Control System Analysis on Symmetric Cones

Total Page:16

File Type:pdf, Size:1020Kb

Control System Analysis on Symmetric Cones Submitted, 2015 Conference on Decision and Control (CDC) http://www.cds.caltech.edu/~murray/papers/pm15-cdc.html Control System Analysis on Symmetric Cones Ivan Papusha Richard M. Murray Abstract— Motivated by the desire to analyze high dimen- Autonomous systems for which A is a Metzler matrix are sional control systems without explicitly forming computation- called internally positive,becausetheirstatespacetrajec- ally expensive linear matrix inequality (LMI) constraints, we tories are guaranteed to remain in the nonnegative orthant seek to exploit special structure in the dynamics matrix. By Rn using Jordan algebraic techniques we show how to analyze + if they start in the nonnegative orthant. As we will see, continuous time linear dynamical systems whose dynamics are the Metzler structure is (in a certain sense) the only natural exponentially invariant with respect to a symmetric cone. This matrix structure for which a linear program may generically allows us to characterize the families of Lyapunov functions be composed to verify stability. However, the inclusion that suffice to verify the stability of such systems. We highlight, from a computational viewpoint, a class of systems for which LP ⊆ SOCP ⊆ SDP stability verification can be cast as a second order cone program (SOCP), and show how the same framework reduces to linear motivates us to determine if stability analysis can be cast, for programming (LP) when the system is internally positive, and to semidefinite programming (SDP) when the system has no example, as a second order cone program (SOCP) for some special structure. specific subclass of linear dynamics, in the same way that it can be cast as an LP for internally positive systems, or an I. INTRODUCTION SDP for general linear systems. Using Jordan algebraic techniques, which have proved to In this paper we wish to verify the stability of a linear be effective in unifying interior point methods for conic dynamical system programming, we will discuss a generalization of the Metzler x˙(t)=Ax(t),A∈ Rn×n,x(t) ∈ Rn. (1) property known as cross-positivity to characterize dynamics that are exponentially invariant with respect to a symmetric It is well known that if A has no special structure, then cone. In so doing, we demonstrate the strong unifying power system (1) is stable if and only if there exists a symmetric of the Jordan product on linear systems and discuss a rich × matrix P = P T ∈ Rn n satisfying the linear matrix class of systems that admit SOCP-based analysis. inequalities II. JORDAN ALGEBRAS AND SYMMETRIC CONES P = P T ≻ 0,AT P + PA ≺ 0. (2) The following background is informal and mostly meant Such a matrix P corresponds to a quadratic Lyapunov to set out notation, adopting conventions familiar to system function V : Rn → R, theory and optimization [4], [5]. Jordan algebras in the context of symmetric cones are rich and well studied field, V (x)=⟨x, P x⟩, with an excellent reference [6]. For more recent reviews, which is positive definite and decreasing along trajectories see [7], [8], [9]. of (1). A. Cones on a vector space. Searching for a matrix P satisfying (2) is in general a semidefinite program (SDP), but if A has a special structure, Let V be a vector space with inner product ⟨·, ·⟩.Asubset this semidefinite program can sometimes be cast as a lin- K ⊆ V is called a cone if it is closed under nonnegative ear program (LP)—with advantages in numerical stability, scalar multiplication: for every x ∈ K and θ ≥ 0 we have opportunities for parallelism, and better scaling to high θx ∈ K.AconeK is pointed if it contains no line, or dimensions than the general SDP. For example, if A is a equivalently Metzler matrix, i.e.,itsoff-diagonalentriesarenonnegative, x ∈ K, −x ∈ K =⇒ x =0. Aij ≥ 0, for all i ̸= j, Aconeisproper if it is closed, convex, pointed, and has then it suffices to search for a diagonal matrix P satis- nonempty interior. Every proper cone induces a partial order fying (2). Equivalently, it is enough to find an entrywise ≼ on V given by int Rn int Rn positive vector p ∈ + such that −Ap ∈ + is entrywise positive. Finding such a vector p is, of course, an x, y ∈ V, x ≼ y ⇐⇒ y − x ∈ K. LP, [1], [2], [3]. We have x ≺ y if and only if y − x ∈ int K.Similarly The authors are with the Control and Dynamical Systems Department, we write x ≽ y and x ≻ y to mean y ≼ x and y ≺ x, California Institute of Technology, Pasadena, CA