Neutrino Oscillation Physics at Neutrino Factories and Beta Beams
Total Page:16
File Type:pdf, Size:1020Kb
Neutrino Oscillation Physics at Neutrino Factories and Beta Beams Mark Benjamin Rolinec Dissertation June 2007 Technische Universit¨at Munchen¨ Physik-Department Institut fur¨ Theoretische Physik T30d Univ.-Prof. Dr. Manfred Lindner Neutrino Oscillation Physics at Neutrino Factories and Beta Beams Dipl.-Phys. Univ. Mark Benjamin Rolinec Vollst¨andiger Abdruck der von der Fakult¨at fur¨ Physik der Technischen Universit¨at Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Lothar Oberauer Prufer¨ der Dissertation: 1. Univ.-Prof. Dr. Manfred Lindner 2. Univ.-Prof. Dr. Andrzej J. Buras Die Dissertation wurde am 13. Juni 2007 bei der Technischen Universit¨at Munchen¨ eingereicht und durch die Fakult¨at fur¨ Physik am 23. Juli 2007 angenommen. Wenn wir jetzt Schinken h¨atten, k¨onnten wir Ruhrei¨ mit Schinken machen, wenn wir Eier h¨atten. Kathrin Passig Sie befinden sich hier I Contents 1 Introduction 1 2 The Standard Model 5 3 Neutrino Masses and Mixing 9 3.1 NeutrinoMassTerms ............................... 9 3.2 NeutrinoMixing .................................. 10 3.3 See-SawMechanism ................................ 12 3.4 Implications.................................... 14 4 Neutrino Oscillations 21 4.1 TwoFlavorOscillations . 21 4.2 MatterEffects.................................... 23 4.3 ThreeFlavorOscillations . ..... 29 4.4 Phenomenology of Peµ and Pee ........................... 31 5 Neutrino Data 37 5.1 NumberofFlavors ................................. 37 5.2 AbsoluteMassScale ............................... 38 5.3 OscillationData ................................. 42 6 Long Baseline Experiment Scenarios 49 6.1 Conventional Beam Experiments . ..... 50 6.2 Superbeams...................................... 51 6.3 ReactorExperiments.............................. 52 6.4 ElectronCaptureBeams. 53 6.5 BetaBeams...................................... 54 6.6 NeutrinoFactories ............................... 58 7 Beta Beam Performance 63 7.1 BetaBeamSimulation .............................. 63 7.2 BetaBeamOptimization. 68 7.3 Neutrino and Anti-Neutrino Runtime Fraction . ......... 81 7.4 Addition of T2K DisappearanceData. 82 7.5 γ-ScalingoftheIsotopeDecays . 84 7.6 Performance of the β-Beam ReferenceScenarios. 86 II CONTENTS 8 Neutrino Factory Performance 89 8.1 Neutrino Factory Simulation . ..... 89 8.2 Neutrino Factory Optimization . ...... 94 8.3 Neutrino and Anti-Neutrino Runtime Fraction . .........100 8.4 Matter Density Uncertainty . 102 8.5 InclusionofDifferentChannels . 103 8.6 Performance of the Neutrino Factory Reference Scenarios . 108 9 The Global Picture 113 9.1 The Road Map of Neutrino Oscillation Experiments . .........113 9.2 PromisingFutureExperiments . 115 10 Summary and Conclusions 121 A The General Long Baseline Experiment Simulator 125 B Performance Indicators 127 Acknowledgments 129 Bibliography 132 III List of Figures 3.1 Diagramatic illustration of the generation of mL through the See-Saw mechanism. 14 3.2 Mass spectrum of the three neutrino mass eigenstates ν1, ν2, and ν3 for normal andinvertedhierarchy.. 16 3.3 The diagram of the simplest process leading to neutrino-less double beta decay. 17 3.4 The diagram, leading to an effective Majorana mass in case of a black box process for neutrino-less double beta decay. ........ 18 3.5 The effective neutrino mass parameter m relevant for neutrino-less double h eei beta decay as a function of the lightest neutrino mass. ......... 19 3.6 The tree level and one-loop level Feynman diagrams for the decay of heavy right-handed neutrinos Ni into the Higgs doublet and the lepton doublet, rel- evantforLeptogenesis.. 20 4.1 Neutrino oscillation probability in the two-flavor scenario as a function of the baselineandtheneutrinoenergy. 22 4.2 The Feynman diagrams for coherent forward scattering of neutrinos in matter . 23 4.3 The Neutrino mixing angle in matter for neutrinos involving the Mikheyev- Smirnov-Wolfenstein resonance and for anti-neutrinos as a function of the mat- ter potential parameter A′. ............................. 27 4.4 The effective energy eigenvalues in matter and the mass eigenstate composition of the flavor eigenstate ν as functions of the matter potential parameter A . 29 | αi ′ 5.1 Possible neutrino mass spectra with a fourth sterile neutrino and an additional 2 mass-squared difference ∆mLSND........................... 47 6.1 Schematic illustration of neutrino source, oscillation channels, and detection principles at conventional beam experiments and at Superbeam experiments. 51 6.2 Schematic illustration of neutrino source, oscillation channels, and detection principles at a neutrino reactor experiment. ........ 53 6.3 Schematic illustration of neutrino source, oscillation channels, and detection principles at a β-Beam experiment.......................... 56 6.4 The energy spectrum of the neutrino flux at a β-Beam experiment. 57 6.5 Schematic illustration of neutrino source, oscillation channels, and detection principles at a Neutrino Factory experiment. ....... 