The Spatial Distribution of Wood-Nesting Ants in the Central

Total Page:16

File Type:pdf, Size:1020Kb

The Spatial Distribution of Wood-Nesting Ants in the Central AN ABSTRACT OF THE THESIS OF Gary R. Nielsen for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on March 6, 1986. Title: The Spatial Distribution of Wood-Nesting Ants in the Central Coast Range of Oregon / 4 Abstractapproved: Redacted for privacy Fred okickson Two coniferous forests in the central Coast Range of western Oregon were surveyed for nests of wood inhabiting ants.Nineteen species and 825 ant nests were found, corresponding to an average nest density of 0.079 nests/m2 (maximum 0.38/m2) and a mean species density of 0.026 species/m2 (maximum 0.08/m2). The spatial distribution of all species was random within the study areas In contrast, the nest distribution patterns of the six most common species and all ants combined were found to be highly clumped (contagious) due to high nest densities on a few favorable sites. Most ants achieved greatest nest densities on high imsdlatim, early successional plots such as clear- cuts. The nest abundances of 15 species were negatively correlated with tree canopy cover. However, Lasius pallitarsis and Leptothorax nevadensis had higher nest densities in woody debrison forested plots. Furthermore, the nest densities of all ants combined, and of nine individual species were greater in stumps than logs. Within stumps, the nests of all species combined, as well as Camponotus modoc, Tapinoma sessile, and Lasius pallitarsis were concentratedon the south sides of stumps.The bark, cambial zone, and wood of woody debris in all stages of decompositionwere exploited by ants for nest sites. Leptothorax nevadensis, Tapinoma sessile, and Aphaenogaster subterranea occupied bark significantly more often than other tissues. Lasius pallitarsis and Camponotus modoc occupied wood significantly more often than other tissues although large nests extended through all tissues. The Spatial Distribution of Wood-Nesting Ants in the Central Coast Range of Oregon by Gary R. Nielsen A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed March 6, 1986 Commencement June 1986 Redacted for privacy r Professor of Botany and Plant Pathology in Charge of major Redacted for privacy Head ofdelD'aitinentof Botarii and Plant Pathology Redacted for privacy School dr Date thesis is presented March 6, 1986 Typed by Gary Nielsen for Gary R. Nielsen Aclawaledgements I would like to thank Dylan Bulesco, Rose McKeown, Kendrick Moho lt, and Bob Truitt for their help one or two daysa week during the summers of 1982 and 1983. locating and sampling nests of these ants was very a difficult and labor-intensive task that could not have been accomplished in the ten odd months of sampling without these volunteers. The curiosity and interest of Annette Olson and Susan Holdeman is also gratefully acknowledged for it led them to assist me in the field on two separate occasions. I am indebted to Dr. George Ferguson for teaching me the basics of ant taxonomy and natural history. Many thanks to Steve Shattuck for his expert identification of the ants collected and for the natural history information he provided. Thanks to Brad Smith's vast knowledge of the Cornell Ecology Series Programs (of which Detrended Correspondence Analysis isa part) and patience with computer neophytes I was able to explore the patterns in the data and overcome the inevitable "bugs". A special thank you to Dave Swofford (Illinois Natural History Survey) who taught me CMS, showed me innumerable data manipulation and analysis shortcuts, and greatly facilitated my data analyses after I left Oregon. Mark Harmon introduced me to circular statistical analyses which made the analysis of my stump aspect data possible. Thanks to OSU's Forestry School for the use of McDonald Forest and to Marvin Rowley, manager of McDonald and Paul Dunn Forests, for his consultations on the history