Depositional History of Pre-Devonian Strata and Timing of Ross Orogenic Tectonism in the Central Transantarctic Mountains, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Depositional History of Pre-Devonian Strata and Timing of Ross Orogenic Tectonism in the Central Transantarctic Mountains, Antarctica Depositional history of pre-Devonian strata and timing of Ross orogenic tectonism in the central Transantarctic Mountains, Antarctica Paul M. Myrow* Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA Michael C. Pope Department of Geology, Washington State University, Pullman, Washington 99164, USA John W. Goodge Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, USA Woodward Fischer Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA Alison R. Palmer Institute for Cambrian Studies, 445 North Cedarbrook Road, Boulder, Colorado 80304-0417, USA ABSTRACT small fraction of its previous extent. The into trilobite- and hyolithid-bearing calcar- basal unit of the Byrd GroupÐthe predom- eous siltstone of the Starshot Formation A combination of ®eld mapping, detailed inantly carbonate ramp deposits of the and alluvial-fan deposits of the Douglas sedimentology, carbon isotope chemostra- Shackleton LimestoneÐrest with presumed Conglomerate. Trilobite fauna from the tigraphy, and new paleontological ®nds unconformity on the restricted Goldie For- lowermost siltstone deposits of the Starshot provides a signi®cantly improved under- mation. Paleontological data and carbon Formation date the onset of this transition standing of the depositional and tectonic isotope stratigraphy indicate that the Low- as being late Botomian. history of uppermost Neoproterozoic and er Cambrian Shackleton Limestone ranges The abrupt transition from the Shackle- lower Paleozoic strata of the central Trans- from lower Atdabanian through upper ton Limestone to a large-scale, upward- antarctic Mountains. On the basis of these Botomian. coarsening siliciclastic succession records data, we suggest revision of the existing This study presents the ®rst description deepening of the outer platform and then stratigraphy, including introduction of new of a depositional contact between the deposition of an eastward-prograding mo- formations, as follows. The oldest rocks ap- Shackleton Limestone and overlying clas- lassic wedge. The various formations of the pear to record late Neoproterozoic deposi- tic units of the upper Byrd Group. This upper Byrd Group show general strati- tion across a narrow marine margin under- carbonate-to-clastic transition is of critical graphic and age equivalence, such that lain by Precambrian basement. Siliciclastic importance because it records a profound coarse-grained alluvial-fan deposits of the deposits of the Neoproterozoic Beardmore shift in the tectonic and depositional history Douglas Conglomerate are proximal equiv- GroupÐhere restricted to the Cobham of the region, namely from relatively pas- alents of the marginal-marine to shelf de- Formation and those rocks of the Goldie sive sedimentation to active uplift and ero- posits of the Starshot Formation. Paleocur- Formation that contain no detrital compo- sion associated with the Ross orogeny. The rents and facies distributions from these nents younger than ca. 600 MaÐoccupied uppermost Shackleton Limestone is capped units indicate consistent west (or southwest) an inboard zone to the west. They consist by a set of archaeocyathan bioherms with to east (or northeast) transport of sediment. of shallow-marine deposits of an uncertain up to 40 m of relief above the sea¯oor. A Although the exact structural geometry is tectonic setting, although it was likely a rift widespread phosphatic crust on the bio- unknown, development