Neutrino Oscillation Physics at Neutrino Factories and Beta Beams

Total Page:16

File Type:pdf, Size:1020Kb

Neutrino Oscillation Physics at Neutrino Factories and Beta Beams Neutrino Oscillation Physics at Neutrino Factories and Beta Beams Mark Benjamin Rolinec Dissertation June 2007 Technische Universit¨at Munchen¨ Physik-Department Institut fur¨ Theoretische Physik T30d Univ.-Prof. Dr. Manfred Lindner Neutrino Oscillation Physics at Neutrino Factories and Beta Beams Dipl.-Phys. Univ. Mark Benjamin Rolinec Vollst¨andiger Abdruck der von der Fakult¨at fur¨ Physik der Technischen Universit¨at Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Lothar Oberauer Prufer¨ der Dissertation: 1. Univ.-Prof. Dr. Manfred Lindner 2. Univ.-Prof. Dr. Andrzej J. Buras Die Dissertation wurde am 13. Juni 2007 bei der Technischen Universit¨at Munchen¨ eingereicht und durch die Fakult¨at fur¨ Physik am 23. Juli 2007 angenommen. Wenn wir jetzt Schinken h¨atten, k¨onnten wir Ruhrei¨ mit Schinken machen, wenn wir Eier h¨atten. Kathrin Passig Sie befinden sich hier I Contents 1 Introduction 1 2 The Standard Model 5 3 Neutrino Masses and Mixing 9 3.1 NeutrinoMassTerms ............................... 9 3.2 NeutrinoMixing .................................. 10 3.3 See-SawMechanism ................................ 12 3.4 Implications.................................... 14 4 Neutrino Oscillations 21 4.1 TwoFlavorOscillations . 21 4.2 MatterEffects.................................... 23 4.3 ThreeFlavorOscillations . ..... 29 4.4 Phenomenology of Peµ and Pee ........................... 31 5 Neutrino Data 37 5.1 NumberofFlavors ................................. 37 5.2 AbsoluteMassScale ............................... 38 5.3 OscillationData ................................. 42 6 Long Baseline Experiment Scenarios 49 6.1 Conventional Beam Experiments . ..... 50 6.2 Superbeams...................................... 51 6.3 ReactorExperiments.............................. 52 6.4 ElectronCaptureBeams. 53 6.5 BetaBeams...................................... 54 6.6 NeutrinoFactories ............................... 58 7 Beta Beam Performance 63 7.1 BetaBeamSimulation .............................. 63 7.2 BetaBeamOptimization. 68 7.3 Neutrino and Anti-Neutrino Runtime Fraction . ......... 81 7.4 Addition of T2K DisappearanceData. 82 7.5 γ-ScalingoftheIsotopeDecays . 84 7.6 Performance of the β-Beam ReferenceScenarios. 86 II CONTENTS 8 Neutrino Factory Performance 89 8.1 Neutrino Factory Simulation . ..... 89 8.2 Neutrino Factory Optimization . ...... 94 8.3 Neutrino and Anti-Neutrino Runtime Fraction . .........100 8.4 Matter Density Uncertainty . 102 8.5 InclusionofDifferentChannels . 103 8.6 Performance of the Neutrino Factory Reference Scenarios . 108 9 The Global Picture 113 9.1 The Road Map of Neutrino Oscillation Experiments . .........113 9.2 PromisingFutureExperiments . 115 10 Summary and Conclusions 121 A The General Long Baseline Experiment Simulator 125 B Performance Indicators 127 Acknowledgments 129 Bibliography 132 III List of Figures 3.1 Diagramatic illustration of the generation of mL through the See-Saw mechanism. 14 3.2 Mass spectrum of the three neutrino mass eigenstates ν1, ν2, and ν3 for normal andinvertedhierarchy.. 16 3.3 The diagram of the simplest process leading to neutrino-less double beta decay. 17 3.4 The diagram, leading to an effective Majorana mass in case of a black box process for neutrino-less double beta decay. ........ 18 3.5 The effective neutrino mass parameter m relevant for neutrino-less double h eei beta decay as a function of the lightest neutrino mass. ......... 19 3.6 The tree level and one-loop level Feynman diagrams for the decay of heavy right-handed neutrinos Ni into the Higgs doublet and the lepton doublet, rel- evantforLeptogenesis.. 