and management practices ofmy study area. I also gratefully acknowledge the U.S. Forest Service Alsea Ranger District for their permission to use the Corvallis Watershed site and for the management information they provided. I would like to thank Dr. Everett Hansen and Dr. Donald Zobel for loaning field and laboratory equipmenttome. I am indebted to my entire committee for their support in what started out to be a very interdisciplinary study. Dr. Peter McEvoy provided valuable insect ecology information; Dr. EverettHansen and Dr. Kermit Cromack helped metoexplore the implications of this study to forest management practices and forest ecology in general (especially wood pathology and the dynamics of wood decomposition); discussions with Dr. George Fergusonon the natural history, taxonomy, and physiology of ants were rewarding andvery much appreciated. I would like to thank my advisor, Dr. Fred Rickson, for givingme "free rein"to choosea project of my fancy, for his photographic assistance, and for his review ofmy dissertation. I also wish to express my appreciation to all my fellow graduate students and colleagues with whom I have had many rewarding discussions. I want to especially acknowledge the advice, support, and manuscript reviews of Joe Antos, Charles Halpern, Hiram Larew, Teresa Magee, and Annette Olson. Finally, I wish to thank my wife, Connie Rinaldo, for her help in all aspects of this project and without whose support, encouragement, and love this work would not have been possible. Table of Contents Introduction 1 Chapter I. The Spatial Distribution of Wood-Nesting Ants 3 in the Central Coast Range of Oregon. I. The Macrosite Introduction 4 Methods and Materials 6 Results 9 Discussion 38 Chapter II. The Spatial Distribution of Wood-Nesting Ants 46 in the Central Coast Range of Oregon. II. The Microsite Introduction 47 Methods and Materials 48 Results 51 Discussion 79 Chapter III. The Spatial Distribution of Wood-Nesting Ants 82a in the Central Coast Range of Oregon: General Discussion and Summary Ant Distribution and Forest Ecology 83 Spatial Distribution of Common Species 86 Nest Distribution of All Species 91 Ant Succession 92 Literature Cited 94 Appendix A Number of Queens in Incipient Colonies of Three 98 Carpenter Ant Species Appendix B Ant Nests in the Bark of Living Tree Boles 101 List of Tables Table Page 1.1 Frequency of occurrence of ant nests from both 11 study areas arranged in descending order of Abundance and overall mean nest and species densities. 1.2 Indices of dispersion and test of fit to the 12 negative binomial function for the eight most abundant species and all ant nests and species combined. 1.3 Numbers of ant nests in logs and stumps from 14 clearcut and forested areas of both study sites. 1.4 Correlation of plot scores on the first two 17 ordination axes with environmental variables for the combined study areas. 1.5 Correlation matrix for the combined study areas' 18 environmental variables. 1.6 Correlation matrix for site variables and 20 species of both study areas (McDonald Forest and Mary's Peak). 1.7 Correlation matrix for ant species of both study 21 areas (McDonald Forest and Mary's Peak). 1.8 Correlation of plot scores on first two ordin- 25 ation axes with environmental variables for McDonald Forest. I.9 Correlation matrix for McDonald Forest site 27 variables. 1.10 Correlation matrix for McDonald Forest site 29 variables and ant species. 1.11 Correlation matrix for McDonald Forest ants. 30 1.12 Frequency of occurrence, mean nest and species 33 density of ants of the Mary's Peak site and comparison of forest and clearcut habitats. 1.13 Frequency of occurrence, mean nest and species 34 density of ants of the McDonald Forest site. 1.14 Correlation of plot scores on the first two 36 ordination axes with environmental variables for Mary's Peak. Table Page 1.15 Correlation matrix for Mary's Peak site 37 variables. 1.16 Correlation matrix for Mary's Peak site 40 variables and ant species. 