of imbricate thrust to passive margin. Most rocks previously herms records the onset of orogenesis and sheets in the west likely caused depression mapped as Goldie Formation are in fact drowning of the carbonate ramp. A newly of the inner margin and rapid drowning of Cambrian in age or younger, and we reas- de®ned transitional unit, the Holyoake For- the Shackleton Formation carbonate ramp. sign them to the Starshot Formation of the mation, rests above this surface. It consists This tectonic activity also caused uplift of Byrd Group; this change reduces the ex- of black shale followed by mixed nodular the inboard units and their underlying posed area of the Goldie Formation to a carbonate and shale that ®ll in between, basement, unroo®ng, and widespread de- and just barely above, the tallest of the position of a thick, coarse clastic wedge. *E-mail: [email protected]. bioherms. This formation grades upward Continued deformation in the Early Ordo- GSA Bulletin; September 2002; v. 114; no. 9; p. 1070±1088; 16 ®gures. For permission to copy, contact [email protected] 1070 q 2002 Geological Society of America PRE-DEVONIAN STRATA AND TIMING OF ROSS OROGENY, TRANSANTARCTIC MOUNTAINS, ANTARCTICA Figure 1. Geologic map of central Transantarctic Mountains with inset (upper left) of Antarctica showing location of ®eld area. CPÐ Cotton Plateau, CRÐCobham Range, MUÐMount Ubique, PAGÐPrincess Anne Glacier, and PPÐPanorama Point. Close-up of Holy- oake Range on right shows basic geologic units. Details of thrust slices of transitional units cannot be shown at this scale, but rectangular blocks indicate locations where upper Shackleton through Douglas transitions occur, each with well-developed bioherms that all dip vertically and face west. S1 (section 1), S2 (section 2), and HR (High Ridge) are described in text. vician (younger than 480 Ma) in turn af- because of a lack of biostratigraphic con- Formation. Fossil-bearing strata of the Byrd fected these synorogenic deposits, causing straints, detailed sedimentology, and physical Group are generally considered to have been folding and thrust repetition of all pre- stratigraphy of these units. The traditional deposited unconformably upon the Goldie Devonian units. view of stratigraphic relationships in this re- Formation. The basal formation of the Byrd gion, as reviewed by Stump (1995) and dis- Group, the Lower Cambrian Shackleton Lime- Keywords: Archaeocyatha, Cambrian, Neo- cussed in more detail herein, is that basement stone, consists of dominantly carbonate rocks proterozoic, reef, Ross orogeny, Transant- rocks of the Nimrod Group (Archean and Ear- with a range of facies including archaeocyathan- arctic Mountains. ly Proterozoic) are directly overlain by Neo- bearing bioherms. Clasts of the Shackleton proterozoic rocks of the Beardmore Group, al- Limestone occur within overlying synorogenic INTRODUCTION though this relationship has not been conglomerate- and sandstone-rich units of the observed. The latter consists of unfossiliferous Douglas and Starshot Formations, respective- Stratigraphic relationships of pre-Devonian metamorphosed siliciclastic and carbonate ly. The stratigraphic relationships and ages of formations in the central Transantarctic Moun- rocks of the Cobham Formation and overlying these younger units were poorly de®ned; pos- tains (Fig. 1) have been the subject of much less metamorphosed siliciclastic rocks (mostly sible ages range from latest Early Cambrian conjecture and debate (Fig. 2), in large part sandstone with minor shale) of the Goldie to Devonian (Fig. 2). Geological Society of America Bulletin, September 2002 1071 MYROW et al. Figure 2. Interpretations of stratigraphic relationships