Investigating the Consistency of Mate-Locating Behavior in the Territorial Butterfly

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Consistency of Mate-Locating Behavior in the Territorial Butterfly P1: VENDOR Journal of Insect Behavior [joib] PP035-291465 January 15, 2001 16:6 Style file version Feb 08, 2000 Journal of Insect Behavior, Vol. 14, No. 1, 2001 Investigating the Consistency of Mate-Locating Behavior in the Territorial Butterfly Hypolimnas bolina (Lepidoptera: Nymphalidae) Darrell J. Kemp1 Accepted August 2, 2000; revised September 5, 2000 The study of butterfly behavior has afforded valuable insights into the evolution of alternative mating tactics. Two hypotheses derived from this area of research contend that (1) territoriality is only viable under low to moderate conspecific densities (due to the costs of site defence) and (2) perching may be employed only when thermal conditions constrain flight activity. These hypotheses were evaluated by investigating mate locating behavior in Hypolimnas bolina, a territorial species that is naturally subject to variation in population density and weather conditions. Male behavior was charted throughout the day during a period of high population density at an encounter site in tropical Australia. Perching was the primary tactic, although a small proportion of individuals patrolled nonaggressively in the afternoon. Population-level male behavior failed to support predictions drawn from either the “territory economics” or “thermal constraint” hypotheses. First, the proportion of perching males and the number of aggressive conspecific interactions (per male) increased with increasing male density at the site. Second, few males patrolled at the hottest, brightest time of day (approximately midday), and the diel distribution of perchers did not emulate the “U-shaped” distribution shown by the occurrence of dorsal basking behavior. These results show that perching in this species is not a suboptimal tactic employed when temperatures constrain flight activity but may represent the best method of locating receptive females. At this stage the reproductive significance of the observed patrolling behavior remains obscure. KEY WORDS: alternative mating tactics; sexual selection; intrasexual competition; behavioral plasticity; reproductive behavior; perching. 1School of Tropical Biology, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia. e-mail: [email protected]. 129 0892-7553/01/0100-0129$19.50/0 C 2001 Plenum Publishing Corporation P1: VENDOR Journal of Insect Behavior [joib] PP035-291465 January 15, 2001 16:6 Style file version Feb 08, 2000 130 Kemp INTRODUCTION Alternative male mating tactics are such a conspicuous component of ani- mal mating systems (reviews by Arak, 1984; Austad, 1984; Dominey, 1984; Gross, 1996) that this situation is now considered as the rule rather than the exception (Waltz and Wolf, 1984). In its simplest form, plasticity in mat- ing behavior is expressed as the cooccurrence of territorial (aggressive) and nonterritorial or sneaky tactics (e.g., Arak, 1984; Gross, 1991; Higashi and Nomakuchi, 1997). Individual males of these species either may be morpho- logically “locked in” to specific tactics at certain life stages (e.g., Sinervo and Lively, 1996; Cook et al., 1997; Emlen, 1997) or may possess the flexibility to adopt either tactic (e.g., Davies, 1978; Alcock and Houston, 1987; Alcock, 1997). In all cases, the maintenance of alternative mating tactics within a population is believed to reflect underlying variation in either environmen- tal conditions or competitive abilities (Austad, 1984, Hazel et al., 1990; Greeff, 1998). However, although a large body of empirical work has accumulated, the types and nature of environmental variation responsible for the evolution of behavioral plasticity are not completely understood. The study of butterfly behavior has provided a useful tool for document- ing the occurrence and ecological correlates of alternative mating tactics in animals (see Dennis, 1982; Wickman and Wiklund, 1983; Shreeve, 1984; Wickman, 1985, 1988; Alcock and O’Neill, 1986; Alcock, 1994; Hern´andez and Benson, 1998). Traditionally, the primary difference between individ- ual mating tactics in this group has been related to mobility, that is, the extent to which males either perch or patrol to locate females. However, since perching behavior in butterflies is often accompanied by site defense (Dennis and Shreeve, 1988; Rutowski, 1991), species that exhibit behavioral plasticity invariably switch between territorial