1.17 COrrelation matrix for Mary's Peak ants. 41 II.1 Mean nest density (standard deviation) of all 52 ants in woody debris from forest and clearcut habitats. 11.2 Mean nest density in woody debris from forest 53 and clearcut habitats (standard deviation). 11.3 Mean nest density of ants in stumps and logs 55 from all habitats (standard deviation). 11.4 Correlation of ordination scores for McDonald 56 Forest logs with log variables. 11.5 Correlation matrix for McDonald Forest log 59 microsite variables. 11.6 Mean nest densities (standard deviation) in 61 McDonald Forest logs from clearcut and forest habitats. 11.7 Correlation of Mary's Peak log ordination scores 63 with log variables. 11.8 Correlation matrix for Mary's Peak log microsite 64 variables. 11.9 Mean nest densities (standard deviation) in 67 Mary's Peak logs from clearcut and forest habitats. II. 10 Correlation matrix for McDonald Forest stump 70 microsite variables. II.11 Correlation matrix for Mary's Peak stump 73 microsite variables. 11.12 Comparison of numbers of nests indifferent 76 regions of woody debris. 11.13 Comparison of moisture content of woody debris 78 with (species name) and without (habitat name) ants. B. 1 Frequency of occurrence and mean nest density (in 102 parentheses) of ants found in live trees of both study areas. List of Figures Figure Page I.1 Detrended correspondence analysis ordination of 15 combined study area samples. 1.2 Detrended correspondence analysis ordination for 23 the ant species of the combined study areas. 1.3 Detrended correspondence analysis ordination of 24 McDonald Forest samples. 1.4 Detrended correspondence analysis ordination of 28 McDonald Forest species. 1.5 Detrended correspondence analysis ordination of 32 Mary's Peak samples. 1.6 Detrended correspondence analysis ordination of 39 Mary's Peak species. II.1 Detrended correspondence analysis ordination of 58 McDonald Forest log samples.
Recommended publications
  • Effects on Brood Development in the Carpenter Ant Camponotus Vicinus Mayr After Exposure to the Yeast Associate Schwanniomyces Polymorphus Kloecker
    insects Article Effects on Brood Development in the Carpenter Ant Camponotus vicinus Mayr after Exposure to the Yeast Associate Schwanniomyces polymorphus Kloecker Mark E. Mankowski 1,*, Jeffrey J. Morrell 2 and Patricia K. Lebow 3 1 Forest Products Laboratory Starkville, USDA Forest Service, Starkville, MS 39759, USA 2 Centre Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, QLD 4102, Australia; [email protected] 3 Forest Products Laboratory Madison, USDA Forest Service, Madison, WI 53726, USA; [email protected] * Correspondence: [email protected] Simple Summary: Carpenter ants are important to ecosystem services as they assist in the breakdown of course woody debris when excavating wood for nests. Feeding on a variety of carbohydrate and protein sources, they have an infrabuccal filter that limits passage of large food particles to their gut. A variety of yeasts have been found associated with the infrabuccal pocket and the nests of these ants. The yeast Schwanniomyces polymorphus is associated with the carpenter ant Camponotus vicinus. To examine a possible nutritional association between this yeast and ant, we reared small sub-colonies of defaunated and non-defaunated C. vincus brood on several artificial diets where various nutritional components were removed. Part of the testing involved exposure of brood to these diets and cells of S. polymorphus. Dietary treatments that were augmented with yeast generally had deleterious Citation: Mankowski, M.E.; Morrell, J.J.; effects on brood development compared to diets without yeast. However, increased brood weight Lebow, P.K. Effects on Brood and increased number of adult ants from initial brood was observed in non-defaunated ants fed a Development in the Carpenter Ant diet where B vitamins and sterols were absent, but augmented with live yeast.