of pre-Devonian Formations in the central Transantarctic Mountains. Right-hand column is revised view of these relationships. Formations: StÐStarshot Formation, ShÐShackleton Limestone, DoÐDouglas Conglom- erate, DiÐDick Formation, GoÐGoldie Formation. Authors: AÐLaird (1963), BÐSkinner (1964), CÐLaird et al. (1971), DÐLaird (1981), EÐRowell et al. (1986), FÐRowell et al. (1988b), GÐRees et al. (1989), HÐRowell and Rees (1989), IÐRees and Rowell (1991), JÐGoodge et al. (1993) and Goodge and Dallmeyer (1996), KÐGoodge (1997). For reports simply describing ``Lower Cambrian'' strata, base of formation arbitrarily chosen as upper Tommotian. New geochronologic data recast the age Group, and these ``outboard'' Goldie strata are of the upper Byrd Group from the southern and stratigraphic relationships of these units. now assigned to that formation. A very nar- Holyoake Range. Sedimentological aspects of Detrital-zircon geochronology on sedimentary row exposure of enigmatic, generally more this transition from massive, archaeocyathan units of the region indicates that the bulk of metamorphosed, rocks in the vicinity of Cot- bioherms to overlying siliciclastic-dominated outcrops mapped as Goldie Formation are in ton Plateau and the eastern Cobham Range strata allow us to reconstruct the depositional fact younger than the Shackleton Limestone were also originally mapped as Goldie For- response to Ross orogenesis. In addition, a new (Goodge et al., 2000, 2002). Detrital zircons mation. These have older detrital-zircon sig- trilobite collection in strata above the bioherms from these sandstone deposits are as young as natures (1000 Ma or older) and probably rep- provides constraints on the ages of several for- ca. 520 Ma, making their depositional age resent bona ®de Neoproterozoic deposits mations and the timing of tectonic events. younger than the Atdabanian Stage of the (``inboard assemblage'' of Goodge et al., These new ®ndings, in conjunction with the Lower Cambrian (Landing et al., 1998; Bow- 2000, 2002). geochronological data already mentioned, have ring and Erwin, 1998; Fig. 3). These young This study provides new ®eld, fossil, and profound implications for the depositional and provenance ages come from strata in an are- isotopic data as the basis for additional strati- tectonic history of the Transantarctic Moun- ally
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • HN.Tflrcitiici
    HN.TflRCiTiICi A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) 4 !*y/. A New Zealand/West German/American geological field party in Northern Victoria Land unloads equipment from a United States Navy ski-equipped Hercules at Crosscut Peak in the Millen Range. Antarctic Division photo \/nl»«• ■ 1ftIU, blf\I1U. ftO RegisteredWellington, Newat PostZealand, Office as Headquarters,a magazine. UCV/CII nfiromhor lUCI , 1 I Qfl/1oOH SOUTH GEORGIA SOUTH SANDWICH li' / S O U T H O R K N E Y I s ' \ e#2?KS /o Orcadas arg v rt FALKLAND Ij /6SignyluK y SajiMsA^^^qyoUiarevilaya > K 6 0 " W / SOUTH AMERICA * /' ,\ {/ Boiga / nJ^L^T. \w\ 4 s o u t h , * / w e d d e l l \ 3 S A / % T ^ & * ^ V SHETLAND J J!*, ,' / Hallev Bavof DRONNING MAUD LANO ENDERBY ^ / , s A V V ' ' / S E A u k T J C O A T S L d I / L A N D , , - Druzhnaya ^General Belgrano arg u s s r , < 6 V > ^ - " ^ ~ ^ I / K \ M a w s o n ANTARCTIC -tSS^ MAC ROBERTSON LAND\ '. *usi /PENINSULA'^ (sn map belowl ' 'Sobral arg Davis ausi L Siple. USA Amundsen-Scon OUEEN MARY LAND <!MimY ELLSWORTH i , J j U S S R LAND /x. ' / vostok° Vo s t o kussr/ u s s r / rrv > . MARIE BYRD Ice Shelf V>^ \^ / * L LAND \ W I L K E S L A N D ^ - / ' Rossr?#Vanda?' / y^\/ SEA IV^r/VICTORIA .TERRE A 7 ■ 4F&/ LMO \/ kOtU^y/ Ax ( G E O R G E V \ A .