20 4.1 Neutrino oscillation probability in the two-flavor scenario as a function of the baselineandtheneutrinoenergy. 22 4.2 The Feynman diagrams for coherent forward scattering of neutrinos in matter . 23 4.3 The Neutrino mixing angle in matter for neutrinos involving the Mikheyev- Smirnov-Wolfenstein resonance and for anti-neutrinos as a function of the mat- ter potential parameter A′. ............................. 27 4.4 The effective energy eigenvalues in matter and the mass eigenstate composition of the flavor eigenstate ν as functions of the matter potential parameter A . 29 | αi ′ 5.1 Possible neutrino mass spectra with a fourth sterile neutrino and an additional 2 mass-squared difference ∆mLSND........................... 47 6.1 Schematic illustration of neutrino source, oscillation channels, and detection principles at conventional beam experiments and at Superbeam experiments. 51 6.2 Schematic illustration of neutrino source, oscillation channels, and detection principles at a neutrino reactor experiment. ........ 53 6.3 Schematic illustration of neutrino source, oscillation channels, and detection principles at a β-Beam experiment.......................... 56 6.4 The energy spectrum of the neutrino flux at a β-Beam experiment. 57 6.5 Schematic illustration of neutrino source, oscillation channels, and detection principles at a Neutrino Factory experiment. ....... 59 6.6 The energy spectrum of the neutrino flux at a Neutrino Factory experiment. 60 2 7.1 The sensitivity limit to sin 2θ13 at a β-Beam (WC) as a function of the baseline L at fixed γ = 150 and γ = 350. ........................... 69 IV LIST OF FIGURES 2 7.2 The sensitivity limit to sin 2θ13 at a β-Beam (TASD) as a function of the baseline L at fixed γ = 500 and γ = 1000. ..................... 70 2 7.3 The sensitivity limit to sin 2θ13 at a β-Beam (WC) as a function of γ at the fixed baselines L = 130 km and L =730km. ................... 71 2 7.4 The sensitivity limit to sin 2θ13 at a β-Beam (TASD) as a function of γ at the fixed baselines L = 730 km and L =1500km.................... 73 7.5 The sensitivity to maximal CP violation at a β-Beam as a function of the baseline L at fixed a γ................................. 74 7.6 The sensitivity to maximal CP violation at a β-Beam as a function of γ at a fixed baseline L. ................................... 75 7.7 The sensitivity to mass hierarchy at a β-Beam as a function of the baseline L at fixed γ........................................ 77 7.8 The sensitivity to mass hierarchy at a β-Beam as a function of γ at a fixed baseline L........................................ 79 7.9 The impact of the ratio of neutrino (18Ne stored) and anti-neutrino (6He 2 stored) runtime at a β-Beam on the sensitivity limit to sin 2θ13, the sensitivity to maximal CP violation, and sensitivity to the mass hierarchy. 81 7.10 The impact of the addition of T2K disappearance data to the β-Beam data on 2 the sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivity tothemasshierarchy. ................................ 83 7.11 The impact of the γ-scaling of the number of isotope decays per year at a β- 2 Beam on the sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivitytothemasshierarchy. ..... 85 7.12 The comparison of the performance of all β-Beam reference scenarios for the 2 performance indicators sin 2θ13 discovery reach, sensitivity to any CP viola- tion, and sensitivity to the mass hierarchy. ........ 