Brochure-NG-River Training Works

Total Page:16

File Type:pdf, Size:1020Kb

Brochure-NG-River Training Works River training works Problems and solutions ANY REPRODUCTION, INCLUDING PHOTOCOPY, FILM AND MICROFILM, IS FORBIDDEN. ALL RIGHTS RESERVED WORLDWIDE. FILM AND MICROFILM, IS FORBIDDEN. ALL RIGHTS RESERVED ANY REPRODUCTION, INCLUDING PHOTOCOPY, Quality System Guarantees Production, certified internal management and technical assistance in compliance with ISO 9002. Environmental Officine Maccaferri S.p.A. solutions Via Agresti, 6 - P.O. Box 396 40123 Bologna - Italia Tel. ++39 051 6436000 Fax ++39 051 236507 e-mail: [email protected] Website: www.maccaferri.com © 2000 Officine Maccaferri S.p.A. - Bologna - Italy - Print: Tipografia Labanti e Nanni - Project: Grafica Monti - Photo: Archivio Officine Maccaferri Environmental solutions Maccaferri solutions for river training works and erosion control - Channel linings - Bank protections - Weirs - Groynes Most of the towns and cities we know today have deve- communication routes were required for trade and social loped in areas that have been inhabited from ancient exchange. It is difficult today to ignore the problems of times. Meanders or islands in rivers have always been flooding of low lying areas and the need to protect roads, favourite sites for human habitations in order to take railways or industrial buildings. advantage of the availability of water and fertile land for However, we must not forget that a natural watercourse farming. Thus began a relationship between man and the is a living entity in continual development that should river which has been developing ever since. With the be protected, as far as possible. increase in population and the development of industry, Italy 03 For a well-balanced design of river works By analysing the main factors which are important in the maintenance of a well-balanced river habitat when looking at its restoration one 1 2 4 3 not only has to choose which materials are to be used but also to make a proper evaluation of design methodologies. A natural river course is characterised both 1. Habitat 1 = roots of Salix sp. covered with tufts from plan and elevation and dictated by the Cladophora Sp.; 2. Habitat 2 = silt deposited on gabion protection; need to maintain environmental bio-diversity. 3. Habitat 3 = neuston around the groynes; Design hypothesis and technical solutions can 4. Habitat 4 = stagnation point. be a common denominator and bioengineering should not be considered as a list of techniques U.K. (foto David Barker - Edenbridge U.K.) Microhabitat check schematisation but as a global approach philosophy. (Research on the environmental effects by rivers sides with Gabion and Reno mattresses)-Italy 1993-1994. This means that solutions must relate to the Italy - Actual situation problems, avoiding both technical and ethical mistakes, and without excess, all within a multidisciplinary approach where engineers, biologists, botanists and architects do not prevaricate each other. The solution must: - supply the immediate required stabilisation; - promote a positive evolution (re-naturalisation) of the new ecosystem created from the river training works. Belgium PROBLEM POSSIBLE SOLUTIONS HYDROSEEDING LIGHT REVETMENT REVETMENT WITH GRAVITY WALL WITH REINFORCED SOIL WITH GEOMAT RENO MATTRESSES GABIONS STRUCTURE APPROVED SOLUTIONS CORRECT SOLUTION PROPOSED SOLUTION CORRECT SOLUTION PROPOSED SOLUTION OVER DESIGNED UNDER DESIGNED Belgium - Actual situation 04 05 The solution exposed in the previous pages have to be A system of softwares chosen on the basis of quantitative analysis and not only for hydraulic and qualitative or subjective ones. This is the reason why our company has promoted labora- environmental design tory, field and bibliographical researches, on the basis of which a series of specific software have been created MACRA 2 The MACRA2 / Weirs software was MACRA developed to conduct hydraulic (By EHS Bologna - Italy) and static analysis of gabion The MACRA software, working in an Autocad weirs. format, allows the engineer to design the river training works in a stretch of river under the hypothesis of a steady flow, taking into account the actual river geometry, rou- ghness and flow normally present in a natu- ral watercourse. MAQUA MAQUA is a software developed in a Win- dows format, supporting the design of river training works, Environmental Impact As- MACRA 1 sessments (EIA) and allowing for the ma- The MACRA1/Bank Protection software, whi- nagement of watercourses. MAQUA's pur- ch uses a Windows type structure, provides pose is to provide a model for the engineers with a rapid and efficient tool with evaluation of the environmental value of which to conduct the stability analysis of watercourses subjected to intervention. watercourses cross-sections with respect to This program compares design alternatives both water flow and wave motion. and selects the one shown to preserve the initial environmental value. 