Emergent Computing Joint ERCIM Actions: ‘Beyond the Horizon’ Anticipating Future and Emerging Information Society Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming Paradigms & Object-Oriented
4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor. -
Intellectual Property Law Week Helpful Diversity Or Hopeless Confusion?
Intellectual Property Law Week Open Source License Proliferation: Helpful Diversity or Hopeless Confusion? Featuring Professor Robert Gomulkiewicz University of Washington School of Law Thursday, March 18, 2010 12:30-2:00 PM Moot Courtroom Abstract: One prominent issue among free and open source software (FOSS) developers (but little noticed by legal scholars) has been "license proliferation." "Proliferation" refers to the scores of FOSS licenses that are now in use with more being created all the time. The Open Source Initiative ("OSI") has certified over seventy licenses as conforming to the Open Source Definition, a key measure of whether a license embodies FOSS principles. Many believe that license proliferation encumbers and retards the success of FOSS. Why does proliferation occur? What are the pros and cons of multiple licenses? Does the growing number of FOSS licenses represent hopeless confusion (as many assume) or (instead) helpful diversity? To provide context and color, these issues are examined using the story of his creation of the Simple Public License (SimPL) and submission of the SimPL to the OSI for certification. Professor Robert Gomulkiewicz joined the UW law school faculty in 2002 to direct the graduate program in Intellectual Property Law and Policy. Prior to joining the faculty, he was Associate General Counsel at Microsoft where he led the group of lawyers providing legal counsel for development of Microsoft's major systems software, desktop applications, and developer tools software (including Windows and Office). Before joining Microsoft, Professor Gomulkiewicz practiced law at Preston, Gates & Ellis where he worked on the Apple v. Microsoft case. Professor Gomulkiewicz has published books and law review articles on open source software, mass market licensing, the UCITA, and legal protection for software. -
Bioconductor: Open Software Development for Computational Biology and Bioinformatics Robert C
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Collection Of Biostatistics Research Archive Bioconductor Project Bioconductor Project Working Papers Year 2004 Paper 1 Bioconductor: Open software development for computational biology and bioinformatics Robert C. Gentleman, Department of Biostatistical Sciences, Dana Farber Can- cer Institute Vincent J. Carey, Channing Laboratory, Brigham and Women’s Hospital Douglas J. Bates, Department of Statistics, University of Wisconsin, Madison Benjamin M. Bolstad, Division of Biostatistics, University of California, Berkeley Marcel Dettling, Seminar for Statistics, ETH, Zurich, CH Sandrine Dudoit, Division of Biostatistics, University of California, Berkeley Byron Ellis, Department of Statistics, Harvard University Laurent Gautier, Center for Biological Sequence Analysis, Technical University of Denmark, DK Yongchao Ge, Department of Biomathematical Sciences, Mount Sinai School of Medicine Jeff Gentry, Department of Biostatistical Sciences, Dana Farber Cancer Institute Kurt Hornik, Computational Statistics Group, Department of Statistics and Math- ematics, Wirtschaftsuniversitat¨ Wien, AT Torsten Hothorn, Institut fuer Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, DE Wolfgang Huber, Department for Molecular Genome Analysis (B050), German Cancer Research Center, Heidelberg, DE Stefano Iacus, Department of Economics, University of Milan, IT Rafael Irizarry, Department of Biostatistics, Johns Hopkins University Friedrich Leisch, Institut fur¨ Statistik und Wahrscheinlichkeitstheorie, Technische Universitat¨ Wien, AT Cheng Li, Department of Biostatistical Sciences, Dana Farber Cancer Institute Martin Maechler, Seminar for Statistics, ETH, Zurich, CH Anthony J. Rossini, Department of Medical Education and Biomedical Informat- ics, University of Washington Guenther Sawitzki, Statistisches Labor, Institut fuer Angewandte Mathematik, DE Colin Smith, Department of Molecular Biology, The Scripps Research Institute, San Diego Gordon K. -
INFOCOMP / Datasys 2017 International Expert Panel: Challenges on Web Semantic Mapping and Information Processing