    [Show full text]
  • Early and Middle Cambrian Trilobites from Antarctica
    Early and Middle Cambrian Trilobites From Antarctica GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Early and Middle Cambrian Trilobites From Antarctica By ALLISON R. PALMER and COLIN G. GATEHOUSE CONTRIBUTIONS TO THE GEOLOGY OF ANTARCTICA GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Bio stratigraphy and regional significance of nine trilobite faunules from Antarctic outcrops and moraines; 28 species representing 21 genera are described UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-190734 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2071 CONTENTS Page Page Abstract_ _ ________________________ Dl Physical stratigraphy______________________________ D6 I&troduction. _______________________ 1 Regional correlation within Antarctica ________________ 7 Biostratigraphy _____________________ 3 Systematic paleontology._____-_______-____-_-_-----_ 9 Early Cambrian faunules.________ 4 Summary of classification of Antarctic Early and Australaspis magnus faunule_ 4 Chorbusulina wilkesi faunule _ _ 5 Middle Cambrian trilobites. ___________________ 9 Chorbusulina subdita faunule _ _ 5 Agnostida__ _ _________-____-_--____-----__---_ 9 Early Middle Cambrian f aunules __ 5 Redlichiida. __-_--------------------------_---- 12 Xystridura mutilinia faunule- _ 5 Corynexochida._________--________-_-_---_----_
    [Show full text]
  • Hnjtflrcilild
    HNjTflRCililD A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) Drillers on the Ross Ice Shelf last season used a new hot water system to penetrate fc. 416m of ice and gain access to the waters of the Ross Sea. Here the rig is at work on an access hole for a Norwegian science rproject. ' U . S . N a v y p h o t o Registered ol Post Office Headquarters, Vol. 8, No. 9. Wellington. New Zealand, as a magazine. SOUTH GEORGIA. •.. SOUTH SANDWICH Is' ,,r circle / SOUTH ORKNEY Is' \ $&?-""" "~~~^ / "^x AFAtKtANOis /^SiJS?UK*"0.V" ^Tl~ N^olazarevskayauss« SOUTH AMERICA / /\ ,f Borg°a ~7^1£^ ^.T, \60'E, /? cnirru „ / \ if sa / anT^^^Mo odezhnaya V/ x> SOUTH 9 .» /WEDDELL \ .'/ ' 0,X vr\uss.aT/>\ & SHETtAND-iSfV, / / Halley Bay*! DRONNING MAUD LAND ^im ^ >^ \ - / l s * S Y 2 < 'SEA/ S Euk A J COATSu k V ' tdC O A T S t d / L A N D ! > / \ Dfu^naya^^eneral Belgrano^RG y\ \ Mawson ANTARCTIC SrV MAC ROBERTSON LAND\ \ aust /PENINSULA'^ (see map below) Sobral arg / t Davis aust K- Siple ■■ [ U S A Amundsen-Scott / queen MARY LAND <JMirny AJELLSWORTH Vets') LAND °Vostok ussr MARIE BYRDNs? vice ShelA^ WIIKES tAND , ? O S S ^ . X V a n d a N z / SEA I JpY/VICTORIA .TERRE ,? ^ P o V t A N D V ^ / A D H J E j / V G E O R G E V L d , , _ / £ ^ . / ,^5s=:»iv-'s«,,y\ ^--Dumont d Urville france Leningradskaya \' / USSB_,^'' \ / -""*BALLENYIs\ / ANTARCTIC PENINSULA 1 Teniente Matienzo arg 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg.
    [Show full text]
  • The Transantarctic Mountains These Watercolor Paintings by Dee Molenaar Were Originally Published in 1985 with His Map of the Mcmurdo Sound Area of Antarctica
    The Transantarctic Mountains These watercolor paintings by Dee Molenaar were originally published in 1985 with his map of the McMurdo Sound area of Antarctica. We are pleased to republish these paintings with the permission of the artist who owns the copyright. Gunter Faure · Teresa M. Mensing The Transantarctic Mountains Rocks, Ice, Meteorites and Water Gunter Faure Teresa M. Mensing The Ohio State University The Ohio State University School of Earth Sciences School of Earth Sciences and Byrd Polar Research Center and Byrd Polar Research Center 275 Mendenhall Laboratory 1465 Mt. Vernon Ave. 125 South Oval Mall Marion, Ohio 43302 Columbus, Ohio 43210 USA USA [email protected] [email protected] ISBN 978-1-4020-8406-5 e-ISBN 978-90-481-9390-5 DOI 10.1007/978-90-481-9390-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010931610 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: A tent camp in the Mesa Range of northern Victoria Land at the foot of Mt. Masley. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) We dedicate this book to Lois M. Jones, Eileen McSaveny, Terry Tickhill, and Kay Lindsay who were the first team of women to conduct fieldwork in the Transantarctic Mountains during the 1969/1970 field season.