and nonterritorial behaviors (see examples as above). The correlates of these behavioral switches provide a framework for formulating adaptive hypotheses regarding the evolution of similar forms of plasticity in butterflies and animals generally. In most territorial systems, a proportion of males may be forced to adopt an alternative means of locating mates due to their inability to compete with superior males (Dawkins, 1980). This “best of a bad job” tactic has been observed in butterflies (e.g., Davies, 1978; Hern´andez and Benson, 1998), although the determinants of competitive superiority are not always clear (Austad et al., 1979; Stutt and Willmer, 1998). Outside of this prospect, the primary ecological correlates of conditional behavior of male butter- flies are conspecific male density (Dennis, 1982; Alcock and O’Neill, 1986) and weather (Wickman, 1985, 1988). Males of several butterfly species freely switch between territorial perching and nonterritorial patrolling behavior P1: VENDOR Journal of Insect Behavior [joib] PP035-291465 January 15, 2001 16:6 Style file version Feb 08, 2000 Behavioral Consistency in H. bolina 131 depending on the density of conspecific males at the encounter site (Dennis, 1982; Alcock and O’Neill, 1986). This type of behavioral switch has gener- ally been interpreted in terms of the economics of territory defense, with rising cost of defense eventually outweighing the reproductive benefits of this activity (Parker, 1978; Thornhill and Alcock, 1983; Alcock and O’Neill, 1986; Rutowski, 1991). Alternatively, male butterflies may switch between perching and patrolling depending on the prevailing thermal conditions (e.g., Dennis, 1982, 1987; Wickman and Wiklund, 1983; Shreeve, 1984; Wickman, 1985, 1988). Wickman (1985) suggested that perching behavior is the most ef- ficient method of mate location at suboptimal temperatures for flight, evolved by many temperate butterfly species due to the restrictions of low tempera- tures on extended flight activity. However, the generality of this hypothesis is unclear, and therefore, the role of thermal constraints as an influence on the evolution of butterfly mate locating tactics is not fully understood. Here I aim to broaden our general understanding of behavioral plas- ticity in butterflies by investigating the consistency of male mate-locating behavior in the tropical species Hypolimnas bolina (L.) (Nymphalidae). Males of this species are noted for their territorial male mate-locating be- havior (McCubbin, 1971; Rutowski, 1992). This behavior (described in detail later) is comparatively very similar to that of other butterfly species that de- fend perching sites to maximize their encounters with receptive females (see Davies, 1978; Wickman and Wiklund, 1983; Rosenberg and Enquist, 1991; Lederhouse et al., 1992; Lederhouse, 1993; Hern´andez and Benson, 1998). Moreover, throughout tropical Australia, male H. bolina are potentially sub- ject to regimes of ecological variation (outlined specifically below) similar to those of some territorial temperate species that exhibit alternative mating tactics [e.g., Coenonympha pamphilus (Wickman, 1985) and Strymon melinus (Alcock and O’Neill, 1986)]. This species therefore provides an ideal tropi- cal candidate for testing predictions regarding the occurrence of behavioral plasticity in butterflies. Mate-locating male H. bolina are subject to considerable daily and sea- sonal variations in the two variables that correlate primarily with behav- ioral plasticity in temperate species—population density and weather con- ditions. First, although normally present at low densities throughout north Queensland (see Rutowski, 1992; Kemp, 1998), numbers of this species at particular sites can increase markedly at times during the wet season [im- mediately after extended rainy or overcast weather patterns (D. J. Kemp, unpublished data)]. This population variation is qualitatively similar to that described for S. melinus, a predominantly territorial species that possesses a density-related switch to patrolling behavior (Alcock and O’Neill, 1986). The “territory economics” hypothesis predicts that a greater proportion of male P1: VENDOR Journal of Insect Behavior [joib] PP035-291465 January 15, 2001 16:6 Style file version Feb 08, 2000 132 Kemp H. bolina should either patrol (Alcock and O’Neill, 1986; Rutowski, 1991) or continue to perch nonaggressively (Alcock, 1985) when the male density at the encounter site reaches extreme levels (Emlen and Oring, 1977). Second, because males are active at encounter sites for an extended daily period [from 0800 to 1700 h (Rutowski, 1992)], and temperature/solar radiation changes considerably during this time, mate-locating males are potentially subject to a broad range of thermal conditions. If territoriality in this species is adopted at suboptimal temperatures, then this behavior should be limited to those times of day when males are thermally constrained. The “thermal constraint” hypothesis predicts that a greater proportion of males should patrol in the middle of the day when temperatures are least limiting and that the diel distribution of perching behavior should follow a “U” shape (as demonstrated