USA. respectively. B. Jordan algebras. decomposition, and are (in finite dimensions, [6]) isomorphic A(Euclidean)Jordanalgebraisaninnerproductspace to a Cartesian product of (V,⟨·, ·⟩) endowed with a Jordan product ◦ : V × V → V , • n × n self-adjoint positive semidefinite matrices with which satisfies the following properties: real, complex, or quaternion entries, 1) Bilinear: x ◦ y is linear in x for fixed y and vice-versa • 3 × 3 self-adjoint positive semidefinite matrices with 2) Commutative: x ◦ y = y ◦ x octonion entries (Albert algebra), and 3) Jordan identity: x2 ◦ (y ◦ x)=(x2 ◦ y) ◦ x • Lorentz cone. 4) Adjoint identity: ⟨x, y ◦ z⟩ = ⟨y ◦ x, z⟩. In practice, symmetric cones have a differentiable log-det In particular, a Jordan product need not be associative. When barrier function, allowing numerical optimization via interior 2 Rn S1 we interpret x = x◦x,theJordanidentityallowsanypower point methods [7], [10]. The symmetric cones +(= + × k S1 n Sn x , k ≥ 2 to be inductively defined. An identity element e ··· × +), L+ and + give rise to LP, SOCP, and SDP, satisfies e ◦ x = x ◦ e = x for all x ∈ V ,anddefinesa respectively. We now define these three cones. number r = ⟨e, e⟩ called the rank of V . D. Three important symmetric cones. The cone of squares K corresponding to the Jordan Rn product ◦ is defined as 1) Nonnegative orthant +: the cone of squares asso- ciated with the standard Euclidean space Rn and Jordan K = {x ◦ x | x ∈ V }. product Every element x ∈ V has a spectral decomposition (x ◦ y)i = xiyi,i=1,...,n, r i.e.,theentrywise(orHadamard)product.Theidentityele- x = λ e , i i ment is e = 1 =(1,...,1),andtheJordanframecomprises !i=1 the standard basis vectors. The quadratic representation of where λ ∈ R are eigenvalues of x and the set of eigenvec- n i an element z ∈ R is given by the diagonal matrix Pz = tors {e1,...,er}⊆V ,calledaJordan frame,satisfies diag(z)2 r 2 e = ei,ei ◦ ej =0for i ̸= j, ei = e. i x !i=1 0 We have x ∈ K (written x ≽K 0,orsimplyx ≽ 0 when the context is clear) provided λi ≥ 0.Similarly,x ∈ int K if and only if λi > 0 (written x ≻K 0). The spectral decomposition allows us to define familiar concepts like trace, determinant, and square root of an element x by taking the corresponding function of the eigenvalue. That is, x1 x2 r r r tr det 1/2 1/2 Fig. 1. Second-order (Lorentz) cone L3 . x = λi, x = λi,x = λi ei, + !i=1 i"=1 !i=1 n Rn where the last quantity only makes sense if x ≽ 0. 2) Lorentz cone L+: partition every element of as R Rn−1 Finally, every element z ∈ V has a quadratic representa- x =(x0,x1) ∈ × and define the Lorentz cone (also known as second-order or norm cone) as tion, which is a map Pz : V → V given by 2 n R Rn−1 Rn Pz(x)=2(z ◦ (z ◦ x)) − z ◦ x. L+ = {(x0,x1) ∈ × |∥x1∥2 ≤ x0}⊆ . C. Symmetric cones. This cone is illustrated in Figure 1 for the case n =3.It n The closed dual cone of K is defined as can be shown that L+ is the cone of squares corresponding to the Jordan product K∗ = {y ∈ V |⟨x, y⟩≥0, for all x ∈ K}, x0 y0 ⟨x, y⟩ ∗ ◦ = . AconeK is self-dual if K = K.Theautomorphismgroup #x1$ #y1$ #x0y1 + y0x1$ Aut(K) of an open convex cone K is the set of invertible linear transformations g : V → V that map K to itself, The rank of this algebra is 2, giving a particularly simple spectral decomposition Aut(K)={g ∈ GL(V ) | gK = K}. x = λ1e1 + λ2e2, An open cone K is homogeneous if Aut(K) acts on the cone transitively, in other words, if for every x, y ∈ K where the eigenvalues and Jordan frame are there exists g ∈ Aut(K) such that gx = y.Finally,K λ = x + ∥x ∥ ,λ= x −∥x ∥ , is symmetric if it is homogeneous and self-dual. Symmetric 1 0 1 2 2 0 1 2 1 1 1 1 cones are an important object of study because they are e1 = ,e2 = . the cones of squares of a Jordan product, admit a spectral 2 #x1/∥x1∥2$ 2 #−x1/∥x1∥2$ T The identity element is e =(1, 0) and the quadratic repre- • Lorentz cone: L(x)=Ax,whereA Jn + JnA ≽ ξJn sentation of an element z ∈ Rn is the matrix for some ξ ∈ R. T zT J z • Positive semidefinite matrices: L(X)=AX +XA for P = zzT − n J , z 2 n any matrix A. In fact, due to a result in [13], the examples above precisely where J =diag(1, −1,...,−1) ∈ Rn×n is a n × n inertia n characterize cross-positive operators on Rn and Ln (but not matrix with signature (1,n− 1).NotethatP is a positive + + z Sn ). semidefinite matrix if and only if z ≽ 0. + Sn 3) Positive semidefinite cone +: consider the vector B. A class of Lyapunov functions space Sn of real, symmetric n × n matrices with the trace inner product.