    [Show full text]
  • Redalyc.Early Cambrian Archaeocyathan Limestone Blocks In
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España GONZÁLEZ, P.D.; TORTELLO, M.F.; DAMBORENEA, S.E. Early Cambrian archaeocyathan limestone blocks in low-grade meta-conglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina) Geologica Acta: an international earth science journal, vol. 9, núm. 2, junio, 2011, pp. 159-173 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50521609003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.9, Nº 2, June 2011, 159-173 DOI: 10.1344/105.000001650 Available online at www.geologica-acta.com Early Cambrian archaeocyathan limestone blocks in low-grade meta-conglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina) 1 2 2 P.D. GONZÁLEZ M.F. TORTELLO S.E. DAMBORENEA 1 Centro de Investigaciones Geológicas, (UNLP - CONICET) 1 Nº 644, B1900TAC, La Plata (Buenos Aires), Argentina. E-mail: [email protected]; Fax: +54-221-4827560 2 CONICET – División Paleozoología Invertebrados, Museo de Ciencias Naturales Paseo del Bosque s/n, 1900 La Plata (Buenos Aires), Argentina. Tortello E-mail: [email protected] Damborenea E-mail: [email protected] ABSTRACT Massive grey limestone blocks containing a fairly diverse but poorly preserved archaeocyath fauna were recovered from a meta-conglomerate bed in the El Jagüelito Formation (Sierra Grande area, Eastern North Patagonian Massif, Río Negro, Argentina).
    [Show full text]
  • Multiple Phases of Early Paleozoic Deformation in the Central Transantarctic Mountains
    interest to see if this new community maintains the strong References correspondence evident for the lower Fremouw, or if Antarctica Colbert, E. H. 1982. Triassic vertebrates in the Transantarctic Mountains. developed a unique fauna during the later portion of the Early In M. Turner and J. Splettstoesser (Eds.), Geology of the Central Transan- Triassic. tarctic Mountains. Antarctic Research Series, 39(2), 11-35. A paleoecological analysis of the lower Fremouw Formation is Cosgriff, J.W., W.R. Hammer, J.M. Zawiskie, and N.R. Kemp. 1978. advancing concurrent with the description of this new fauna. New Triassic vertebrates from the Fremouw Formation of the Queen Extensive collection of the lower Fremouw over four field sea- Maud Mountains. Antarctic Journal of the U.S., 13(4), 23-24. Sons has led to a data base that may allow us to determine Hammer, W. R., and j.W. Cosgriff. 1981. Myosaurus gracilis, an anomo- preferred paleoenvironments for certain taxa. New specimens dont reptile from the Lower Triassic of Antarctica and South Africa. collected from the Coalsack Bluff and Graphite Peak localities Journal of Paleontology, 55(2), 410-424. Hammer, W.R., W.J. Ryan, J.W. Tamplin, and S.L. DeFauw. 1986. New during the 1985-1986 field season are under study, and a com- vertebrates from the Fremouw Formation (Triassic), Beardmore plete analysis of the collection made during the 1977- 1978 field Glacier region, Antarctica. Antarctic Journal of the U.S., 21(5), 24-26. season (Cosgriff et al. 1978) has recently been completed. 86Keyser, A. W., and R.M.H.