INFOCOMP / DataSys 2017 International Expert Panel: Challenges on Web Semantic Mapping and Information Processing INFOCOMP / DataSys 2017 International Expert Panel: Challenges on Web Semantic Mapping and Information Processing June 28, 2017, Venice, Italy The Seventh International Conference on Advanced Communications and Computation (INFOCOMP 2017) The Seventh International Conference on Advances in Information Mining and Management (IMMM 2017) The Twelfth International Conference on Internet and Web Applications and Services (ICIW 2017) INFOCOMP/IMMM/ICIW (DataSys) June 25{29, 2017 - Venice, Italy INFOCOMP, June 25 { 29, 2017 - Venice, Italy INFOCOMP / DataSys 2017 International Expert Panel: Challenges on Web Semantic Mapping and Information Processing INFOCOMP / DataSys 2017 International Expert Panel: Challenges on Web Semantic Mapping and Information Processing INFOCOMP Expert Panel: Web Semantic Mapping & Information Proc. INFOCOMP Expert Panel: Web Semantic Mapping & Information Proc. Panelists Claus-Peter R¨uckemann (Moderator), Westf¨alischeWilhelms-Universit¨atM¨unster(WWU) / Leibniz Universit¨atHannover / North-German Supercomputing Alliance (HLRN), Germany Marc Jansen, University of Applied Sciences Ruhr West, Deutschland Fahad Muhammad, CSTB, Sophia Antipolis, France Kiyoshi Nagata, Daito Bunka University, Japan Claus-Peter R¨uckemann, WWU M¨unster/ Leibniz Universit¨atHannover / HLRN, Germany INFOCOMP 2017: http://www.iaria.org/conferences2017/INFOCOMP17.html Program: http://www.iaria.org/conferences2017/ProgramINFOCOMP17.html -
Paradigms of Computer Programming
Paradigms of computer programming l This course aims to teach programming as a unified discipline that covers all programming languages l We cover the essential concepts and techniques in a uniform framework l Second-year university level: requires some programming experience and mathematics (sets, lists, functions) l The course covers four important themes: l Programming paradigms l Mathematical semantics of programming l Data abstraction l Concurrency l Let’s see how this works in practice Hundreds of programming languages are in use... So many, how can we understand them all? l Key insight: languages are based on paradigms, and there are many fewer paradigms than languages l We can understand many languages by learning few paradigms! What is a paradigm? l A programming paradigm is an approach to programming a computer based on a coherent set of principles or a mathematical theory l A program is written to solve problems l Any realistic program needs to solve different kinds of problems l Each kind of problem needs its own paradigm l So we need multiple paradigms and we need to combine them in the same program How can we study multiple paradigms? l How can we study multiple paradigms without studying multiple languages (since most languages only support one, or sometimes two paradigms)? l Each language has its own syntax, its own semantics, its own system, and its own quirks l We could pick three languages, like Java, Erlang, and Haskell, and structure our course around them l This would make the course complicated for no good reason -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
May 28, 2016 3:46 WSPC/INSTRUCTION FILE Output
May 28, 2016 3:46 WSPC/INSTRUCTION FILE output International Journal of Semantic Computing c World Scientific Publishing Company Methods and Resources for Computing Semantic Relatedness Yue Feng Ryerson University Toronto, Ontario, Canada [email protected] Ebrahim Bagheri Ryerson University Toronto, Ontario, Canada [email protected] Received (Day Month Year) Revised (Day Month Year) Accepted (Day Month Year) Semantic relatedness (SR) is defined as a measurement that quantitatively identifies some form of lexical or functional association between two words or concepts based on the contextual or semantic similarity of those two words regardless of their syntactical differences. Section 1 of the entry outlines the working definition of semantic related- ness and its applications and challenges. Section 2 identifies the knowledge resources that are popular among semantic relatedness methods. Section 3 reviews the primary measurements used to calculate semantic relatedness. Section 4 reviews the evaluation methodology which includes gold standard dataset and methods. Finally, Section 5 in- troduces further reading. In order to develop appropriate semantic relatedness methods, there are three key aspects that need to be examined: 1) the knowledge resources that are used as the source for extracting semantic relatedness; 2) the methods that are used to quantify semantic relatedness based on the adopted knowledge resource; and 3) the datasets and methods that are used for evaluating semantic relatedness techniques. The first aspect involves the selection of knowledge bases such as WordNet or Wikipedia. Each knowledge base has its merits and downsides which can directly affect the accurarcy and the coverage of the semantic relatedness method. The second aspect relies on different methods for utilizing the beforehand selected knowledge resources, for example, methods that depend on the path between two words, or a vector representation of the word. -