87 2 8.1 The sensitivity limit to sin 2θ13 at a Neutrino Factory as a function of the baseline L for a fixed parent muon energy of Eµ = 25 GeV and Eµ = 50 GeV. 95 2 8.2 The sensitivity limit to sin 2θ13 at a Neutrino Factory as a function of the parent muon energy for a fixed baseline of L = 4000 km and L = 7500 km. 96 8.3 The sensitivity to maximal CP violation at a Neutrino Factory as a function of the baseline L for a fixed parent muon energies of Eµ = 25 GeV and Eµ = 50 GeV. 97 8.4 The sensitivity to mass hierarchy at a Neutrino Factory as a function of the baseline L for a fixed parent muon energies of Eµ = 25 GeV and Eµ = 50 GeV. 98 8.5 The impact of the ratio of neutrino and anti-neutrino runtime at a Neutrino 2 Factory on the sensitivity limit to sin 2θ13, the sensitivity to maximal CP violation, and sensitivity to the mass hierarchy. ..........101 8.6 The impact of the matter density uncertainty at a Neutrino Factory on the 2 sin 2θ13 discovery reach, the sensitivity to any CP violation, and sensitivity to themasshierarchy................................... 103 8.7 The sensitivity gap coverage for a combination of golden and silver channel as a function of the silver channel detector . 105 8.8 The impact of the upper platinum CID threshold to the CP violation sensitivity 2 for small, intermediate, and large sin 2θ13. ....................106 LIST OF FIGURES V 8.9 The comparison of the improvement of the standard and optimistic silver and platinum channel scenarios considering CP violation and mass hierarchy sensi- 2 tivity for large and intermediate sin 2θ13. .....................108 8.10 The comparison of the performance of all Neutrino Factory reference scenarios 2 for the performance indicators sin 2θ13 discovery reach, sensitivity to any CP violation, and sensitivity to the mass hierarchy. ..........110 2 9.1 Possible global evolution of the sin 2θ13 discovery reach as a function of time. 114 9.2 Summary of the performances of all β-Beam and Neutrino Factory reference 2 scenarios for the performance indicators sin 2θ13 discovery, sensitivity to any 2 CP violation, and sensitivity to the mass hierarchy at the true value sin 2θ13 = 1 10− ...........................................116 9.3 Summary of the performances of all β-Beam and Neutrino Factory reference 2 scenarios for the performance indicators sin 2θ13 discovery, sensitivity to any 2 CP violation, and sensitivity to the mass hierarchy at the true value sin 2θ13 = 3 10− ...........................................118 9.4 Summary of the performances of all β-Beam and Neutrino Factory reference sce- 2 2 narios for the sin 2θ13 reach of the performance indicators sin 2θ13 discovery, sensitivity to any CP violation, and sensitivity to the mass hierarchy. 119 VI LIST OF FIGURES VII List of Tables 2.1 The fermion particle content of the Standard Model. ........... 6 2.2 The Higgs scalar field of the Standard Model . ....... 7 3.1 The right-handed neutrinos that are added in the minimal extension of the StandardModel to allow for neutrinomasses.
Recommended publications
  • P> Pos(HEP2005)???
    PoS(HEP2005)??? Longer term R&D on Neutrino beams and Neutrino Factories Ken Peach John Adams Institute for Accelerator Science University of Oxford and Royal Holloway Univerity of London Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK E-mail: [email protected] Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or π, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions. European Physical Society HEP2005 International Europhysics Conference on High Energy Physics EPS (July 21st-27th 2005) in Lisboa, Portugal PoS(HEP2005)??? 1. Introduction The “Standard Model” of particles and interactions provides an accurate description of huge volumes of data, from LEP, HERA, Tevatron, and experiments like the muon g-2. However, convincing evidence [1] for neutrino oscillations, where neutrinos created in a flavour eigenstate (e.g, as νe in the sun) are subsequently found to be a mixture of flavours, indicates that neutrinos have a mass (however small), while the Standard Model requires the neutrinos to be strictly massless. It is difficult to add a mass term for the neutrinos, in analogy to the quarks and charged leptons, and so neutrino oscillations require physics “beyond the Standard Model”.