Recommended publications
  • Butterflies and Moths of San Bernardino County, California
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • The Taxonomic Report of the INTERNATIONAL LEPIDOPTERA SURVEY
    Volume 7 1 February 2010 Number 3 The Taxonomic Report OF THE INTERNATIONAL LEPIDOPTERA SURVEY TIPS ON COLLECTING AND REARING IMMATURES OF 375 BUTTERFLY AND SKIPPER TAXA JACQUE WOLFE 459 East 2700 South Apt 16, Salt Lake City, UT 84115 JACK HARRY 47 San Rafael Court, West Jordan, UT 84088 TODD STOUT 1 1456 North General Drive, Salt Lake City, UT 84116 ABSTRACT: Rearing techniques are discussed for 375 different butterfly and skipper taxa from Utah and beyond. Additional keywords: ova, larvae, pupae, over wintering, obtaining and caring for immatures INTRODUCTION The authors of this paper, Jacque Wolfe, Jack Harry, and Todd Stout, with contributions from Dale Nielson have over 100 years combined experience collecting and rearing butterflies. This publication includes natural and lab host plants. We hope that this information will help you avoid some of the mistakes and losses we have experienced. We also hope that this publication will encourage someone who has only collected adults to give rearing a try. For those new to rearing we encourage starting small. Not only can rearing provide perfect specimens but also provide knowledge regarding the life histories of butterflies, which includes how to find caterpillars or how to entice live females to lay eggs. The advantages justify the time and effort it requires. Another advantage of rearing is that some species, like Papilio indra and Megathymus species, are difficult to collect as adults. Therefor, rearing them can be much easier. For example, collecting larvae or netting a single live female can result in obtaining a nice series of perfect specimens.
    [Show full text]
  • Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note
    Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note: BMNA = Butterflies and Moths of North America web site MPG = Moth Photographers Group web site Most are from the Essig Museum’s California Moth Specimens Database web site Arctiidae. Tiger and Lichen Moths. Apantesis proxima (Notarctia proxima). Mexican Tiger Moth. 8181 [BMNA] Ectypia clio (clio). Clio Tiger Moth. 8249 Estigmene acrea (acrea). Salt Marsh Moth. 8131 Euchaetes zella. 8232 Autostichidae (Deoclonidae). Oegoconia novimundi. Four-spotted Yellowneck Moth. 1134 (Oegoconia quadripuncta mis-applied) Bucculatricidae. Ribbed Cocoon-maker Moths. Bucculatrix enceliae. Brittlebrush Moth. 0546 Cossidae. Goat Moths, Carpenterworm Moths, and Leopard Moths. Comadia henrici. 2679 Givira mucida. 2660 Hypopta palmata. 2656 Prionoxystus robiniae (mixtus). Carpenterworm or Locust Borer. 2693 Depressariidae. Pseudethmia protuberans. 1008 [MPG] Ethmiidae. Now assigned to Depressariidae. Ethmiinae. Ethmia timberlakei. 0984 Pseudethmia protuberans. 1008 Gelechiidae. Twirler Moths. Aristotelia adceanotha. 1726 [Sighting 1019513 BMNA] Chionodes abdominella. 2054 Chionodes dentella. 2071 Chionodes fructuaria. 2078 Chionodes kincaidella. 2086 (reared from Atriplex acanthocarpa in Texas) Chionodes oecus. 2086.2 Chionodes sistrella. 2116 Chionodes xanthophilella. 2125 Faculta inaequalis. Palo Verde Webworm. 2206 Friseria cockerelli. Mesquite Webworm. 1916 Gelechia desiliens. 1938 Isophrictis sabulella. 1701 Keiferia lycopersicella. Tomato Pinworm. 2047 Pectinophora gossypiella. Pink Bollworm. 2261 Prolita puertella. 1895 Prolita veledae. 1903 Geometridae. Inchworm Moths, Loopers, Geometers, or Measuring Worms. Archirhoe neomexicana. 7295 Chesiadodes coniferaria. 6535 Chlorochlamys appellaria. 7073 Cyclophora nanaria. Dwarf Tawny Wave. W 7140 Dichorda illustraria. 7055 Dichordophora phoenix. Phoenix Emerald. 7057 Digrammia colorata. Creosote Moth. 6381 Digrammia irrorata (rubricata). 6395 Digrammia pictipennata. 6372 Digrammia puertata.