06 07 Longitudinal Revetments structures When an erosion process that does not affect the global stability creates slope The term longitudinal structures is used to de- instability, then revetments can be a fine structures with their length parallel to the possible solution. river flow. These structures are often built on The choice of the most suitable type of existing natural banks and they usually revetment must be made on the basis extend for a considerable distance. of a comparison between the acting Italy They are used for a variety of purposes, stresses (in terms of shear stresses and such as: not only water velocities) and the ser- - erosion control viceability limits of the material used. Italy - control of meanderings The approach to be considered must - containment of the normal flow channel always be made under the term of Bio- - flood protection engineering, based on a combination of live and inert materials where the limitations of both must be taken into consideration. Italy Italy Italy Italy Italy - Actual situation Italy - Actual situation 08 09 Gabion gravity structures A bank stabilisation may involve the construction of a retaining structure that should not only effect the natural filtration between the watercourse and Italy the bank, but must also guarantee the required consolidation. Furthermore, the presence of subgrades and banks that are normally saturated or which have unpredictable erosion phenomena make the application of flexible structures a necessity. They must Italy Italy be able to withstand differential settlement without loosing their structural integrity. Maccaferri gabions are fabricated from high The utilisation of double twisted hexagonal mesh Gabion structures are the ideal solution quality steel wire where long term durability is also guarantees high flexibility and resistance, on account of their flexibility, natural guaranteed by galvanising with either zinc or a all adding to the main characteristics that make drainage capacity due to the stone filling, zinc/aluminium alloy, that can be further Maccaferri gabions the ideal solution and high structural resistance. protected by a polymer coating and all of which for river bank stabilization. comply with the highest international standards. Italy Italy Italy Italy 10 11 Gabion gravity structures Greece The wall must be founded at a level that is not affected by water scour problems. Generally a direct foundation of this type is only advisable where the river bed material is un-erodible or when it consists of solid rock. It is also appropriate in mountainous regions and especially in the wilder torrents where the heavy bed load could damage Italy elements such as aprons protruding into the stream bed. It is not always possible to build the foundations of river bank improvements in the dry. Italy In these cases a platform In A gabion apron extends horizontally in to these cases a platform can be the bed so that it adjusts to possible built of dumped rock or scouring thereby providing an adequate cylindrical gabions, and the foundation for the protective structures built vertical portion of the protective upon it. structure can be conveniently built A properly sized apron should extend on top. horizontally into the river bed beyond the If the platform is built of loose rocks vertical front face of the protection by 1.5 it is particularly important to choose to 2 times the maximum depth of expected a rock size to ensure the stability of scour. This ensures that under maximum the super-structure. scour conditions, the apron will fold down into the scour hole without being too steep or allowing the surface to take up a “quilted” or undulating profile. U.K. Brazil 12 13 Reinforced soil structures Italy The development of new technologies such as The Terramesh® System are structures whose component reinforced soil structures using the combined strength sizes are pre-determined and completely pre-assembled of the soil and the reinforcing elements has opened during the production phase. Each element has two up new methods for the stabilisation of riverbanks. main properties: the first to reinforce soils, and the The double twisted wire mesh Terramesh® System second to stabilise the face. The ordinary Terramesh® (made with polymer coated Galmac® wire) has greatly has an external face similar to stone filled gabions. extended Maccaferri’s experience in the field of The Green Terramesh® has a face lined with a geomat revetments and gabions. that retains uncompacted vegetable soil. Terramesh Verde Terramesh System Italy Italy - Actual situation Italy 14 15 Gabion weirs Gabion weirs are classified in three types, according to the shape of their downstream face at the centre of flow: - vertical weirs - stepped weirs Italy - sloped weirs Brazil The vertical weir is certainly the simplest type, and is often used for small weirs in a system controlling a reach of a stream. Since this means that the gabion mesh is protected against abrasion and impact by heavy bed material carried in spate conditions, it is a type recommended for training works on mountain torrents. Italy In the design of vertical weirs, maximum attention must be paid to the dissipation of the kinetic energy of the cascade which is allowed to scour the bed thus forming a pool.