An Extensible Platform for Semantic Classification and Retrieval of Multimedia Resources
An extensible platform for semantic classification and retrieval of multimedia resources Paolo Pellegrino, Fulvio Corno Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino, Italy {paolo.pellegrino, fulvio.corno}@polito.it Abstract and seem very promising, but are still mostly exploited for textual resources only. In effect, text is the simplest form This paper introduces a possible solution to the problem of knowledge representation which can be both of semantic indexing, searching and retrieving heterogeneous understood by humans and quickly processed by resources, from textual as in most of modern search engines, machines. So, while text itself is already efficaciously to multimedia. The idea of “anchor” as information unit is used as knowledge representation for machines, digital here introduced to view resources from different perspectives multimedia resources like images and videos cannot in and to access existing resources and metadata archives. general be used as they are for efficient classification and Moreover, the platform uses an ontology as a conceptual retrieval. Some intensive processing or manual metadata representation of a well-defined domain in order to creation is necessary to extract and associate semantic semantically classify and retrieve anchors (and the related information to a given multimedia resource. resources). Specifically, the architecture of the proposed platform aims at being as modular and easily extensible as In this context, the proposed work aims at providing a possible, in order to permit the inclusion of state-of-the-art flexible, lightweight and ready-to-use platform for the techniques for the classification and retrieval of multimedia semantic classification, search and retrieval of resources. -
IBM Research Report Proceedings of the IBM Phd Student Symposium at ICSOC 2006
RC24118 (W0611-165) November 28, 2006 Computer Science IBM Research Report Proceedings of the IBM PhD Student Symposium at ICSOC 2006 Ed. by: Andreas Hanemann (Leibniz Supercomputing Center, Germany) Benedikt Kratz (Tilburg University, The Netherlands) Nirmal Mukhi (IBM Research, USA) Tudor Dumitras (Carnegie Mellon University, USA) Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich Preface Service-Oriented Computing (SoC) is a dynamic new field of research, creating a paradigm shift in the way software applications are designed and delivered. SoC technologies, through the use of open middleware standards, enable collab- oration across organizational boundaries and are transforming the information- technology landscape. SoC builds on ideas and experiences from many different fields to produce the novel research needed to drive this paradigm shift. The IBM PhD Student Symposium at ICSOC provides a forum where doc- toral students conducting research in SoC can present their on-going dissertation work and receive feedback from a group of well-known experts. Each presentation is organized as a mock thesis-defense, with a committee of 4 mentors providing extensive feedback and advice for completing a successful PhD thesis. This for- mat is similar to the one adopted by the doctoral symposia associated with ICSE, OOPSLA, ECOOP, Middleware and ISWC. The closing session of the symposium is a panel discussion where the roles are reversed, and the mentors answer the students’ questions about research careers in industry and academia. The symposium agenda also contains a keynote address on writing a good PhD dissertation, delivered by Dr. Priya Narasimhan, Assistant Professor at Carnegie Mellon University and member of the ACM Doctoral Dissertation Committee. -
Semantic Computing