    [Show full text]
  • A Staged Muon Accelerator Facility for Neutrino
    A STAGED MUON ACCELERATOR FACILITY FOR NEUTRINO AND COLLIDER PHYSICS* Jean-Pierre Delahaye, SLAC, Menlo Park, California Charles Ankenbrandt, Stephen Brice, Alan David Bross, Dmitri Denisov, Estia Eichten, Stephen Holmes, Ronald Lipton, David Neuffer, Mark Alan Palmer, Fermilab, Batavia, Illinois S. Alex Bogacz, JLAB, Newport News, Virginia Patrick Huber, Virginia Polytechnic Institute and State University, Blacksburg Daniel M. Kaplan, Pavel Snopok, Illinois Institute of Technology, Chicago, Illinois Harold G. Kirk, Robert B. Palmer, BNL, Upton, Long Island, New York Robert D. Ryne, LBNL, Berkeley, California Abstract THE BEAUTY AND CHALLENGES OF Muon-based facilities offer unique potential to provide MUON-BASED FACILITIES capabilities at both the Intensity Frontier with Neutrino Muon-based facilities [1] offer the unique potential to Factories and the Energy Frontier with Muon Colliders. provide the next generation of capabilities and world- They rely on a novel technology with challenging leading experimental support spanning physics at both the parameters, for which the feasibility is currently being Intensity and Energy Frontiers. Building on the evaluated by the Muon Accelerator Program (MAP). A foundation of PIP-II and its successor stages at FNAL [2], realistic scenario for a complementary series of staged muon accelerators can provide the next step with a high- facilities with increasing complexity and significant intensity and precise source of neutrinos to support a physics potential at each stage has been developed. It world-leading research program in neutrino physics. takes advantage of and leverages the capabilities already Furthermore, the infrastructure developed to support such planned for Fermilab, especially the strategy for long- an Intensity Frontier research program can also enable the term improvement of the accelerator complex being return of the U.S.
    [Show full text]
  • Jongkuk Kim Neutrino Oscillations in Dark Matter
    Neutrino Oscillations in Dark Matter Jongkuk Kim Based on PRD 99, 083018 (2019), Ki-Young Choi, JKK, Carsten Rott Based on arXiv: 1909.10478, Ki-Young Choi, Eung Jin Chun, JKK 2019. 10. 10 @ CERN, Swiss Contents Neutrino oscillation MSW effect Neutrino-DM interaction General formula Dark NSI effect Dark Matter Assisted Neutrino Oscillation New constraint on neutrino-DM scattering Conclusions 2 Standard MSW effect Consider neutrino/anti-neutrino propagation in a general background electron, positron Coherent forward scattering 3 Standard MSW effect Generalized matter potential Standard matter potential L. Wolfenstein, 1978 S. P. Mikheyev, A. Smirnov, 1985 D d Matter potential @ high energy d 4 General formulation Equation of motion in the momentum space : corrections R. F. Sawyer, 1999 P. Q. Hung, 2000 A. Berlin, 2016 In a Lorenz invariant medium: S. F. Ge, S. Parke, 2019 H. Davoudiasl, G. Mohlabeng, M. Sulliovan, 2019 G. D’Amico, T. Hamill, N. Kaloper, 2018 d F. Capozzi, I. Shoemaker, L. Vecchi 2018 Canonical basis of the kinetic term: 5 General formulation The Equation of Motion Correction to the neutrino mass matrix Original mass term is modified For large parameter space, the mass correction is subdominant 6 DM model Bosonic DM (ϕ) and fermionic messenger (푋푖) Lagrangian Coherent forward scattering 7 General formulation Ki-Young Choi, Eung Jin Chun, JKK Neutrino/ anti-neutrino Hamiltonian Corrections 8 Neutrino potential Ki-Young Choi, Eung Jin Chun, JKK Change of shape: Low Energy Limit: High Energy limit: 9 Two-flavor oscillation The effective Hamiltonian D The mixing angle & mass squared difference in the medium 10 Mass difference between ν&νҧ Ki-Young Choi, Eung Jin Chun, JKK I Bound: T.