Recommended publications
  • Part I. Origin of the Species Jordan Algebras Were Conceived and Grew to Maturity in the Landscape of Physics
    1 Part I. Origin of the Species Jordan algebras were conceived and grew to maturity in the landscape of physics. They were born in 1933 in a paper \Uber VerallgemeinerungsmÄoglichkeiten des Formalismus der Quantenmechanik" by the physicist Pascual Jordan; just one year later, with the help of John von Neumann and Eugene Wigner in the paper \On an algebraic generalization of the quantum mechanical formalism," they reached adulthood. Jordan algebras arose from the search for an \exceptional" setting for quantum mechanics. In the usual interpretation of quantum mechanics (the \Copenhagen model"), the physical observables are represented by Hermitian matrices (or operators on Hilbert space), those which are self-adjoint x¤ = x: The basic operations on matrices or operators are multiplication by a complex scalar ¸x, addition x + y, multipli- cation xy of matrices (composition of operators), and forming the complex conjugate transpose matrix (adjoint operator) x¤. This formalism is open to the objection that the operations are not \observable," not intrinsic to the physically meaningful part of the system: the scalar multiple ¸x is not again hermitian unless the scalar ¸ is real, the product xy is not observable unless x and y commute (or, as the physicists say, x and y are \simultaneously observable"), and the adjoint is invisible (it is the identity map on the observables, though nontrivial on matrices or operators in general). In 1932 the physicist Pascual Jordan proposed a program to discover a new algebraic setting for quantum mechanics, which would be freed from dependence on an invisible all-determining metaphysical matrix structure, yet would enjoy all the same algebraic bene¯ts as the highly successful Copenhagen model.
    [Show full text]
  • Geometry of the Shilov Boundary of a Bounded Symmetric Domain Jean-Louis Clerc
    Geometry of the Shilov Boundary of a Bounded Symmetric Domain Jean-Louis Clerc To cite this version: Jean-Louis Clerc. Geometry of the Shilov Boundary of a Bounded Symmetric Domain. journal of geometry and symmetry in physics, 2009, Vol. 13, pp. 25-74. hal-00381665 HAL Id: hal-00381665 https://hal.archives-ouvertes.fr/hal-00381665 Submitted on 6 May 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geometry of the Shilov Boundary of a Bounded Symmetric Domain Jean-Louis Clerc today Abstract In the first part, the theory of bounded symmetric domains is pre- sented along two main approaches : as special cases of Riemannian symmetric spaces of the noncompact type on one hand, as unit balls in positive Hermitian Jordan triple systems on the other hand. In the second part, an invariant for triples in the Shilov boundary of such a domain is constructed. It generalizes an invariant constructed by E. Cartan for the unit sphere in C2 and also the triple Maslov index on the Lagrangian manifold. 1 Introduction The present paper is an outgrowth of the cycle of conferences delivred by the author at the Tenth International Conference on Geometry, Integrability and Quantization, held in Varna in June 2008.
