Electronic Transfer Within a Microbial Fuel Cell. Better Understanding of Experimental and Structural Parameters at the Interfac
Total Page:16
File Type:pdf, Size:1020Kb
Electronic transfer within a microbial fuel cell. Better understanding of Experimental and Structural Parameters at the Interface between Electro-active Bacteria and Carbon-based Electrodes David Pinto To cite this version: David Pinto. Electronic transfer within a microbial fuel cell. Better understanding of Experimental and Structural Parameters at the Interface between Electro-active Bacteria and Carbon-based Elec- trodes. Material chemistry. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066367. tel-01481318 HAL Id: tel-01481318 https://tel.archives-ouvertes.fr/tel-01481318 Submitted on 2 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale 397 − Physique et Chimie des Matériaux Laboratoire Chimie de la Matière Condensée de Paris Matériaux Hybride et Nanomatériaux TRANSFERT ELECTRONIQUE AU SEIN D’UNE PILE A COMBUSTIBLE MICROBIENNE Compréhension des Paramètres Expérimentaux et Structuraux à l’Interface entre une Bactérie électro-active et une Electrode carbonée Présentée par : David PINTO Thèse de doctorat de Chimie des Matériaux Dirigée par : Pr. Christel Laberty-Robert et Dr. Thibaud Coradin Présentée et soutenue publiquement le 14 Novembre 2016 Devant le jury composé de : Dr. Sara Cavaliere . Maitre de Conférence HDR à l’Université de Rapporteur Montpellier, France − ICGM Dr. Elisabeth Lojou . Directrice de Recherche CNRS à l’Unité de Rapporteur Bioénergétique et Ingénierie des Protéines Pr. Abraham Esteve Núñez . Professeur à l’Université of Alcalá, Madrid, Spain – Examinateur Bioelectrogenesis Pr. Claude Jolivalt . Professeur à l’Université Pierre et Marie Curie, Examinatrice Paris 6, France − LRS Dr. Eric Lafontaine . Docteur HDR, Responsable de domaine scientifique Examinateur à la DGA Dr. Thibaud Coradin . Directeur de Recherche CNRS à l’Université Pierre Co-directeur de et Marie Curie, Paris, France − LCMCP Thèse Pr. Christel Laberty-Robert . Professeur à l’Université Pierre et Marie Curie, Directrice de Paris, France − LCMCP Thèse − 1 − 2 ELECTRONIC TRANSFER WITHIN A MICROBIAL FUEL CELL Better understanding of Experimental and Structural Parameters at the Interface between Electro-active Bacteria and Carbon-based Electrodes Presented by: David PINTO Doctoral thesis of Material Chemistry Supervised by: Pr. Christel Laberty-Robert et Dr. Thibaud Coradin Thesis presented and defended on 14th November 2016 − 3 − 4 « La vie, c’est comme une bicyclette, il faut avancer pour garder l’équilibre. » − Albert Einstein − 5 − 6 − 7 − 8 − 9 − 10 TABLE OF CONTENTS Table OF Content TABLE OF CONTENT − 11 TABLE OF CONTENT − 12 General Introduction 17 Chapter 1 − Literature Review 21 1.1. GENERAL ENERGETIC CONTEXT ............................................................................... 25 1.2. GENERAL ASSESSMENTS ABOUT BIOFUEL CELLS ........................................................... 25 1.2.1. From fuel cell to biofuel cell ...................................................................................... 25 1.2.2. Microbial Fuel Cells and Enzymatic Fuel Cells ........................................................... 27 1.2.2.1. Enzymatic Fuel Cell. ..................................................................................................... 27 1.2.2.2. Microbial Fuel Cell. ...................................................................................................... 28 1.2.3. Microbial Electrochemical Systems ........................................................................... 29 1.3. MICROBIAL FUEL CELLS ........................................................................................ 31 1.3.1. Principle of MFC electricity generation ..................................................................... 31 1.3.2. Microbial Electron Transfer ....................................................................................... 32 1.3.2.1. Indirect Electron Transfer. ........................................................................................... 33 1.3.2.2. Mediated Electron Transfer. ........................................................................................ 33 1.3.2.3. Direct Electron Transfer. .............................................................................................. 34 1.3.3. Exoelectrogenic bacterium ....................................................................................... 35 1.3.3.1. Shewanella oneidensis. ................................................................................................ 36 1.3.3.2. Pure culture versus mixed culture. .............................................................................. 36 1.3.4. Biofilm ....................................................................................................................... 37 1.4. MICROBIAL FUEL CELLS EFFICIENCY: KEY FACTORS ....................................................... 38 1.4.1. Factors related to the bacterium .............................................................................. 39 1.4.2. Factors related to the cell architecture ..................................................................... 40 1.4.3. Factors related to the electronic transfer ................................................................. 40 1.5. MICROBIAL FUEL CELLS MATERIALS & ARCHITECTURE .................................................. 41 1.5.1. Anode materials ........................................................................................................ 41 1.5.1.1. Carbon-based materials. .............................................................................................. 41 1.5.1.2. Surface Treatment on Carbon based materials. .......................................................... 43 1.5.1.3. Metallic and metal coated materials. .......................................................................... 46 1.5.2. Cathode materials. .................................................................................................... 47 1.5.3. Separator: proton exchange membrane ................................................................... 49 1.5.4. Global cell architectures ............................................................................................ 51 1.6. CONCLUSION & THESIS OBJECTIVES ......................................................................... 54 TABLE OF CONTENT − 13 Chapter 2 − External Parameters Affecting Bacterium Adhesion and Microbial Fuel Cell Performanced 59 2.1. INTRODUCTION AND OBJECTIVES ............................................................................ 63 2.2. CARBON FELT AS AN ANODIC CARBON-BASED ELECTRODE .............................................. 64 2.2.1. How an electrochemical reaction occurs? ................................................................ 64 2.2.1.1. Charge transfer. ........................................................................................................... 65 2.2.1.2. Mass transfer. .............................................................................................................. 67 2.2.2. Carbon felt as carbon-based electrode for electrochemistry ................................... 69 2.2.3. Electrochemical characterization of a carbon felt .................................................... 70 2.2.3.1. Capacitive behavior of a raw carbon felt. .................................................................... 71 2.2.3.2. Faradaic behavior of a raw carbon felt. ....................................................................... 72 2.2.3.3. Hydrophilic treatment effect on the faradaic current. ................................................ 78 2.2.3.4. Dimensional effect and probes concentration effect. ................................................. 81 2.3. BACTERIA GROWTH CONDITIONS AND ACCLIMATION .................................................... 83 2.3.1. Media and solutions for growth. ............................................................................... 84 2.3.2. Growth protocol ........................................................................................................ 85 2.3.2.1. Preparation of the pre-cultures. .................................................................................. 85 2.3.2.2. Preparation of the culture and growth curve determination. ..................................... 85 2.3.3. Bacteria counting and OD600/cfu correlation. ........................................................... 86 2.3.4. Growth conditions effect on S. oneidensis multiplication. ....................................... 87 2.3.4.1. Lag-phase. .................................................................................................................... 88 2.3.4.2. Log-phase. .................................................................................................................... 89 2.3.4.3. Stationary-phase. ......................................................................................................... 89 2.3.4.4. Effect of the initial inoculum amount.