    [Show full text]
  • QUANTUM GRAVITY EFFECT on NEUTRINO OSCILLATION Jonathan Miller Universidad Tecnica Federico Santa Maria
    QUANTUM GRAVITY EFFECT ON NEUTRINO OSCILLATION Jonathan Miller Universidad Tecnica Federico Santa Maria ARXIV 1305.4430 (Collaborator Roman Pasechnik) !1 INTRODUCTION Neutrinos are ideal probes of distant ‘laboratories’ as they interact only via the weak and gravitational forces. 3 of 4 forces can be described in QFT framework, 1 (Gravity) is missing (and exp. evidence is missing): semi-classical theory is the best understood 2 38 2 graviton interactions suppressed by (MPl ) ~10 GeV Many sources of astrophysical neutrinos (SNe, GRB, ..) Neutrino states during propagation are different from neutrino states during (weak) interactions !2 SEMI-CLASSICAL QUANTUM GRAVITY Class. Quantum Grav. 27 (2010) 145012 Considered in the limit where one mass is much greater than all other scales of the system. Considered in the long range limit. Up to loop level, semi-classical quantum gravity and effective quantum gravity are equivalent. Produced useful results (Hawking/etc). Tree level approximation. gˆµ⌫ = ⌘µ⌫ + hˆµ⌫ !3 CLASSICAL NEUTRINO OSCILLATION Neutrino Oscillation observed due to Interaction (weak) - Propagation (Inertia) - Interaction (weak) Neutrino oscillation depends both on production and detection hamiltonians. Neutrinos propagates as superposition of mass states. 2 2 2 mj mk ∆m L iEat ⌫f (t) >= Vfae− ⌫a > φjk = − L = | | 2E⌫ 4E⌫ a X 2 m m2 i j L i k L 2E⌫ 2E⌫ P⌫f ⌫ (E,L)= Vf 0jVf 0ke− e Vfj⇤ Vfk⇤ ! f0 j,k X !4 MATTER EFFECT neutrinos interact due to flavor (via W/Z) with particles (leptons, quarks) as flavor eigenstates MSW effect: neutrinos passing through matter change oscillation characteristics due to change in electroweak potential effects electron neutrino component of mass states only, due to electrons in normal matter neutrino may be in mass eigenstate after MSW effect: resonance Expectation of asymmetry for earth MSW effect in Solar neutrinos is ~3% for current experiments.
    [Show full text]
  • Neutrino Physics
    SLAC Summer Institute on Particle Physics (SSI04), Aug. 2-13, 2004 Neutrino Physics Boris Kayser Fermilab, Batavia IL 60510, USA Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally, 1. PHYSICS OF NEUTRINO OSCILLATION 1.1. Introduction There has been a breakthrough in neutrino physics. It has been discovered that neutrinos have nonzero masses, and that leptons mix. The evidence for masses and mixing is the observation that neutrinos can change from one type, or “flavor”, to another. In this first section of these lectures, we will explain the physics of neutrino flavor change, or “oscillation”, as it is called. We will treat oscillation both in vacuum and in matter, and see why it implies masses and mixing. That neutrinos have masses means that there is a spectrum of neutrino mass eigenstates νi, i = 1, 2,..., each with + a mass mi. What leptonic mixing means may be understood by considering the leptonic decays W → νi + `α of the W boson. Here, α = e, µ, or τ, and `e is the electron, `µ the muon, and `τ the tau. The particle `α is referred to as the charged lepton of flavor α.