    [Show full text]
  • Spectral Cones in Euclidean Jordan Algebras
    Spectral cones in Euclidean Jordan algebras Juyoung Jeong Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250, USA [email protected] and M. Seetharama Gowda Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250, USA [email protected] August 2, 2016 Abstract A spectral cone in a Euclidean Jordan algebra V of rank n is of the form K = λ−1(Q); where Q is a permutation invariant convex cone in Rn and λ : V!Rn is the eigenvalue map (which takes x to λ(x), the vector of eigenvalues of x with entries written in the decreasing order). In this paper, we describe some properties of spectral cones. We show, for example, that spectral cones are invariant under automorphisms of V, that the dual of a spectral cone is a spectral cone when V is simple or carries the canonical inner product, and characterize the pointedness/solidness of a spectral cone. We also show that for any spectral cone K in V, dim(K) 2 f0; 1; m − 1; mg, where dim(K) denotes the dimension of K and m is the dimension of V. Key Words: Euclidean Jordan algebra, spectral cone, automorphism, dual cone, dimension AMS Subject Classification: 15A18, 15A51, 15A57, 17C20, 17C30, 52A20 1 1 Introduction Let V be a Euclidean Jordan algebra of rank n and λ : V!Rn denote the eigenvalue map (which takes x to λ(x), the vector of eigenvalues of x with entries written in the decreasing order). A set E in V is said to be a spectral set [1] if there exists a permutation invariant set Q in Rn such that E = λ−1(Q): A function F : V!R is said to be a spectral function [1] if there is a permutation invariant function f : Rn !R such that F = f ◦ λ.
    [Show full text]
  • Arxiv:1106.4415V1 [Math.DG] 22 Jun 2011 R,Rno Udai Form
    JORDAN STRUCTURES IN MATHEMATICS AND PHYSICS Radu IORDANESCU˘ 1 Institute of Mathematics of the Romanian Academy P.O.Box 1-764 014700 Bucharest, Romania E-mail: [email protected] FOREWORD The aim of this paper is to offer an overview of the most important applications of Jordan structures inside mathematics and also to physics, up- dated references being included. For a more detailed treatment of this topic see - especially - the recent book Iord˘anescu [364w], where sugestions for further developments are given through many open problems, comments and remarks pointed out throughout the text. Nowadays, mathematics becomes more and more nonassociative (see 1 § below), and my prediction is that in few years nonassociativity will govern mathematics and applied sciences. MSC 2010: 16T25, 17B60, 17C40, 17C50, 17C65, 17C90, 17D92, 35Q51, 35Q53, 44A12, 51A35, 51C05, 53C35, 81T05, 81T30, 92D10. Keywords: Jordan algebra, Jordan triple system, Jordan pair, JB-, ∗ ∗ ∗ arXiv:1106.4415v1 [math.DG] 22 Jun 2011 JB -, JBW-, JBW -, JH -algebra, Ricatti equation, Riemann space, symmet- ric space, R-space, octonion plane, projective plane, Barbilian space, Tzitzeica equation, quantum group, B¨acklund-Darboux transformation, Hopf algebra, Yang-Baxter equation, KP equation, Sato Grassmann manifold, genetic alge- bra, random quadratic form. 1The author was partially supported from the contract PN-II-ID-PCE 1188 517/2009. 2 CONTENTS 1. Jordan structures ................................. ....................2 § 2. Algebraic varieties (or manifolds) defined by Jordan pairs ............11 § 3. Jordan structures in analysis ....................... ..................19 § 4. Jordan structures in differential geometry . ...............39 § 5. Jordan algebras in ring geometries . ................59 § 6. Jordan algebras in mathematical biology and mathematical statistics .66 § 7.