    [Show full text]
  • Early Cambrian Archaeocyathan Limestone Blocks in Low-Grade Meta-Conglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina)
    Geologica Acta, Vol.9, Nº 2, June 2011, 159-173 DOI: 10.1344/105.000001650 Available online at www.geologica-acta.com Early Cambrian archaeocyathan limestone blocks in low-grade meta-conglomerate from El Jagüelito Formation (Sierra Grande, Río Negro, Argentina) 1 2 2 P.D. GONZÁLEZ M.F. TORTELLO S.E. DAMBORENEA 1 Centro de Investigaciones Geológicas, (UNLP - CONICET) 1 Nº 644, B1900TAC, La Plata (Buenos Aires), Argentina. E-mail: [email protected]; Fax: +54-221-4827560 2 CONICET – División Paleozoología Invertebrados, Museo de Ciencias Naturales Paseo del Bosque s/n, 1900 La Plata (Buenos Aires), Argentina. Tortello E-mail: [email protected] Damborenea E-mail: [email protected] ABSTRACT Massive grey limestone blocks containing a fairly diverse but poorly preserved archaeocyath fauna were recovered from a meta-conglomerate bed in the El Jagüelito Formation (Sierra Grande area, Eastern North Patagonian Massif, Río Negro, Argentina). This is the first documented reference of the presence of archaeocyaths in continental Argentina. Seven different taxa were identified, preliminary described and figured. Recrystallization of the skeletons due to regional low-grade metamorphism and deformation of the unit does not allow observation of key detailed features and prevents identification to genera and species. Nevertheless, the specimens studied show general affinities with archaeocyathan assemblages from the Australia-Antarctica palaeobiogeographic province and indicate a middle Early Cambrian (Atdabanian-Botomian) maximum age for the deposition of the El Jagüelito Formation protoliths. The similarities between the North Patagonian Early Paleozoic El Jagüelito Formation and those rocks from Antarctica suggest a geologic and biologic common history of these regions on the same southwest margin of Gondwana during that time.
    [Show full text]
  • Clastos Con Calcimicrobios Y Arqueociatos Procedentes De
    Estudios Geológicos julio-diciembre 2019, 75(2), e112 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43586.567 Calcimicrobial-archaeocyath-bearing clasts from marine slope deposits of the Cambrian Mount Wegener Formation, Coats Land, Shackleton Range, Antarctica Clastos con calcimicrobios y arqueociatos procedentes de depósitos marinos del talud de la Formación cámbrica del Monte Wegener, Coats Land, Cordillera de Shackleton Antártida M. Rodríguez-Martínez1, A. Perejón1, E. Moreno-Eiris1, S. Menéndez2, W. Buggisch3 1Universidad Complutense de Madrid, Departamento de Geodinámica, Estratigrafía y Paleontología, Madrid, Spain. Email: [email protected], [email protected], [email protected]; ORCID ID: http://orcid.org/0000-0002-4363-5562, http://orcid.org/0000-0002-6552-0416, http://orcid.org/0000-0003-2250-4093 2Museo Geominero, Instituto Geológico y Minero de España (IGME), Ríos Rosas, 23, 28003 Madrid, Spain. Email: [email protected]; ORCID ID: Silvia Menéndez: http://orcid.org/0000-0001-6074-9601 3GeoZentrum Nordbayern. Friedrich-Alexander-University of Erlangen-Nürnberg (FAU). Schlossgarten 5, 91054 Erlangen, Germany. ABSTRACT The carbonate clasts from the Mount Wegener Formation provide sedimentological, diagenetic and palaeonto- logical evidences of the destruction and resedimentation of a hidden/unknown Cambrian carbonate shallow-water record at the Coats Land region of Antarctica. This incomplete mosaic could play a key role in comparisons and biostratigraphic correlations between the Cambrian record of the Transantarctic Mountains, Ellsworth-Whitmore block and Antarctic Peninsula at the Antarctica continent. Moreover, it represents a key record in future palaeobio- geographic reconstructions of South Gondwana based on archaeocyathan assemblages. Keywords: Calcimicrobes; Archaeocyaths; Shackleton Range; Antarctica; Gondwana.