    [Show full text]
  • A Review of the Ant Genera Leptothorax Mayr and Temnothorax Mayr (Hymenoptera, Formicidae) of the Eastern Palaearctic
    Acta Zoologica Academiae Scientiarum Hungaricae 50 (2), pp. 109–137, 2004 A REVIEW OF THE ANT GENERA LEPTOTHORAX MAYR AND TEMNOTHORAX MAYR (HYMENOPTERA, FORMICIDAE) OF THE EASTERN PALAEARCTIC A. RADCHENKO Museum and Institute of Zoology, Polish Academy of Sciences 64, Wilcza str., 00–679, Warsaw, Poland; E-mail: [email protected] Nineteen species of the genera Leptothorax and Temnothorax are distributed from Mongolia to the Pacific Ocean, these are revised and a key to their identification is provided. Four new species, Temnothorax cuneinodis, T. xanthos, T. pisarskii and T. michali are described from North Korea. L. galeatus WHEELER is synonymised with T. nassonovi (RUZSKY) and L. wui WHEELER is raised to species rank (in the genus Temnothorax). Key words: ants, Leptothorax, Temnothorax, taxonomy, new species, key, East Palaearctic INTRODUCTION The genus Leptothorax was described by MAYR in 1855, and a few years later he described the closely related genus Temnothorax (MAYR, 1861). For many years, the latter was regarded by different authors either as a good genus or as a subgenus of Leptothorax, but during the last decade it was considered to be a junior synonym of Leptothorax (BOLTON, 1995). BINGHAM (1903) designated Formica acervorum FABRICIUS, 1793 as the type-species of the genus Leptothorax. About the same time RUZSKY (1904) de- scribed the genus Mychothorax, to which F. acervorum was also assigned as type species (by original designation); later Mychothorax was considered as a subgenus of Leptothorax, insomuch that EMERY (1912, 1921) designated Myrmica clypeata MAYR, 1853 as the type species of Leptothorax. All subsequent authors placed the species with 11-jointed antennae in the subgenus Mychothorax and those with 12-jointed antennae in the subgenus Leptothorax s.
    [Show full text]
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • Short Term Response of Ants to the Removal of Ground Cover in Organic Olive Orchards
    Eur. J. Entomol. 108: 417–423, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1632 ISSN 1210-5759 (print), 1802-8829 (online) Short term response of ants to the removal of ground cover in organic olive orchards MERCEDES CAMPOS1, LUISA FERNÁNDEZ1, FRANCISCA RUANO3, BELÉN COTES1, MANUEL CÁRDENAS1 and JUAN CASTRO2 1Department of Environmental Protection, Estación Experimental del Zaidín, (CSIC) C/Profesor Albareda n° 1, 18008 – Granada, Spain; e-mail: [email protected] 2IFAPA Centro Camino de Purchil, CAP (Junta de Andalucia), P.O. Box 2027, 18080 – Granada, Spain 3Department of Animal Biology, University of Granada, 18071 – Granada, Spain Key words. Hymenoptera, Formicidae, disturbance, biodiversity, soil management Abstract. Ants are the most abundant group of soil arthropods in olive groves where they are involved in various trophic relation- ships of great importance for crops. The system of soil management is one agricultural practice that has a great effect on ants, so the objective of this study was to compare ant populations in organic olive orchards with a ground cover of natural vegetation and others where this natural vegetation is mechanically removed at the beginning of June. Ants were sampled using pitfall traps at 14, 30, 70 and 90 days after the removal of the ground vegetation. Overall, ant biodiversity did not change. However, changes were observed in the abundance of ant species, in particular, in those species that build shallow nests in the soil, both between the rows of trees and under the canopy of olive trees. In contrast, deep nesting species, such as Messor barbarus, were not affected.
    [Show full text]
  • Fecundity Determines the Outcome of Founding Queen Associations in Ants Eva‑Maria Teggers, Falk Deegener & Romain Libbrecht*
    www.nature.com/scientificreports OPEN Fecundity determines the outcome of founding queen associations in ants Eva‑Maria Teggers, Falk Deegener & Romain Libbrecht* Animal cooperation evolved because of its benefts to the cooperators. Pleometrosis in ants—the cooperation of queens to found a colony—benefts colony growth, but also incurs costs for some of the cooperators because only one queen usually survives the association. While several traits in queens infuence queen survival, they tend to be confounded and it is unclear which factor specifcally determines the outcome of pleometrosis. In this study, we used the ant Lasius niger to monitor ofspring production in colonies founded by one or two queens. Then, we experimentally paired queens that difered in fecundity but not in size, and vice versa, to disentangle the efect of these factors on queen survival. Finally, we investigated how fecundity and size difered between queens depending on whether they were chosen as pleometrotic partners. Our results indicate that pleometrosis increased and accelerated worker production via a nutritional boost to the larvae. The most fecund queens more frequently survived the associations, even when controlling for size and worker parentage, and queens selected as pleometrotic partners were less fecund. Our results are consistent with fecundity being central to the onset and outcome of pleometrosis, a classic example of cooperation among unrelated animals. While animal cooperation typically occurs among related individuals 1, there are cases of unrelated cooperators in some mammal, bird and insect species2. Tese have raised interesting questions on the origin, maintenance and benefts of cooperation among unrelated animals. Such questions include how the internal (e.g., physiology) and external (e.g., environment) conditions afect the decision to behave cooperatively, the benefts of cooperation, and its outcome.
