Microbial Community Composition and Functional Potential in Bothnian Sea Sediments Is Linked to Fe and S Dynamics and the Quality of Organic Matter
Limnol. Oceanogr. 65, 2020, S113–S133 © 2019 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11371 Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter Olivia Rasigraf ,1,2,3* Niels A. G. M. van Helmond,2,4 Jeroen Frank,1,5 Wytze K. Lenstra ,2,4 † Matthias Egger,4, Caroline P. Slomp,2,4 Mike S. M. Jetten1,2,5 1Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands 2Netherlands Earth System Science Centre (NESSC), Utrecht, The Netherlands 3German Research Centre for Geosciences (GFZ), Geomicrobiology, Potsdam, Germany 4Department of Earth Sciences, Utrecht University, The Netherlands 5Soehngen Institute of Anaerobic Microbiology (SIAM), Radboud University Nijmegen, Nijmegen, The Netherlands Abstract The Bothnian Sea is an oligotrophic brackish basin characterized by low salinity and high concentrations of reactive iron, methane, and ammonium in its sediments, enabling the activity and interactions of many micro- bial guilds. Here, we studied the microbial network in these sediments by analyzing geochemical and microbial community depth profiles at one offshore and two near coastal sites. Analysis of 16S rRNA gene amplicons rev- ealed a distinct depth stratification of both archaeal and bacterial taxa. The microbial communities at the two near coastal sites were more similar to each other than the offshore site, which is likely due to differences in the quality and rate of organic matter degradation. The abundance of methanotrophic archaea of the ANME-2a clade was shown to be related to the presence of methane and varied with sediment iron content.
[Show full text]