Recommended publications
  • Linktm Gabions and Mattresses Design Booklet
    LinkTM Gabions and Mattresses Design Booklet www.globalsynthetics.com.au Australian Company - Global Expertise Contents 1. Introduction to Link Gabions and Mattresses ................................................... 1 1.1 Brief history ...............................................................................................................................1 1.2 Applications ..............................................................................................................................1 1.3 Features of woven mesh Link Gabion and Mattress structures ...............................................2 1.4 Product characteristics of Link Gabions and Mattresses .........................................................2 2. Link Gabions and Mattresses .............................................................................. 4 2.1 Types of Link Gabions and Mattresses .....................................................................................4 2.2 General specification for Link Gabions, Link Mattresses and Link netting...............................4 2.3 Standard sizes of Link Gabions, Mattresses and Netting ........................................................6 2.4 Durability of Link Gabions, Link Mattresses and Link Netting ..................................................7 2.5 Geotextile filter specification ....................................................................................................7 2.6 Rock infill specification .............................................................................................................8
    [Show full text]
  • Broad Beach Restoration Project Coastal Development Permit
    Broad Beach Restoration Project Coastal Development Permit Project Description FINAL PREPARED FOR: TRANCAS PROPERTY OWNER’S ASSOCIATION PREPARED BY: 3780 KILROY AIRPORT WAY, SUITE 600, LONG BEACH, CA 90806 JANUARY 2011 JOB NO. 6935 1. INTRODUCTION 2 Broad Beach is located in the northwest portion of the County of Los Angeles and within the City of Malibu. The project area is comprised of the shoreline area fronting approximately 80 homes spanning approximately from Lechuza Point to Trancas Creek. Broad beach has been suffering shoreline erosion over the past 30 plus years, resulting in an almost complete loss of recreation and public access. Public access through dedicated public access ways from Broad Beach Rd. to the beach was rendered impossible during the most severe storms and tidal action over the past few years. The severe erosion problem now threatens private property and dune fields along this stretch of beach. The Trancas Property Owner’s Association (TPOA), representing almost all of the property owners along the Broad Beach shoreline, has elected to address the extensive erosion by privately funding a beach and sand dune restoration project which will not only protect their homes but also restore the beach to its historic grandeur not only for their benefit but for the benefit of the public at large. The Broad Beach restoration project seeks to design, permit, and implement a shoreline restoration program that provides erosion control, property protection, improved recreation and public access opportunities, aesthetics, and dune habitat. Broad Beach Restoration – Project Description FINAL The vicinity and location of the project site are shown below in figure 1.
