4RTcodesarerelativelylargepastsaturationpoint ofeachchannel.

68

TheuncertaintiesofBTsamongtheTAMU,EDD,DO,andMCcodesatthelow

FLs should be studied in the future because the BT differences among the RT codes increaseastheFLdecreases.

5.5 Future Work

For future work, ice thickness can be another parameter used to retrieve heavy rainfallusingacombinationof10GHzand37GHz.BTs.Bycombinationofactiveand passive microwave algorithms, the FL can be determined. Since current passive FL retrievalschemeusingFLRRTchartcannotdetermineifornottherainfallisheavy,a combinationoftwoFLretrievalmethodswillbeuseful.AftertheFLisdetermined,the ice thickness can be estimated using ice thickness lookup tables. In this case, various

BTs will be also used as input data. Irrespective of the RT codes, the pattern of relationships between rain rate and BTs appear similar in the limit of heavy rainfall.

Figure 5.9 show the behavior of each channel’s BTs with respect to theice thickness variedfrom0to12kmusingTAMU,EDD,andDOcodes.

ThisgeneratesanopportunitytoretrievetheFLandicethicknessinmiddleand highlatitudesusingcurrentchannels.

69

TAMU: 19v 53.0 1km TAMU: 21v 53.0 1km TAMU: 10v 53.0 1km TAMU: 37v 53.0 1km 300 300 300 300

250 250 250 250

200 200 200 200

150 150 150 150 Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K)

100 100 100 100 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 RR(mm/hr) RR(mm/hr) RR(mm/hr) RR(mm/hr) FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km

250 250 250 250

200 200 200 200

T21v(K) 150 T19v(K) 150 T21v(K) 150 T37v(K) 150

100 100 100 100

50 50 50 50 100 150 200 250 0 50 100 150 200 250 100 150 200 250 100 150 200 250 T19v T10v T10v T10v

Fig. 5.9 Rain rates vs. BTs. Each color describes the different ice thickness from 0 to 12 km over the FL. And the combination of 10, 19, 21, and 37 GHz channel’s BTs. a) TAMU code

70

EDD: 19v 53.0 1km EDD: 21v 53.0 1km EDD: 10v 53.0 1km EDD: 37v 53.0 1km 300 300 300 300

250 250 250 250

200 200 200 200

150 150 150 150 Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K)

100 100 100 100 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 RR(mm/hr) RR(mm/hr) RR(mm/hr) RR(mm/hr) FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km

250 250 250 250

200 200 200 200

T21v(K) 150 T19v(K) 150 T21v(K) 150 T37v(K) 150

100 100 100 100

50 50 50 50 100 150 200 250 0 50 100 150 200 250 100 150 200 250 100 150 200 250 T19v T10v T10v T10v

Fig. 5.9 Continued. b) EDD code

71

DO: 19v 53.0 1km DO: 21v 53.0 1km DO: 10v 53.0 1km DO: 37v 53.0 1km 300 300 300 300

250 250 250 250

200 200 200 200

150 150 150 150 Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K) Brightness Temperature(K)

100 100 100 100 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 0.01 0.10 1.00 10.00100.00 RR(mm/hr) RR(mm/hr) RR(mm/hr) RR(mm/hr) FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km FL-ICETHICK-RR 1km

250 250 250 250

200 200 200 200

T21v(K) 150 T19v(K) 150 T21v(K) 150 T37v(K) 150

100 100 100 100

50 50 50 50 100 150 200 250 0 50 100 150 200 250 100 150 200 250 100 150 200 250 T19v T10v T10v T10v

Fig. 5.9 Continued. c) DO code

72

CHAPTER VI

CONCLUSION AND SUMMARY

6.1 Effects of Vertical Resolution on Brightness Temperature

The effect of vertical resolution in the RT algorithm on the computational efficiency and uncertainty through the intercomparison among the TAMU and EDD codes was researched. The very light rainfall case was considered for the effect of verticalresolutionontheBTs.Theassumednumberoflayers(verticalresolution)inthe passivemicrowaveRTcodesleadtoslightlydifferentBTsevenifthesameRTMisused.

TheuncertaintyoftheBTfromtheverticalresolutiondecreasesastheassumednumber oflayersincreases.Fewerlayersareneededtoobtainthesameuncertainty(≤0.5K)for both codes for the Lambertian surface than the specular surface. Those vertical resolutionsareapproximatelyhalfordoublethevalueofthePRresolution,respectively.

The uncertainties are due to the optical thickness because the layer optical thicknessisafunctionoftheverticalresolution.Thisresearchisthefirstusefultrialto determinetheeffectofverticalresolutionintheRTM.

6.2 Improved Freezing Level Retrieval in Oceanic Rainfall Algorithm

TheuncertaintyoftheTMIFLretrievalisreducedtowithinapproximately10% whenanewtemperatureprofilebasedonnewobservationsisusedintheFLretrieval.

The result of this research emphasizes the role of the temperature profile on the BT calculation in the passive microwave algorithm. However, the FL uncertainty is

73 relativelylargerinthelowFLregionsincethecurrentTMIFLandPRFLhavealow resolution as the FL becomes lower. Accordingly, additional research on the low FL casesisrequiredtounderstandtheuncertaintiesofbothFLandrainfallretrievalinthe midandhighlatitudes.