    [Show full text]
  • [Math.OC] 2 Apr 2001
    UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports SELF–SCALED BARRIERS FOR IRREDUCIBLE SYMMETRIC CONES Raphael Hauser and Yongdo Lim arXiv:math/0104020v1 [math.OC] 2 Apr 2001 DAMTP 2001/NA04 April 2001 Department of Applied Mathematics and Theoretical Physics Silver Street Cambridge England CB3 9EW SELF–SCALED BARRIERS FOR IRREDUCIBLE SYMMETRIC CONES RAPHAEL A. HAUSER, YONGDO LIM April 2, 2001 Abstract. Self–scaled barrier functions are fundamental objects in the theory of interior–point methods for linear optimization over symmetric cones, of which linear and semidefinite program- ming are special cases. We are classifying all self–scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier func- tion. Together with a decomposition theorem for self–scaled barriers this concludes the algebraic classification theory of these functions. After introducing the reader to the concepts relevant to the problem and tracing the history of the subject, we start by deriving our result from first principles in the important special case of semidefinite programming. We then generalise these arguments to irreducible symmetric cones by invoking results from the theory of Euclidean Jordan algebras. Key Words Semidefinite programming, self–scaled barrier functions, interior–point methods, symmetric cones, Euclidean Jordan algebras. AMS 1991 Subject Classification Primary 90C25, 52A41, 90C60. Secondary 90C05, 90C20. Contact Information and Credits Raphael Hauser, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England. [email protected]. Research supported in part by the Norwegian Research Council through project No. 127582/410 “Synode II”, by the Engineering and Physical Sciences Research Council of the UK under grant No.
    [Show full text]
  • Arxiv:1207.3214V1 [Math.MG] 13 Jul 2012 Ftosubspaces Two of Esc E.Tepouto W Oe Sjs H Sa Produc Usual the Just Is Cones Two of Product Cone the a Sets
    SYMMETRIC CONES, THE HILBERT AND THOMPSON METRICS BOSCHÉ AURÉLIEN Abstract. Symmetric cones can be endowed with at least two in- teresting non Riemannian metrics: the Hilbert and the Thompson metrics. It is trivial that the linear maps preserving the cone are isometries for those two metrics. Oddly enough those are not the only isometries in general. We give here a full description of the isometry groups for both the Hilbert and the Thompson metrics using essentially the theory of euclidean Jordan algebras. Those results were already proved for the symmetric cone of complexe positive hermitian matrices by L. Molnár in [7]. In this paper how- ever we do not make any assumption on the symmetric cone under scrutiny (it could be reducible and contain exceptional factors). 1. Preliminaries A cone is a subset C of some euclidean space Rn that is invariant by positive scalar exterior multiplication. A convex cone is a cone that is also a convex subset of Rn. A cone C is proper (resp. open) if its closure contains no complete line (resp. if it’s interior is not empty). In this paper we deal exclusively with open proper cones and C will always be such a set. The product of two cones is just the usual product of sets. A cone C ∈ Rn is reducible if Rn splits orthogonally as the sum of two subspaces A and B each containing a cone CA and CB such that C is the product of CA and CB , i.e. the set of all sums of elements of CA n and CB.
    [Show full text]
  • A Characterization of Symmetric Cones by an Order-Reversing Property of the Pseudoinverse Maps
    A CHARACTERIZATION OF SYMMETRIC CONES BY AN ORDER-REVERSING PROPERTY OF THE PSEUDOINVERSE MAPS CHIFUNE KAI Abstract. When a homogeneous convex cone is given, a natural partial order is introduced in the ambient vector space. We shall show that a homogeneous convex cone is a symmetric cone if and only if Vinberg’s ¤-map and its inverse reverse the order. Actually our theorem is formulated in terms of the family of pseudoinverse maps including the ¤-map, and states that the above order-reversing property is typical of the ¤-map of a symmetric cone which coincides with the inverse map of the Jordan algebra associated with the symmetric cone. 1. Introduction Let Ω be an open convex cone in a finite-dimensional real vector space V which is regular, that is, Ω\(¡Ω) = f0g, where Ω stands for the closure of Ω. For x; y 2 V , we write x ºΩ y if x ¡ y 2 Ω. Clearly, this defines a partial order in V . In the special case that Ω is the one-dimensional symmetric cone R>0, the order ºΩ is the usual one and is reversed by taking inverse numbers in R>0. In general, let a symmetric cone Ω ½ V be given. Then V has a structure of the Jordan algebra associated with Ω. In this case, the Jordan algebra inverse map is an involution on Ω and reverses the order ºΩ. This order-reversing property helps our geometric understanding of the Jordan algebra inverse map. In this paper, we shall investigate this order-reversing property in a more general setting and give a characterization of symmetric cones.