    [Show full text]
  • Design of Riprap Revetment HEC 11 Metric Version
    Design of Riprap Revetment HEC 11 Metric Version Welcome to HEC 11-Design of Riprap Revetment. Table of Contents Preface Tech Doc U.S. - SI Conversions DISCLAIMER: During the editing of this manual for conversion to an electronic format, the intent has been to convert the publication to the metric system while keeping the document as close to the original as possible. The document has undergone editorial update during the conversion process. Archived Table of Contents for HEC 11-Design of Riprap Revetment (Metric) List of Figures List of Tables List of Charts & Forms List of Equations Cover Page : HEC 11-Design of Riprap Revetment (Metric) Chapter 1 : HEC 11 Introduction 1.1 Scope 1.2 Recognition of Erosion Potential 1.3 Erosion Mechanisms and Riprap Failure Modes Chapter 2 : HEC 11 Revetment Types 2.1 Riprap 2.1.1 Rock Riprap 2.1.2 Rubble Riprap 2.2 Wire-Enclosed Rock 2.3 Pre-Cast Concrete Block 2.4 Grouted Rock 2.5 Paved Lining Chapter 3 : HEC 11 Design Concepts 3.1 Design Discharge 3.2 Flow Types 3.3 Section Geometry 3.4 Flow in Channel Bends 3.5 Flow Resistance 3.6 Extent of Protection 3.6.1 Longitudinal Extent 3.6.2 Vertical Extent 3.6.2.1 Design Height 3.6.2.2 Toe Depth Chapter 4 : HEC 11 Design Guidelines for Rock Riprap 4.1 Rock Size Archived 4.1.1 Particle Erosion 4.1.1.1 Design Relationship 4.1.1.2 Application 4.1.2 Wave Erosion 4.1.3 Ice Damage 4.2 Rock Gradation 4.3 Layer Thickness 4.4 Filter Design 4.4.1 Granular Filters 4.4.2 Fabric Filters 4.5 Material Quality 4.6 Edge Treatment 4.7 Construction Chapter 5 : HEC 11 Rock
    [Show full text]
  • Design of Riprap Revetment
    , 1-) r-) P .A) C? F Hydraulic Engineering Circular No. 11 U.S. Department of Transportation Federal Highway Publication Na FHWA-lP-89-016 Administration March 1989 Design of Riprap Revetment Research, Development, and-T"echnology Turner-Fairbank Highwayffesewch Center 6300 Gec rg3#own Pike McLean, V'wffiniae=-2296 WATER RESOURCES ' RESEARCH LABORATORY J OFFICIAL FILE COPY Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-IP-89-016 HEC-11 4, Title and Subtitle S. Report Dote March 1989 DESIGN OF RIPRAP REVETMENT 6. Performing Organization Code 8. Performing Organization Report No. 7, Aurhorrs) Scott A. Brown, Eric S. Clyde 9, Performing Organization Name and Address 10. Work Unit No. (TRAIS) Sutron Corporation 3D9C0033 2190 Fox Mill Road 11. Contract or Grant No. Herndon, VA 22071 DTFH61-85-C-00123 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Office of Implementation, HRT-10 Final Report Federal Highway Administration Mar. 1986 - Sept. 1988 6200 Georgetown Pike McLean, VA 22101 14. Sponsoring Agency Code 15. Supplementary Notes Project Manager: Thomas Krylowski Technical Assistants: Philip L. Thompson, Dennis L. Richards, J. Sterling Jones 16. Abstract This revised version of Hydraulic Engineering Circular No. 11 (HEC-11), represents major revisions to the earlier (1967) edition of HEC-11. Recent research findings and revised design procedures have been incorporated. The manual has been expanded into a comprehensive design publication. The revised manual includes discussions on recognizing erosion potential, erosion mechanisms and riprap failure modes, riprap types including rock riprap, rubble riprap, gabions, preformed blocks, grouted rock, and paved linings.
    [Show full text]
  • The Study of the Coastal Management Criteria Based on Risk Assessmeant: a Case Study on Yunlin Coast, Taiwan
    water Article The Study of the Coastal Management Criteria Based on Risk Assessmeant: A Case Study on Yunlin Coast, Taiwan Wei-Po Huang 1,2,* ID , Jui-Chan Hsu 1, Chun-Shen Chen 3 and Chun-Jhen Ye 1 1 Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] (J.-C.H.); [email protected] (C.-J.Y.) 2 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan 3 Water Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs, Taichung 41350, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-2-2462-2192 (ext. 6154) Received: 18 June 2018; Accepted: 25 July 2018; Published: 26 July 2018 Abstract: In this study, we used the natural and anthropogenic characteristics of a coastal region to generate risk maps showing vulnerability and potential hazards, and proposed design criteria for coastal defense and land use for the various kinds of risks faced. The Yunlin coast, a first-level protection area in mid-west Taiwan, was then used as an example to illustrate the proposed design criteria. The safety of the present coastal defenses and land use of the Yunlin coastal area was assessed, and coastal protection measures for hazard prevention were proposed based on the generated risk map. The results can be informative for future coastal management and the promotion of sustainable development of coastal zones. Keywords: coastal defense; risk maps; non-engineering measure; coastal vulnerability 1. Introduction Like most developing countries, Taiwan’s coast has been alternatively used for settlement, agriculture, trade, industry, and recreation without careful and thorough planning in the development stage since 70s.