    [Show full text]
  • Peering Into the Universe and Its Ele Mentary
    A gigantic detector to explore elementary particle unification theories and the mysteries of the Universe’s evolution Peering into the Universe and its ele mentary particles from underground Ultrasensitive Photodetectors The planned Hyper-Kamiokande detector will consist of an Unified Theory and explain the evolution of the Universe order of magnitude larger tank than the predecessor, Super- through the investigation of proton decay, CP violation (the We have been developing the world’s largest photosensors, which exhibit a photodetection Kamiokande, and will be equipped with ultra high sensitivity difference between neutrinos and antineutrinos), and the efficiency two times greater than that of the photosensors. The Hyper-Kamiokande detector is both a observation of neutrinos from supernova explosions. The Super-Kamiokande photosensors. These new “microscope,” used to observe elementary particles, and a Hyper-Kamiokande experiment is an international research photosensors are able to perform light intensity “telescope”, used to study the Sun and supernovas through project aiming to become operational in the second half of and timing measurements with a much higher neutrinos. Hyper-Kamiokande aims to elucidate the Grand the 2020s. precision. The new Large-Aperture High-Sensitivity Hybrid Photodetector (left), the new Large-Aperture High-Sensitivity Photomultiplier Tube (right). The bottom photographs show the electron multiplication component. A megaton water tank The huge Hyper-Kamiokande tank will be used in order to obtain in only 10 years an amount of data corresponding to 100 years of data collection time using Super-Kamiokande. This Experimental Technique allows the observation of previously unrevealed The photosensors on the tank wall detect the very weak Cherenkov rare phenomena and small values of CP light emitted along its direction of travel by a charged particle violation.
    [Show full text]
  • INO/ICAL/PHY/NOTE/2015-01 Arxiv:1505.07380 [Physics.Ins-Det]
    INO/ICAL/PHY/NOTE/2015-01 ArXiv:1505.07380 [physics.ins-det] Pramana - J Phys (2017) 88 : 79 doi:10.1007/s12043-017-1373-4 Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO) The ICAL Collaboration arXiv:1505.07380v2 [physics.ins-det] 9 May 2017 Physics Potential of ICAL at INO [The ICAL Collaboration] Shakeel Ahmed, M. Sajjad Athar, Rashid Hasan, Mohammad Salim, S. K. Singh Aligarh Muslim University, Aligarh 202001, India S. S. R. Inbanathan The American College, Madurai 625002, India Venktesh Singh, V. S. Subrahmanyam Banaras Hindu University, Varanasi 221005, India Shiba Prasad BeheraHB, Vinay B. Chandratre, Nitali DashHB, Vivek M. DatarVD, V. K. S. KashyapHB, Ajit K. Mohanty, Lalit M. Pant Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India Animesh ChatterjeeAC;HB, Sandhya Choubey, Raj Gandhi, Anushree GhoshAG;HB, Deepak TiwariHB Harish Chandra Research Institute, Jhunsi, Allahabad 211019, India Ali AjmiHB, S. Uma Sankar Indian Institute of Technology Bombay, Powai, Mumbai 400076, India Prafulla Behera, Aleena Chacko, Sadiq Jafer, James Libby, K. RaveendrababuHB, K. R. Rebin Indian Institute of Technology Madras, Chennai 600036, India D. Indumathi, K. MeghnaHB, S. M. LakshmiHB, M. V. N. Murthy, Sumanta PalSP;HB, G. RajasekaranGR, Nita Sinha Institute of Mathematical Sciences, Taramani, Chennai 600113, India Sanjib Kumar Agarwalla, Amina KhatunHB Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India Poonam Mehta Jawaharlal Nehru University, New Delhi 110067, India Vipin Bhatnagar, R. Kanishka, A. Kumar, J. S. Shahi, J. B. Singh Panjab University, Chandigarh 160014, India Monojit GhoshMG, Pomita GhoshalPG, Srubabati Goswami, Chandan GuptaHB, Sushant RautSR Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India Sudeb Bhattacharya, Suvendu Bose, Ambar Ghosal, Abhik JashHB, Kamalesh Kar, Debasish Majumdar, Nayana Majumdar, Supratik Mukhopadhyay, Satyajit Saha Saha Institute of Nuclear Physics, Bidhannagar, Kolkata 700064, India B.