    [Show full text]
  • Spectral Functions and Smoothing Techniques on Jordan Algebras
    Universite¶ catholique de Louvain Faculte¶ des Sciences appliquees¶ Departement¶ d'Ingenierie¶ mathematique¶ Center for Operation Research and Econometrics Center for Systems Engineering and Applied Mechanics Spectral Functions and Smoothing Techniques on Jordan Algebras Michel Baes Thesis submitted in partial ful¯llment of the requirements for the degree of Docteur en Sciences Appliqu¶ees Dissertation Committee: Fran»coisGlineur Universit¶ecatholique de Louvain Yurii Nesterov (advisor) Universit¶ecatholique de Louvain Cornelius Roos Technische Universiteit Delft Jean-Pierre Tignol Universit¶ecatholique de Louvain Paul Van Dooren (advisor) Universit¶ecatholique de Louvain Jean-Philippe Vial Universit¶ede Gen`eve Vincent Wertz (chair) Universit¶ecatholique de Louvain ii Contents List of notation vii 1 Introduction and preliminaries 1 1.1 Comparing algorithms .............................. 2 1.2 Linear Programming ............................... 3 1.3 Convex Programming .............................. 5 1.4 Self-scaled Optimization, and formally real Jordan algebras ......... 10 1.5 A closer look at interior-point methods ..................... 12 1.5.1 Newton's Algorithm: solving unconstrained problems ........ 12 1.5.2 Barrier methods: dealing with constraints ............... 13 1.5.3 Choosing an appropriate barrier .................... 13 1.5.4 Path-following interior-point methods for Linear Programming ... 17 1.5.5 Path-following interior-point methods for Self-Scaled Programming . 18 1.6 Smoothing techniques .............................. 20 1.7 Eigenvalues in Jordan algebra make it work: more applications ....... 22 1.7.1 A concavity result ............................ 22 1.7.2 Augmented barriers in Jordan algebras ................. 23 1.8 Overview of the thesis and research summary ................. 25 2 Jordan algebras 27 2.1 The birth of Jordan algebras .......................... 28 2.2 Algebras and Jordan algebras .........................
    [Show full text]
  • Commutation Principles in Euclidean Jordan Algebras and Normal Decomposition Systems∗
    SIAM J. OPTIM. c 2017 Society for Industrial and Applied Mathematics Vol. 27, No. 3, pp. 1390{1402 COMMUTATION PRINCIPLES IN EUCLIDEAN JORDAN ALGEBRAS AND NORMAL DECOMPOSITION SYSTEMS∗ M. SEETHARAMA GOWDAy AND JUYOUNG JEONGy Abstract. The commutation principle of Ram´ırez, Seeger, and Sossa [SIAM J. Optim., 23 (2013), pp. 687{694] proved in the setting of Euclidean Jordan algebras says that when the sum of a Fr´echet differentiable function Θ and a spectral function F is minimized (maximized) over a spectral set Ω, any local minimizer (respectively, maximizer) a operator commutes with the Fr´echet derivative Θ0(a). In this paper, we extend this result to sets and functions which are (just) invariant under algebra automorphisms. We also consider a similar principle in the setting of normal decomposition systems. Key words. Euclidean Jordan algebra, (weakly) spectral sets/functions, automorphisms, com- mutation principle, normal decomposition system, variational inequality problem, cone complemen- tarity problem AMS subject classifications. 17C20, 17C30, 52A41, 90C25 DOI. 10.1137/16M1071006 1. Introduction. Let V be a Euclidean Jordan algebra of rank n [3] and λ : V!Rn denote the eigenvalue map (which takes x to λ(x), the vector of eigenvalues of x with entries written in the decreasing order). A set Ω in V is said to be a spectral set [1] if it is of the form Ω = λ−1(Q), where Q is a permutation invariant set in Rn. A function F : V!R is said to be a spectral function [1] if it is of the form F = f ◦λ, where f : Rn !R is a permutation invariant function.