    [Show full text]
  • Technical Evaluation of the Performance of River Groynes Installed in Sezar and Kashkan Rivers, Lorestan, Iran
    J. Appl. Environ. Biol. Sci. , 5(1 1S)258 -268 , 2015 ISSN: 2090-4274 Journal of Applied Environmental © 2015, TextRoad Publication and Biological Sciences www.textroad.com Technical Evaluation of the Performance of River Groynes Installed in Sezar and Kashkan Rivers, Lorestan, Iran Farzad Mohammadi*1, Nazanin Mohammadi 2 1 Department of Water Sciences and Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran 2 Department of Architecture and Urbanism, Shahid Beheshti University, Tehran, Iran Received: May 14, 2015 Accepted: August 27, 2015 ABSTRACT In this paper we aim to investigate the performance of River Groynes that have installed near the banks of Kashkan and Sezar rivers in Lorestan province of Iran. For this purpose we performed field studies, and collected information about these rivers. To predict depth of scour at groynes we used equations proposed by Khosla (1953), Garde et al (1961), Niel (1973), Zaghloul(1983), Ahmad (1953), Gill (1972) and Liu (1961).Our results showed that The groyne constructed on both rivers had performed their performance properly in spite of their design and application. The spaces between groynes and their length had been determined suitably in Sezar river, but it was not suitable in Kashkan river. Using poor materials, poor pier foundation, and improper lateral wall angle were their negative aspects Considering the armoring phenomenon, the river bed has reached a proper balance, and therefore, river protection and thus, erosion between two groynes was conducted properly. KEYWORDS: Kashkan River, Sezar River, river groyne, performance, scour depth, flow pattern, groyne- fields 1. INTRODUCTION Rivers are continuously changing under the influence of various factors including geology and topology of the region, properties of alluvial deposits in floodplain, hydrologic features of the basin, hydraulic condition of the flow, and human exploitations.
    [Show full text]
  • A Guide for Evaluating Coastal Community Resilience to Tsunamis
    HOW RESILIENT IS YOUR COASTAL COMMUNITY? A GUIDE FOR EVALUATING COASTAL COMMUNITY RESILIENCE TO TSUNAMIS AND OTHER HAZARDS HOW RESILIENT IS YOUR COASTAL COMMUNITY? A GUIDE FOR EVALUATING COASTAL COMMUNITY RESILIENCE TO TSUNAMIS AND OTHER HAZARDS U.S. Indian Ocean Tsunami Warning System Program 2007 Printed in Bangkok, Thailand Citation: U.S. Indian Ocean Tsunami Warning System Program. 2007. How Resilient is Your Coastal Community? A Guide for Evaluating Coastal Community Resilience to Tsunamis and Other Coastal Hazards. U.S. Indian Ocean Tsunami Warning System Program supported by the United States Agency for International Development and partners, Bangkok, Thailand. 144 p. The opinions expressed herein are those of the authors and do not necessarily reflect the views of USAID. This publication may be reproduced or quoted in other publications as long as proper reference is made to the source. The U.S. Indian Ocean Tsunami Warning System (IOTWS) Program is part of the international effort to develop tsunami warning system capabilities in the Indian Ocean following the December 2004 tsunami disaster. The U.S. program adopted an “end-to-end” approach—addressing regional, national, and local aspects of a truly functional warning system—along with multiple other hazards that threaten communities in the region. In partnership with the international community, national governments, and other partners, the U.S. program offers technology transfer, training, and information resources to strengthen the tsunami warning and preparedness capabilities of national and local stakeholders in the region. U.S. IOTWS Document No. 27-IOTWS-07 ISBN 978-0-9742991-4-3 How REsiLIENT IS Your CoastaL COMMUNity? A GuidE For EVALuatiNG CoastaL COMMUNity REsiLIENCE to TsuNAMis AND OthER HAZards OCTOBER 2007 This publication was produced for review by the United States Agency for International Development.