    [Show full text]
  • Systematics, Biostratigraphy and Biogeography of Australian Early Palaeozoic Trilobites
    MACQUARIE UNIVERSITY^SYDNEY AUSTRALIA SYSTEMATICS, BIOSTRATIGRAPHY AND BIOGEOGRAPHY OF AUSTRALIAN EARLY PALAEOZOIC TRILOBITES by John R. Paterson, B.Sc. (Hons) Centre for Ecostratigraphy and Palaeobiology Department of Earth and Planetary Sciences Macquarie University This thesis is submitted to fulfil the requirements for the degree of Doctor of Philosophy from Macquarie University February, 2005 HIGHER DEGREE THESIS AUTHOR’S CONSENT (DOCTORAL) This is to certify that I, „ fT... .................... being a candidate for the degree of Doctor of ................ am aware of the policy of the University relating to the retention and use of higher degree theses as contained in the University’s Doctoral Rules generally, and in particular Rule 7(10). In the light of this policy and the policy of the above Rules, I agree to allow a copy of my thesis to be deposited in the University Library for consultation, loan and photocopying forthwith. Signature of Witness Signature of Candidate Dated this day of ................ 20 0 5 " Office Use Only The Academic Senate on 154K A m JLu 2 0 0 5 resolved that the candidate had satisfie^requirements for admission to the degree of This thesis represents a majc^part of the prescfibgp program of study. Trilobites tell me of ancient marine shores teeming with budding life, when silence was only broken by the wind, the breaking of the waves, or by the thunder of storms and volcanoes...The time of trilobites is unimaginably far away, and yet, with relatively little effort, we can dig out these messengers of our past and hold them in our hand. And, if we learn the language, we can read their message.
    [Show full text]
  • Constraints on Early Paleozoic Magmatic Processes and Tectonic Setting of Inexpressible Island, Northern Victoria Land, Antarctica
    • Article • Advances in Polar Science doi: 10.13679/j.advps.2019.1.00052 March 2019 Vol. 30 No. 1: 52-69 Constraints on early Paleozoic magmatic processes and tectonic setting of Inexpressible Island, Northern Victoria Land, Antarctica CHEN Hong1,2*, WANG Wei1,2 & ZHAO Yue1,2 1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2 Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural Resources, Beijing 100081, China Received 2 May 2018; accepted 12 February 2019 Abstract During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive Complex, the latest magmatic activity comprised the emplacement of the Abbott Unit (508 Ma) and the Vegetation Unit (~475 Ma), which were formed in different tectonic settings. Owing to their similar lithological features, the tectonic transformation that occurred between the formation of these two units has not been well studied. Through a detailed geological field investigation and geochemical and geochronological analyses, four types of magmatic rock—basalt, syenite, mafic veins, and granite veins—were identified on Inexpressible Island, Northern Victoria Land. Our SHRIMP (Sensitive High Resolution Ion Micro Probe) zircon U–Pb ages of the basalt and the granite veins are 504.7 ± 3.1 and 495.5 ± 4.9 Ma, respectively. Major- and trace-element data indicate a continental-margin island-arc setting for the formation of these two rock types. The zircon U–Pb ages of the syenite and the monzodiorite veins are 485.8 ± 5.7 and 478.5 ± 4.0 Ma, respectively.
    [Show full text]
  • Tectonic Model for Development of the Byrd Glacier Discontinuity and Surrounding Regions of the Transantarctic Mountains During the Neoproterozoic – Early Paleozoic
    Published in: Fütterer, D K, Damaske, D, Kleinschmidt, G, Miller, H & Tessensohn, F (eds.), Antarctica: contributions to global earth sciences, Springer, Berlin, Heidelberg, New York, 45-54 http://dx.doi.org/10.1007/3-540-32934-X The original publication is available at http://www.springerlink.com see http://dx.doi.org/10.1007/3-540-32934-X_22 Data are available at: http://dx.doi.org/10.1594/PANGAEA.611703 Tectonic Model for Development of the Byrd Glacier Discontinuity and Surrounding Regions of the Transantarctic Mountains during the Neoproterozoic – Early Paleozoic Edmund Stump1 · Brian Gootee1 · Franco Talarico2 1 Department of Geological Sciences, Arizona State University, Tempe, Arizona AZ 85287-1404, USA 2 Dipartimento di Scienze della Terra, Università di Siena, Via del Laterino 8, 53100 Siena, Italy Abstract. The Byrd Glacier discontinuity is a major tectonic boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consist of two-dimensional transects across the belt, but do not address the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic produced a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of a terrane (Beardmore microcontinent) during the latest Neoproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in support of this hypothesis are U-Pb dates of 545.7 ±6.8 Ma and 531.0 ±7.5 Ma on plutonic rocks from the Britannia Range, directly north of Byrd Glacier.
    [Show full text]