    [Show full text]
  • Maximal Invariants Over Symmetric Cones
    Maximal Invariants Over Symmetric Cones Emanuel Ben-David Stanford University August 2010 Abstract In this paper we consider some hypothesis tests within a family of Wishart distributions, where both the sample space and the parameter space are symmetric cones. For such testing problems, we first derive the joint density of the ordered eigenvalues of the generalized Wishart distribution and propose a test statistic analog to that of classical multivariate statistics for test- ing homoscedasticity of covariance matrix. In this generalization of Bartlett’s test for equality of variances to hypotheses of real, complex, quaternion, Lorentz and octonion types of covari- ance structures. 1 Introduction Consider a statistical model consisting of a sample space X and unknown probability measures Pθ, with θ in the parameter space Θ. In this setting, the statistical inference about the model is often concentrated on parameter estimation and hypothesis testing. In the latter, we typically test the hypothesis H0 : θ ∈ Θ0 ⊂ Θ vs. the hypothesis H : θ ∈ Θ\Θ0. Systematically, this means to find a suitable test statistic t from X to a measurable space Y, and the distribution of tPθ, the transformed measure with respect to Pθ under t. For a Gaussian model, where the sample space is Rn, the probability measures are multivariate normal distribution Nn(0, Σ) and the parameter space is PDn(R), the cone of n × n positive definite matrices over R, some classical examples of such hypotheses are the sphericity hypothesis: 2 2 H0 : Σ= σ In vs. H : Σ , σ In, (1.1) arXiv:1201.0514v1 [math.ST] 2 Jan 2012 for some σ> 0; the complex structure hypothesis A −B H0 : Σ= ∈ PDk(C) vs.
    [Show full text]
  • Optimization Over Symmetric Cones Under Uncertainty
    OPTIMIZATION OVER SYMMETRIC CONES UNDER UNCERTAINTY By BAHA' M. ALZALG A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Mathematics DECEMBER 2011 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BAHA' M. ALZALG find it satisfactory and recommend that it be accepted. K. A. Ariyawansa, Professor, Chair Robert Mifflin, Professor David S. Watkins, Professor ii For all the people iii ACKNOWLEDGEMENTS My greatest appreciation and my most sincere \Thank You!" go to my advisor Pro- fessor Ari Ariyawansa for his guidance, advice, and help during the preparation of this dissertation. I am also grateful for his offer for me to work as his research assistant and for giving me the opportunity to write papers and visit several conferences and workshops in North America and overseas. I wish also to express my appreciation and gratitude to Professor Robert Mifflin and Professor David S. Watkins for taking the time to serve as committee members and for various ways in which they helped me during all stages of doctoral studies. I want to thank all faculty, staff and graduate students in the Department of Mathe- matics at Washington State University. I would especially like to thank from the faculty Associate Professor Bala Krishnamoorthy, from the staff Kris Johnson, and from the students Pietro Paparella for their kind help. Finally, no words can express my gratitude to my parents and my grandmother for love and prayers. I also owe a special gratitude to my brothers and sisters, and some relatives in Jordan for their support and encouragement.
    [Show full text]
  • Gradings on Simple Exceptional Jordan Systems and Structurable Algebras
    2017 25 Diego Aranda Orna Gradings on simple exceptional Jordan systems and structurable algebras Departamento Matemáticas Director/es Elduque Palomo, Alberto Carlos Reconocimiento – NoComercial – © Universidad de Zaragoza SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra Servicio de Publicaciones original ni la generación de obras derivadas. ISSN 2254-7606 Tesis Doctoral Autor Director/es UNIVERSIDAD DE ZARAGOZA Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es Departamento Director/es Reconocimiento – NoComercial – © Universidad de Zaragoza SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra Servicio de Publicaciones original ni la generación de obras derivadas. ISSN 2254-7606 Tesis Doctoral Autor Director/es UNIVERSIDAD DE ZARAGOZA Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es Departamento Director/es Reconocimiento – NoComercial – © Universidad de Zaragoza SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra Servicio de Publicaciones original ni la generación de obras derivadas. ISSN 2254-7606 Tesis Doctoral GRADINGS ON SIMPLE EXCEPTIONAL JORDAN SYSTEMS AND STRUCTURABLE ALGEBRAS Autor Diego Aranda Orna Director/es Elduque Palomo, Alberto Carlos UNIVERSIDAD DE ZARAGOZA Matemáticas 2017 Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es Departamento Director/es Reconocimiento – NoComercial – © Universidad de Zaragoza SinObraDerivada (by-nc-nd): No se permite un uso comercial de la obra Servicio de Publicaciones original ni la generación de obras derivadas. ISSN 2254-7606 Tesis Doctoral Autor Director/es UNIVERSIDAD DE ZARAGOZA Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es DOCTORAL THESIS Gradings on simple exceptional Jordan systems and structurable algebras Author Diego Aranda Orna Supervisor Alberto Elduque UNIVERSIDAD DE ZARAGOZA Departamento de Matem´aticas 2016 Acknowledgements I am very grateful to Dr.
    [Show full text]