    [Show full text]
  • Balancing the Future of Europe's Coasts
    EEA Report No 12/2013 Balancing the future of Europe's coasts — knowledge base for integrated management ISSN 1725-9177 EEA Report No 12/2013 Balancing the future of Europe's coasts — knowledge base for integrated management Cover design: EEA Cover photo © Andrus Meiner Left photo © Peter Kristensen Right photo © Andrus Meiner Layout: EEA/Pia Schmidt Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Copyright notice © European Environment Agency, 2013 Reproduction is authorised, provided the source is acknowledged, save where otherwise stated. Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-9213-414-3 ISSN 1725-9177 doi:10.2800/99116 Environmental production This publication is printed according to high environmental standards. Printed by Rosendahls-Schultz Grafisk — Environmental Management Certificate: DS/EN ISO 14001: 2004 — Quality Certificate: DS/EN ISO 9001: 2008 — EMAS Registration. Licence no. DK – 000235 — Ecolabelling with the Nordic Swan, licence no. 541-457 — FSC Certificate – licence code FSC C0688122 Paper RePrint — 90 gsm. CyclusOffset — 250 gsm. Both paper qualities are recycled paper and have obtained the ecolabel Nordic Swan. Printed in Denmark REG.NO. DK-000244 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements ...................................................................................................
    [Show full text]
  • The Rock Manual
    8 Design of river and canal structures 1 2 3 4 5 6 7 8 9 10 CIRIA C683 965 8 Design of river and canal structures CHAPTER 8 CONTENTS 8.1 Introduction. 970 8.1.1 Context . 970 8.1.2 Types of structures and functions. 971 8.1.3 Design methodolology. 973 8.1.3.1 Approach to the design . 973 8.1.3.2 Functional requirements . 974 8.1.3.3 Detailed design . 975 8.1.3.4 Economic considerations . 975 8.1.3.5 Environmental and social considerations . 976 8.1.3.6 Physical conditions . 976 8.1.3.7 Materials related considerations. 977 8.1.3.8 Construction related considerations . 979 8.1.3.9 Operation and maintenance related considerations . 980 8.2 River training works . 980 8.2.1 Erosion processes . 980 8.2.2 Types of river training structures . 982 8.2.2.1 Revetments . 983 8.2.2.2 Spur-dikes and hard points . 984 8.2.2.3 Guide banks . 985 8.2.2.4 Works to improve navigation . 986 8.2.2.5 Flood protection . 986 8.2.2.6 Selection of the appropriate solution. 987 8.2.3 Data collection . 988 8.2.4 Determination of the loadings . 988 8.2.4.1 Hydraulic loads. 988 8.2.4.2 Other types of loads . 989 8.2.5 Plan layout . 989 8.2.5.1 General points. 989 8.2.5.2 Bank protection . 990 8.2.5.3 Spur-dikes . 992 8.2.5.4 Longitudinal dikes or guide banks .
    [Show full text]
  • Large Scale Impacts of Jetties and Training Walls - Experience on the Australian East Coast
    LARGE SCALE IMPACTS OF JETTIES AND TRAINING WALLS - EXPERIENCE ON THE AUSTRALIAN EAST COAST Angus Gordon, Coastal Zone Management and Planning, [email protected] Alexander Nielsen, Advisian Worley Group, [email protected] INTRODUCTION The erosion has continued due to both the realignment of Entrance jetties and training walls have instigated the beach and the net loss of sand blown into the dunes fundamental perturbations to coastal and estuary of Newcastle Bight (Gordon & Roy, 1977). This has processes at several locations on the Australian eastern resulted in the requirement to construct a rock revetment seaboard inducing long term changes to foreshore to protect Mitchell Street and the village (Figure 2). More alignments, tidal current velocities, tidal plane elevations recently it has been necessary to undertake beach and marine ecologies with significant consequences, nourishment to offset the on-going coastal recession. some having been realised only recently. This paper presents examples of long-term impacts of entrance jetties and training walls on coastal and estuary processes, gleaned from experience on the NSW coast. COASTALPROCESSES On coastlines with high transport rates of littoral drift, jetties have trapped sand inducing erosion on down-drift beaches at the Tweed River (Delft 1970) and Coffs Harbour (Lord & van Kerkvoort 1981). Another less-appreciated impact of jetties on coastal alignments has been the changes they can induce in near-shore wave patterns that, in turn, will re-align ocean Figure 1 - Left: Entrance to Newcastle Harbour (circa foreshores significantly (Miller & Nielsen 1995, Klein et al. 1850). Right: Present-day entrance with MEPBAY 1850 2003, Gordon 2011).