    [Show full text]
  • Butterflies and Moths of Baja California Norte, Mexico
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Nevada Butterflies and Their Biology to Forward Such for Inclusion in the Larger Study
    Journal of the Lepidopterists' Society 39(2). 1985. 95-118 NEV ADA BUTTERFLIES: PRELIMINARY CHECKLIST AND DISTRIBUTION GEORGE T. AUSTIN Nevada State Museum and Historical Society, 700 Twin Lakes Drive, Las Vegas, Nevada 89107 ABSTRACT. The distribution by county of the 189 species (over 300 taxa) of but­ terflies occurring in Nevada is presented along with a list of species incorrectly recorded for the state. There are still large areas which are poorly or not collected. Nevada continues as one of the remaining unknown areas in our knowledge of butterfly distribution in North America. Although a com­ prehensive work on the state's butterflies is in preparation, there is sufficient demand for a preliminary checklist to justify the following. It is hoped this will stimulate those who have any data on Nevada butterflies and their biology to forward such for inclusion in the larger study. Studies of Nevada butterflies are hampered by a paucity of resident collectors, a large number of mountain and valley systems and vast areas with little or no access. Non-resident collectors usually funnel into known and well worked areas, and, although their data are valu­ able, large areas of the state remain uncollected. Intensive collecting, with emphasis on poorly known areas, over the past seven years by Nevada State Museum personnel and associates has gone far to clarify butterfly distribution within the state. The gaps in knowledge are now more narrowly identifiable and will be filled during the next few sea­ sons. There is no all encompassing treatment of Nevada's butterfly fauna. The only state list is an informal recent checklist of species (Harjes, 1980).
    [Show full text]
  • Grasshoppers and Butterflies of the Quitobaquito Management Area, Organ Pipe Cactus National Monument, Arizona
    1 2 COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF ARIZONA 125 Biological Sciences (East) Bldg. 43 Tucson, Arizona 85721 R. Roy Johnson, Unit Leader National Park Senior Research Scientist TECHNICAL REPORT NO. 21 GRASSHOPPERS AND BUTTERFLIES OF THE QUITOBAQUITO MANAGEMENT AREA, ORGAN PIPE CACTUS NATIONAL MONUMENT, ARIZONA Kenneth J. Kingsley and Richard A. Bailowitz July 1987 NATIONAL PARK SERVICE/UNIVERSITY OF ARIZONA Contract No. 8100-3-0356 CONTRIBUTION NUMBER CPSU/UA 055/01 3 4 5 TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 1 DESCRIPTION OF THE AREA ................................................................................................... 2 METHODS ..................................................................................................................................... 4 DISCUSSION AND RESULTS .................................................................................................... 5 SPECIES ACCOUNTS ..................................................................................................... 8 Grasshoppers .........................................................................................................8 Butterflies ............................................................................................................11 LITERATURE CITED ................................................................................................................ 22 ACKNOWLEDGEMENTS.........................................................................................................
    [Show full text]
  • Territorial Behavior of the Red Admiral Butterfly, Vanessa Atalanta (L.) (Lepidoptera: Nymphalidae) Royce Justin Bitzer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Territorial behavior of the Red Admiral Butterfly, Vanessa atalanta (L.) (Lepidoptera: Nymphalidae) Royce Justin Bitzer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Environmental Sciences Commons, and the Zoology Commons Recommended Citation Bitzer, Royce Justin, "Territorial behavior of the Red Admiral Butterfly, Vanessa atalanta (L.) (Lepidoptera: Nymphalidae) " (1995). Retrospective Theses and Dissertations. 10881. https://lib.dr.iastate.edu/rtd/10881 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the miaofilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of conq)uter printer. The quality of this reproductioii is dependrat upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard Tnarginc and inqiroper alignment can adversety affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion.