    [Show full text]
  • An International Scoping Study of a Neutrino Factory and Super-Beam
    ISS/2005/01 13 th July 2005 An international scoping study of a Neutrino Factory and super-beam facility Executive summary This document presents a plan for an international scoping study of a future accelerator neutrino complex. The physics case for the facility will be evaluated and options for the accelerator complex and neutrino detection systems will be studied. The principal objective of the study will be to lay the foundations for a full conceptual-design study of the facility. The plan for the scoping study has been prepared in collaboration by the international community that wishes to carry it out; the ECFA/BENE network in Europe, the Japanese NuFact-J collaboration, the US Muon Collider and Neutrino Factory Collaboration and the UK Neutrino Factory collaboration. CCLRC’s Rutherford Appleton Laboratory will be the ‘host laboratory’ for the study. The study will be directed by a Programme Committee advised by a Stakeholders Board. The the international scoping study was launched at NuFact05 in Frascati on the 26 th June 2005. The conclusions of the study will be presented at NuFact06 and published in a written report in September 2006. 1. Introduction 1.1 Overview The recent discovery of neutrino oscillations [1] implies that neutrinos are massive and that the Standard Model is incomplete. These observations may have profound astrophysical consequences; in particular CP violation in the lepton sector may underpin the mechanism by which antimatter was removed from the early universe. The far-reaching implications of neutrino oscillations justify a dedicated experimental programme while the search for leptonic-CP violation requires the development of well-characterised, high-energy neutrino beams of extremely high intensity.
    [Show full text]
  • Neutrino Mixing 34 5.1 Three-Neutrino Mixing Schemes
    hep-ph/0310238 Neutrino Mixing Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universit`adi Torino, Via P. Giuria 1, I–10125 Torino, Italy Marco Laveder Dipartimento di Fisica “G. Galilei”, Universit`adi Padova, and INFN, Sezione di Padova, Via F. Marzolo 8, I–35131 Padova, Italy Abstract In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neu- trino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium β-decay experiments and astrophysical ob- servations, and the exploration of the Majorana nature of massive neu- trinos through neutrinoless double-β decay experiments. Finally, future prospects are briefly discussed. PACS Numbers: 14.60.Pq, 14.60.Lm, 26.65.+t, 96.40.Tv Keywords: Neutrino Mass, Neutrino Mixing, Solar Neutrinos, Atmospheric Neutrinos arXiv:hep-ph/0310238v2 1 Oct 2004 1 Contents Contents 2 1 Introduction 3 2 Neutrino masses and mixing 3 2.1 Diracmassterm................................ 4 2.2 Majoranamassterm ............................. 4 2.3 Dirac-Majoranamassterm. 5 2.4 Thesee-sawmechanism ........................... 7 2.5 Effective dimension-five operator . ... 8 2.6 Three-neutrinomixing . 9 3 Theory of neutrino oscillations 13 3.1 Neutrino oscillations in vacuum . ... 13 3.2 Neutrinooscillationsinmatter. .... 17 4 Neutrino oscillation experiments 25 4.1 Solar neutrino experiments and KamLAND . .. 26 4.2 Atmospheric neutrino experiments and K2K .