    [Show full text]
  • National Strategy for the Sea and Coast Decree 2017-222 of February 23Rd, 2017
    National Strategy for the Sea and Coast Decree 2017-222 of February 23rd, 2017 NATIONAL STRATEGY FOR THE SEA AND COAST Contents - Introduction and long-term objectives - List of priority actions - Strategic axes I. Relying on knowledge and innovation A. Better understanding the sea system B. Innovating to recover resources and develop the maritime economy C. Structuring research D. Developing research and knowledge for and by French overseas territories E. Building a marine and maritime knowledge-based society; raising public awareness of major maritime issues F. Continuing training efforts II. Developing sustainable and resilient maritime and coastal territories A. Implementing strategic planning ... B. ... With a spatial component C. Developing "territorial projects" D. Protecting environments, resources, biological and ecological balance; pre- serving sites, landscapes and heritage E. Adapting coastal management to global change F. Preserve national interests and prevent risk at sea III. Support and optimise initiatives, and remove obstacles A. Support new activities B. Assist development of traditional activities towards sustainable and resilient models C. Steer budgetary matters and set out a harmonious fiscal and funding strat- egy D. Make maritime careers attractive E. Improve governance, pursue modernisation of public action F. Draw on the Sea and Coast Monitoring Centre (Observatoire de la mer et du littoral), share data and information IV. Promote a French vision at the heart of the European Union and in inter- national negotiations, promoting national issues A. At the international level B. At the European level Appendix: Summary of the current situation • French maritime territories • A sea that drives growth and jobs • A sea under pressure / Fragile resources • A coast caught between two waves INTRODUCTION AND LONG-TERM OBJECTIVES The need for a strategic framework for marine and maritime issues has become increasingly important since the post-war period.
    [Show full text]
  • Concept Designs for a Groyne Field on the Far North Nsw Coast
    CONCEPT DESIGNS FOR A GROYNE FIELD ON THE FAR NORTH NSW COAST I Coghlan 1, J Carley 1, R Cox 1, E Davey 1, M Blacka 1, J Lofthouse 2 1 Water Research Laboratory (WRL), School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, NSW 2Tweed Shire Council (TSC), Murwillumbah, NSW Introduction On the open coast of NSW, many options exist to adapt to the hazards of erosion and recession. Perhaps the most common historical approach to counter the erosion and recession hazard is to construct a seawall or revetment to protect the existing foreshore. Other alternatives include the construction of a submerged breakwater, assisted beach recovery and/or beach nourishment. For beaches with a littoral drift imbalance, the construction of one or more groyne structures is a further possibility. This paper presents two different concept designs for a long term groyne field at Kingscliff Beach. Background Information Case Study: Kingscliff Beach Kingscliff Beach, located at the southern end of Wommin Bay on the far north coast of NSW (Figure 1), is a section of the Tweed coastline with built assets at immediate risk from coastal hazards. Ongoing erosion in the last few years has resulted in substantial loss of beach amenity and community land. Storm erosion episodes between 2009 and 2012 severely impacted the Kingscliff Beach Holiday Park (KBHP). This section is also affected by moderate ongoing underlying shoreline recession (WBM, 2001). To manage the Kingscliff Beach foreshore (Figure 2) in the longer term, Tweed Shire
    [Show full text]