6.3 Uncertainty of Radiative Transfer Calculation among Texas A&M University,

Eddington Approximation, Discrete Ordinate, and Monte Carlo Codes

TheTAMU,EDD,andMCcodesshowgoodagreementthroughthewholerange ofviewangleswithintherainratedynamicrangeofeachchannel.TheBTdifferences among4RTcodesarerelativelylargepastsaturationpointofeachchannel.FortheFLs andrainfallretrievalinthetropics,4RTcodescanleadtothesimilarresultsbecausethe

BTdifferencesamongtheRTcodesarelessthan3Katthe35kmFLs.Theselectionof the RT codes should be considered due to various view angles in the GPM. The uncertaintiesofBTsamongtheTAMU,EDD,DO,andMCcodesatthelowFLsshould bestudiedinthefuturebecausetheBTdifferencesamongtheRTcodesincreaseasthe

FLdecreases.

6.4 Future Work

Ice thickness can be another parameter used to retrieve heavy rainfall using a combinationof10GHzand37GHz.BTswiththeFLretrievalbasedonthecombination ofactiveandpassivemicrowavealgorithms.Thiswillgenerateanopportunitytoretrieve boththeFLandicethicknessinmiddleandhighlatitudesusingcurrentchannels.

74

REFERENCES

Berg,W.,C.Kummerow,andC.A.Morales,2002:DifferencesbetweenEastandWest Pacificrainfallsystems. J. Climate, 15, 3659–3672. Chiu,L.S.,andA.T.C.Chang,2000:OceanicraincolumnheightderivedfromSSM/I. J. Climate, 13, 4125–4136. Gunn, K.L.S. and T.U.R. East, 1954: The microwave properties of precipitation particles. Quart. J.Roy. Meteor. Soc. 80 ,522545. Ikai,J.,andK.Nakamura,2003:Comparisonofrainratesovertheoceanderivedfrom TRMMmicrowaveimagerandprecipitationradar.J. Atmos. Oceanic Technol, 20 ,1709– 1726. Kummerow, C., and J. A. Weinman, 1988: Determining microwave brightness temperaturesfromthehorizontallyfinite,verticallystructuredcloud , J. Geophys. Res ., 93 ,37203728. Kummerow, C., 1993: On the accuracy of the Eddington approximation for radiative transferinthemicrowavefrequencies, J. Geophys. Res., 98 ,27572765. Lane, J.A., andJ. A. Saxton, 1952: Dielectric dispersion in pure polar liquids at very highradiofrequencies . Proc. Roy. Soc. London ,A 214 ,531545. Liou, K., 1992: Radiation and cloud processes in the atmosphere , Oxford University Press,487pp. Rangno,A.LandP.V.Hobbs,2005:Microstructuresandprecipitationdevelopmentin cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131 ,639673. Roberti, L., J. Haferman, and C. Kummerow, 1994: Microwave radiative transfer throughhorizontallyinhomogeneousprecipitatingclouds, J.Geophys. Res ., 99 ,16,707– 16,718. Rosenkranz,P.W.,1993:Absorptionofmicrowavesbyatmosphericgases. Atmospheric Remote Sensing by Microwave Radiometry ,M.A.Jansen,Ed.,WileySeriesinRemote Sensing,JohnWiley&Sons,Inc.,3790. Rosenkranz,P.W.,1998:Watervapormicrowavecontinuumabsorption:Acomparison ofmeasurementsandmodels. Radio. Sci ., 33 (4):919928.

75

Smith,E.A.,P.Bauer,F.S.Marzano,C.D.Kummerow,D.McKague,A.Mugnai,and G. Panegrossi, 2002: Intercomparison of microwave radiative transfer models for precipitatingclouds, IEEE Trans. on Geosci. and Remote Sens. , 40 ,541549. Stamnes, K., S.C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discreteordinatemethod radiative transfer in multiple scattering and emittinglayeredmedia, Applied Optics , 27 ,25022509. Thurai,M.,E.Deguchi,T.Iguchi,andK.Okamoto,2003:Freezingheightdistributionin thetropics, Int. J. Satell. Commun. Network , 21 ,533545. Weinman,J.A.,andR.Davies,1978:Thermalmicrowaveradiancesfromhorizontally finitecloudsofhydrometeors, J.Geophys. Res., 83 ,30993107. Wilheit,T.T.,A.Chang,M.Rao,E.Rogers,andJ.Theon,1977:Asatellitetechnique forquantitativelymappingrainfallratesoverocean, J. Appl. Meteor., 16 ,551560. Wilheit,T.T.,A.Chang,andL.Chiu,1991:Retrievalofmonthlyrainfallindicesfrom microwaveradiometricmeasurementsusingprobabilitydistributionfunctions. J. Atmos. Oceanic Technol., 8,118–136. Wilheit,T.T.,R.Adler,S.Avery,E.Barrett,P.Bauer,W.Berg,A.Chang,J.Ferriday, N.Grody,S.Goodman,C.Kidd,D.Kniveton,C.Kummerow,A.Mugnai,W.Olson,G. Petty, A. Shibata, E. Smith, and R. Spencer, 1994: Algorithms for the Retrieval of RainfallfromPassiveMicrowaveMeasurements, Reviews of Remote Sensing 11 ,163 194.

76

VITA

SungWookHongwasborninSeoul,KoreaonAugust26,1971.Heearnedhis

BachelorofSciencedegreeinearthsciencesin February,1997,andthenaMasterof

Science degree in physics in February, 2000 both from Seoul National University in

Korea. He entered the Master of Science program in the Department of Atmospheric

SciencesatTexasA&MUniversity,andbecameamemberoftheMicrowaveRemote

SensingGroupinthefallof2001.HeearnedaMasterofSciencedegreeinDecember

2002andaDoctorofPhilosophydegreeinAugust2006,bothinatmosphericsciences.

HewillworkasaresearchscientistforNESDISatNOAAinCampSprings,Maryland from Octorber, 2006. Correspondence may be addressed to a continuing email at [email protected] ,orU.S.mail,sensorphysicsbranch,NOAA/NESDIS/STAR5200

AuthRd,CampSprings,MD20746.