    [Show full text]
  • Strengthening Global Coordination on Large Neutrino Infrastructures”
    July 8, 2016 Press Release concerning the 3rd International Neutrino Meeting on Large Neutrino Infrastructures hosted by KEK on the 30-31st of May 2016 “Strengthening global coordination on large neutrino infrastructures” Funding-agency1 and laboratory representatives2 gathered at the 3rd International Meeting on Large Neutrino Infrastructures3 on May 30-31, 2016 at KEK in Tsukuba, Japan to gauge the progress in the global coordination of projects that had been launched during the first and second international meetings4 and to discuss the next steps in the global coordination. The meeting was opened by the 2015 Nobel Prize winner Takaaki Kajita who commented that “Very large-scale experiments will be needed to fully explore neutrino properties. These large-scale experiments will also naturally have astrophysics potential and increase the sensitivity of searches for proton disintegration.” He went on to note that to realise the necessary very large-scale facilities would require “… international coordination and collaboration” and defined the goals of the meeting to be to “… discuss the physics cases and global strategy, including astrophysics and proton decays, which are the part of the aim of this series of meetings; have follow-up discussions of the ICFA Neutrino Panel’s5 roadmap discussion document”6 and to discuss “… the various neutrino experiments, including Hyper- Kamiokande7, toward the realization of an efficient and productive global neutrino program.” In this meeting, the funding-agency and laboratory representatives welcomed the important steps that had been made towards the realisation of the Hyper-Kamiokande (Hyper-K) experiment7. The international proto-collaboration has developed new, high- sensitivity, large-aperture photomultiplier tubes that substantially reduce the total project cost without unduly compromising its potential to address important questions in particle and astroparticle physics and in nucleon decay.
    [Show full text]
  • India-Based Neutrino Observatory (Ino)
    INDIAINDIA--BASEDBASED NEUTRINONEUTRINO OBSERVATORYOBSERVATORY (INO)(INO) PlansPlans && StatusStatus NabaNaba KK MondalMondal Tata Institute of Fundamental Research Mumbai, India AtmosphericAtmospheric neutrinoneutrino detectiondetection inin 19651965 Physics Letters 18, (1965) 196, dated 15th Aug 1965 Atmospheric neutrino detector at Kolar Gold Field –1965 INO-UKNF meeting4th April, 2008PRL 15, (1965), 429, dated 30th Aug. 1965 2 KGFKGF INO-UKNF meeting4th April, 2008 3 INOINO InitiativeInitiative • In early 2002, a document was presented to the Dept. of Atomic Energy (DAE), Govt of India with a request for fund to carry out feasibility study for setting up an underground neutrino laboratory in India. • In August 2002, an MoU was signed by the directors of seven participating DAE institutes towards working together on the feasibility study for such a laboratory. • A neutrino collaboration group was established with members mostly from Indian Institutes and Universities. • A sum of 50 million INR ( 1 M USD) was allotted by DAE to carry out the feasibility study. • Considering the physics possibilities and given the past experience at Kolar, it was agreed to carry out the feasibility study for a large mass magnetised iron calorimeter which will compliment the already existing water cherenkov based Super-K experiment in Japan. INO-UKNF meeting4th April, 2008 4 INOINO activitiesactivities duringduring feasibilityfeasibility studystudy periodperiod •• DetectorDetector RR && D:D: •• SiteSite Survey:Survey: – Choice of active detector – History
    [Show full text]
  • Accelerator Neutrino Programme at Fermilab ∗
    FERMILAB-CONF-10-099-T Accelerator Neutrino Programme at Fermilab ∗ Stephen J. Parke Theoretical Physics Department, Fermi National Accelerator Laboratory P.O.Box 500, Batavia, IL 60510, USA [email protected] The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neu- trino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOνA. The major experiment in the beamline to DUSEL will be LBNE. 1. Neutrino Standard Model The flavor content of the three neutrino mass eigenstates is given in Fig. 1. The current questions in this model are what is the size of 2 2 1 2 1 2 sin θ13; (sin θ23 ); (sin θ12 ); sign(δm ) and sin δCP (1) − 2 − 3 31 It is possible that the first three of these are related to some small parameter 2 2 like δm21/δm31 0:03 raised to some power, n. From current experiments the size of this power≈ is constrained to be larger than one, n > 1, except for 2 1 (sin θ23 ) where the lower bound is weaker, approximately n > 1=2. − 2 This could be due to some broken Tri-Bi-Maximal symmetry which would be very interesting and exciting. Another possibility is that it is coincidental which would be much less interesting from a theorists perspec- tive.
    [Show full text]