59 6.6 The energy spectrum of the neutrino flux at a Neutrino Factory experiment. 60 2 7.1 The sensitivity limit to sin 2θ13 at a β-Beam (WC) as a function of the baseline L at fixed γ = 150 and γ = 350. ........................... 69 IV LIST OF FIGURES 2 7.2 The sensitivity limit to sin 2θ13 at a β-Beam (TASD) as a function of the baseline L at fixed γ = 500 and γ = 1000. ..................... 70 2 7.3 The sensitivity limit to sin 2θ13 at a β-Beam (WC) as a function of γ at the fixed baselines L = 130 km and L =730km. ................... 71 2 7.4 The sensitivity limit to sin 2θ13 at a β-Beam (TASD) as a function of γ at the fixed baselines L = 730 km and L =1500km.................... 73 7.5 The sensitivity to maximal CP violation at a β-Beam as a function of the baseline L at fixed a γ................................. 74 7.6 The sensitivity to maximal CP violation at a β-Beam as a function of γ at a fixed baseline L. ................................... 75 7.7 The sensitivity to mass hierarchy at a β-Beam as a function of the baseline L at fixed γ........................................ 77 7.8 The sensitivity to mass hierarchy at a β-Beam as a function of γ at a fixed baseline L........................................ 79 7.9 The impact of the ratio of neutrino (18Ne stored) and anti-neutrino (6He 2 stored) runtime at a β-Beam on the sensitivity limit to sin 2θ13, the sensitivity to maximal CP violation, and sensitivity to the mass hierarchy. 81 7.10 The impact of the addition of T2K disappearance data to the β-Beam data on 2 the sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivity tothemasshierarchy. ................................ 83 7.11 The impact of the γ-scaling of the number of isotope decays per year at a β- 2 Beam on the sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivitytothemasshierarchy. ..... 85 7.12 The comparison of the performance of all β-Beam reference scenarios for the 2 performance indicators sin 2θ13 discovery reach, sensitivity to any CP viola- tion, and sensitivity to the mass hierarchy. ........ 87 2 8.1 The sensitivity limit to sin 2θ13 at a Neutrino Factory as a function of the baseline L for a fixed parent muon energy of Eµ = 25 GeV and Eµ = 50 GeV. 95 2 8.2 The sensitivity limit to sin 2θ13 at a Neutrino Factory as a function of the parent muon energy for a fixed baseline of L = 4000 km and L = 7500 km. 96 8.3 The sensitivity to maximal CP violation at a Neutrino Factory as a function of the baseline L for a fixed parent muon energies of Eµ = 25 GeV and Eµ = 50 GeV. 97 8.4 The sensitivity to mass hierarchy at a Neutrino Factory as a function of the baseline L for a fixed parent muon energies of Eµ = 25 GeV and Eµ = 50 GeV. 98 8.5 The impact of the ratio of neutrino and anti-neutrino runtime at a Neutrino 2 Factory on the sensitivity limit to sin 2θ13, the sensitivity to maximal CP violation, and sensitivity to the mass hierarchy. ..........101 8.6 The impact of the matter density uncertainty at a Neutrino Factory on the 2 sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivity to themasshierarchy................................... 103 8.7 The sensitivity gap coverage for a combination of golden and silver channel as a function of the silver channel detector . 105 8.8 The impact of the upper platinum CID threshold to the CP violation sensitivity 2 for small, intermediate, and large sin 2θ13. ....................106 LIST OF FIGURES V 8.9 The comparison of the improvement of the standard and optimistic silver and platinum channel scenarios considering CP violation and mass hierarchy sensi- 2 tivity for large and intermediate sin 2θ13. .....................108 8.10 The comparison of the performance of all Neutrino Factory reference scenarios 2 for the performance indicators sin 2θ13 discovery reach, sensitivity to any CP violation, and sensitivity to the mass hierarchy. ..........110 2 9.1 Possible global evolution of the sin 2θ13 discovery reach as a function of time. 114 9.2 Summary of the performances of all β-Beam and Neutrino Factory reference 2 scenarios for the performance indicators sin 2θ13 discovery, sensitivity to any 2 CP violation, and sensitivity to the mass hierarchy at the true value sin 2θ13 = 1 10− ...........................................116 9.3 Summary of the performances of all β-Beam and Neutrino Factory reference 2 scenarios for the performance indicators sin 2θ13 discovery, sensitivity to any 2 CP violation, and sensitivity to the mass hierarchy at the true value sin 2θ13 = 3 10− ...........................................118 9.4 Summary of the performances of all β-Beam and Neutrino Factory reference sce- 2 2 narios for the sin 2θ13 reach of the performance indicators sin 2θ13 discovery, sensitivity to any CP violation, and sensitivity to the mass hierarchy. 119 VI LIST OF FIGURES VII List of Tables 2.1 The fermion particle content of the Standard Model. ........... 6 2.2 The Higgs scalar field of the Standard Model . ....... 7 3.1 The right-handed neutrinos that are added in the minimal extension of the StandardModel to allow for neutrinomasses.