    [Show full text]
  • Download Articles
    fe/ The Journal of Research \^0/m THE Lepidoptera Volume 38 1999 (2005) The Journal of Research on the Lepidoptera ISSN 0022 4324 Published by: The Lepidoptera Research Foundation, Inc. 9620 Heather Road Beverly Hills, California 90210-1 757 TEL (310) 399 6016 FAX (310) 399 2805 E-MAJL: Editorial: [email protected] Business: [email protected] Tec h n i cal rl on rn al @cen tru m . cz : j . j Founder: William Hovanitz (1915-1977) Editorial Staff: Rudolf H.T. Mattoni, editor E-MAIL: [email protected] Scott E. Miller, assistant editor E-MAIL: [email protected] Zdenka Kienova, technical editor E-MAIL:[email protected] Associate Editors: The Lepidoptera Research Foundation is in process of reorganization. The corps of associate editors will be established when complete. Manuscripts and notices material may be sent to the editor, Rudolf H.T. Mattoni, E-MAIL: [email protected] or to the above address. Electronic transmissions are preferable. Please note the instructions to authors on the back inside covert of thisjournal Technical editor at the address: Zdenka Krenova, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic. TheJournal is sent to all members of the Eoundation. (dasses of membership: Regular (Individual) $ 20.00 year (vol.) Contributing $ 30.00or more year (vol.) Student/ Retired-Worldwide $ 18.00 year (vol.) Subscription Rate/ Institutions $ 30.00 year (vol.) Life $ 300.00 Statement of ownership and management THEJOURNAL OF RESEARCH ON THE LEPIDOPTERA is published two times a year by the LEPIDOPTERA RESEARCH FOUNDATION, INC. Publication and business offices are located at the Beverly Hills, California address given above.
    [Show full text]
  • The Ecology and Evolution of Melitaeine Butterflies
    The Ecology and Evolution of Melitaeine Butterflies Niklas Wahlberg Metapopulation Research Group Department of Ecology and Systematics Division of Population Biology University of Helsinki Finland Academic dissertation To be presented, with permission of the Faculty of Science of the University of Helsinki, for public criticism in the lecture room of the Department of Ecology and Systematics, P. Rautatiekatu 13, on October 27, 2000, at 12 o’clock noon. Helsinki 2000 © Niklas Wahlberg, pp. 7–26 Technical editing by Johan Ulfvens Author’s address: Metapopulation Research Group Department of Ecology and Systematics Division of Population Biology P.O. Box 17 (Arkadiankatu 7) 00014 University of Helsinki Finland e-mail: [email protected] ISBN 952-91-2615-8 (nid) ISBN 952-91-2688-3 (pdf) Oy Edita Ab Helsinki 2000 Helsinki 2000 The Ecology and Evolution of Melitaeine Butterflies Niklas Wahlberg Metapopulation Research Group Department of Ecology and Systematics Division of Population Biology P.O. Box 17 (Arkadiankatu 7) 00014 University of Helsinki Finland The thesis is based on the following articles: I Wahlberg, N. & Zimmermann, M. 2000. Pattern of phylogenetic relationships among members of the tribe Melitaeini (Lepidoptera: Nymphalidae) inferred from mtDNA sequences. – Cladistics 16, in press. II Wahlberg, N. 2000. The phylogenetics and biochemistry of host plant specialization in melitaeine butterflies (Lepidoptera: Nymphalidae). – Submitted manuscript. III Wahlberg, N., Klemetti, T., Selonen, V. & Hanski, I. 2000. Metapopulation structure and movements in five species of checkerspot butterflies. – Manuscript. IV Wahlberg, N., Moilanen, A. & Hanski, I. 1996. Predicting the occurrence of endangered species in fragmented landscapes. – Science 273: 1536-1538. V Wahlberg, N., Klemetti, T.