SEMANTIC COMPUTING 10651_9789813227910_TP.indd 1 24/7/17 1:49 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence ISSN: 2529-7686 Published Vol. 1 Semantic Computing edited by Phillip C.-Y. Sheu 10651 - Semantic Computing.indd 1 27-07-17 5:07:03 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence – Vol. 1 SEMANTIC COMPUTING Editor Phillip C-Y Sheu University of California, Irvine World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 10651_9789813227910_TP.indd 2 24/7/17 1:49 PM World Scientific Encyclopedia with Semantic Computing and Robotic Intelligence ISSN: 2529-7686 Published Vol. 1 Semantic Computing edited by Phillip C.-Y. Sheu Catherine-D-Ong - 10651 - Semantic Computing.indd 1 22-08-17 1:34:22 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Sheu, Phillip C.-Y., editor. Title: Semantic computing / editor, Phillip C-Y Sheu, University of California, Irvine. Other titles: Semantic computing (World Scientific (Firm)) Description: Hackensack, New Jersey : World Scientific, 2017. | Series: World Scientific encyclopedia with semantic computing and robotic intelligence ; vol. 1 | Includes bibliographical references and index. Identifiers: LCCN 2017032765| ISBN 9789813227910 (hardcover : alk. paper) | ISBN 9813227915 (hardcover : alk. paper) Subjects: LCSH: Semantic computing. Classification: LCC QA76.5913 .S46 2017 | DDC 006--dc23 LC record available at https://lccn.loc.gov/2017032765 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. -
Design and Architectures for Signal and Image Processing
EURASIP Journal on Embedded Systems Design and Architectures for Signal and Image Processing Guest Editors: Markus Rupp, Dragomir Milojevic, and Guy Gogniat Design and Architectures for Signal and Image Processing EURASIP Journal on Embedded Systems Design and Architectures for Signal and Image Processing Guest Editors: Markus Rupp, Dragomir Milojevic, and Guy Gogniat Copyright © 2008 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in volume 2008 of “EURASIP Journal on Embedded Systems.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editor-in-Chief Zoran Salcic, University of Auckland, New Zealand Associate Editors Sandro Bartolini, Italy Thomas Kaiser, Germany S. Ramesh, India Neil Bergmann, Australia Bart Kienhuis, The Netherlands Partha S. Roop, New Zealand Shuvra Bhattacharyya, USA Chong-Min Kyung, Korea Markus Rupp, Austria Ed Brinksma, The Netherlands Miriam Leeser, USA Asim Smailagic, USA Paul Caspi, France John McAllister, UK Leonel Sousa, Portugal Liang-Gee Chen, Taiwan Koji Nakano, Japan Jarmo Henrik Takala, Finland Dietmar Dietrich, Austria Antonio Nunez, Spain Jean-Pierre Talpin, France Stephen A. Edwards, USA Sri Parameswaran, Australia Jurgen¨ Teich, Germany Alain Girault, France Zebo Peng, Sweden Dongsheng Wang, China Rajesh K. Gupta, USA Marco Platzner, Germany Susumu Horiguchi, Japan Marc Pouzet, France Contents -
Middleware-Based Database Replication: the Gaps Between Theory and Practice
Appears in Proceedings of the ACM SIGMOD Conference, Vancouver, Canada (June 2008) Middleware-based Database Replication: The Gaps Between Theory and Practice Emmanuel Cecchet George Candea Anastasia Ailamaki EPFL EPFL & Aster Data Systems EPFL & Carnegie Mellon University Lausanne, Switzerland Lausanne, Switzerland Lausanne, Switzerland [email protected] [email protected] [email protected] ABSTRACT There exist replication “solutions” for every major DBMS, from Oracle RAC™, Streams™ and DataGuard™ to Slony-I for The need for high availability and performance in data Postgres, MySQL replication and cluster, and everything in- management systems has been fueling a long running interest in between. The naïve observer may conclude that such variety of database replication from both academia and industry. However, replication systems indicates a solved problem; the reality, academic groups often attack replication problems in isolation, however, is the exact opposite. Replication still falls short of overlooking the need for completeness in their solutions, while customer expectations, which explains the continued interest in developing new approaches, resulting in a dazzling variety of commercial teams take a holistic approach that often misses offerings. opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. Even the “simple” cases are challenging at large scale. We deployed a replication system for a large travel ticket brokering This paper aims to characterize the gap along three axes: system at a Fortune-500 company faced with a workload where performance, availability, and administration. We build on our 95% of transactions were read-only. Still, the 5% write workload own experience developing and deploying replication systems in resulted in thousands of update requests per second, which commercial and academic settings, as well as on a large body of implied that a system using 2-phase-commit, or any other form of prior related work.