    [Show full text]
  • Book Review, of Systematics of Western North American Butterflies
    (NEW Dec. 3, PAPILIO SERIES) ~19 2008 CORRECTIONS/REVIEWS OF 58 NORTH AMERICAN BUTTERFLY BOOKS Dr. James A. Scott, 60 Estes Street, Lakewood, Colorado 80226-1254 Abstract. Corrections are given for 58 North American butterfly books. Most of these books are recent. Misidentified figures mostly of adults, erroneous hostplants, and other mistakes are corrected in each book. Suggestions are made to improve future butterfly books. Identifications of figured specimens in Holland's 1931 & 1898 Butterfly Book & 1915 Butterfly Guide are corrected, and their type status clarified, and corrections are made to F. M. Brown's series of papers on Edwards; types (many figured by Holland), because some of Holland's 75 lectotype designations override lectotype specimens that were designated later, and several dozen Holland lectotype designations are added to the J. Pelham Catalogue. Type locality designations are corrected/defined here (some made by Brown, most by others), for numerous names: aenus, artonis, balder, bremnerii, brettoides, brucei (Oeneis), caespitatis, cahmus, callina, carus, colon, colorado, coolinensis, comus, conquista, dacotah, damei, dumeti, edwardsii (Oarisma), elada, epixanthe, eunus, fulvia, furcae, garita, hermodur, kootenai, lagus, mejicanus, mormo, mormonia, nilus, nympha, oreas, oslari, philetas, phylace, pratincola, rhena, saga, scudderi, simius, taxiles, uhleri. Five first reviser actions are made (albihalos=austinorum, davenporti=pratti, latalinea=subaridum, maritima=texana [Cercyonis], ricei=calneva). The name c-argenteum is designated nomen oblitum, faunus a nomen protectum. Three taxa are demonstrated to be invalid nomina nuda (blackmorei, sulfuris, svilhae), and another nomen nudum ( damei) is added to catalogues as a "schizophrenic taxon" in order to preserve stability. Problems caused by old scientific names and the time wasted on them are discussed.
    [Show full text]
  • A Preliminary Investigation of the Arthropod Fauna of Quitobaquito Springs Area, Organ Pipe Cactus National Monument, Arizona
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF ARIZONA 125 Biological Sciences (East) Bldg. 43 Tucson, Arizona 85721 R. Roy Johnson, Unit Leader National Park Senior Research Scientist TECHNICAL REPORT NO. 23 A PRELIMINARY INVESTIGATION OF THE ARTHROPOD FAUNA OF QUITOBAQUITO SPRINGS AREA, ORGAN PIPE CACTUS NATIONAL MONUMENT, ARIZONA KENNETH J. KINGSLEY, RICHARD A. BAILOWITZ, and ROBERT L. SMITH July 1987 NATIONAL PARK SERVICE/UNIVERSITY OF ARIZONA National Park Service Project Funds CONTRIBUTION NUMBER CPSU/UA 057/01 TABLE OF CONTENTS Introduction......................................................................................................................................1 Methods............................................................................................................................................1 Results ............................................................................................................................................2 Discussion......................................................................................................................................20 Literature Cited ..............................................................................................................................22 Acknowledgements........................................................................................................................23 LIST OF TABLES Table 1. Insects Collected at Quitobaquito Springs ...................................................................3
    [Show full text]
  • Butterflies of North America 3.4 Butterflies of Kern and Tulare Counties, California (Revised)
    Butterflies of North America 3.4 Butterflies of Kern and Tulare Counties, California (Revised) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America. 3.4 Butterflies of Kern and Tulare Counties, California (Revised) *Annotated Checklist of Butterflies of Kern and Tulare Counties, California *Field Collecting and Sight Records for Butterflies of Kern and Tulare Counties, California *Butterflies of Sequoia and Kings Canyon National Parks, Tulare and Fresno Counties, California by Ken Davenport¹ 8417 Rosewood Ave. Bakersfield, California 93306 1Museum Associate, C.P. Gillette Museum of Arthropod Diversity, Colorado State University, Fort Collins, Colorado 80523-1177 January 25, 2014 1 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: San Emigdio Blue (Plebejus emigdionis) near Onyx, Kern County, California, May 23, 2002. This is a very uncommon lycaenid butterfly endemic to a small area of southern California (see text). The type locality is in Kern County. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523-1177 2 Annotated Checklist of Butterflies of Kern and Tulare Counties, California INTRODUCTION The information presented here incorporates data from collecting, scientific papers, published articles on butterflies, field guides and books, letters from lepidopterists and butterfly watchers. My purpose is to give an updated and annotated checklist of the butterflies occurring in Kern and Tulare Counties, California. This revised publication now includes specific records for all the species and subspecies known to occur in the region.
    [Show full text]