    [Show full text]
  • HOUSEHOLD ARTHROPODS Nuisance Household Jean R
    2015 Household Pests 2/22/2015 OVERVIEW Guidelines & Principles Groups of pests Public health pests HOUSEHOLD ARTHROPODS Nuisance Household Jean R. Natter Structural pests 2015 2 MANAGEMENT PRINCIPLES DETERMINE MANAGEMENT Define the problem Eradicate? Damage? Critter(s)? Control? ID the critter Manage? Pest? Tolerate? Dangerous? (people, pets, or structures?) Did it just stumble indoors? Verify: PNW Insect Management Handbook Appropriate management 3 4 CAPTURE THE CRITTER RECOMMENDATIONS Research-based management EPA says: Pest control materials must be labeled for that purpose * * * * * * * * * * (Common Sense Pest Control) No home remedies 5 6 Jean R. Natter 2015 Household Pests 1 2015 Household Pests 2/22/2015 PUBLIC HEALTH: BED BUGS 3/16” Broadly flat, oval Cracks, crevices, & PUBLIC HEALTH PESTS seams (naturephoto.cz.com) Eggs glued in place Blood feeders (Bed Bugs; WSU; FS070E) Bites w/o pain Odor: sweet; acrid Bed Bugs (FS070E) 7 (J. R. Natter) 8 MANAGEMENT: BED BUGS PUBLIC HEALTH: MOSQUITOES Key Points Mattress: Encase or heat Rx Launder bedding, clothes – hot! Pest control company (NY Times) (L & R: University of Missouri; gambusia Stamford University) 9 10 MANAGEMENT: MOSQUITOES PUBLIC HEALTH: FLEAS Key Points Adults on animal Eggs drop off Source reduction Larvae ½” Personal protection w/tan head Mosquito fish (Gambusia), if legal Larvae eat debris Rx for larvae: Bti Pupa “waits” (Bacillus thuringiensis israelensis) Nest parasites (University of Illinois) 11 12 Jean R. Natter 2015 Household Pests 2 2015 Household Pests 2/22/2015 MANAGEMENT: FLEAS PUBLIC HEALTH: TICKS Rocky Mountain wood tick Key Points 3-step program Dermacentor species 1. Vacuum often East of Cascades 2. Insect growth regulator (IGR) Immatures feed mostly on carpet & pet’s “nest” on rodents 3.
    [Show full text]
  • Discontinuous Co2 Emission in a Small Insect, the Formicine Ant Campoxotus Vicixus
    J. exp. Biol. 134, 363-376 (1988) 363 Printed in Great Britain © The Company of Biologists Limited I9SS DISCONTINUOUS CO2 EMISSION IN A SMALL INSECT, THE FORMICINE ANT CAMPOXOTUS VICIXUS BY JOHN R. B. LIGHTON Department of Biology, University of California at Los Angeles, Los Angeles, CA 90024, USA Accepted 21 July 1987 SUMMARY Standard rates of oxygen consumption (VO2) and CO2 production (VCO2) were measured by constant-volume respirometry in the formicine ant, Camponotus vicinus Mayr, at temperatures ranging from 10 to 40°C. Over this range, the Q10 with regard to VO2 was 1-79, and with regard to VCO2, 1-84. Multiple regression equations relating VO2 and VCO2 of inactive ants to mass (0016-0088g) and temperature were calculated. Periodic CO2 emissions ('bursts') were monitored with flow-through respirometry. Burst frequency increased exponentially with tempera- ture (QiO = 3-05), from 814h"' at 15°C to 81-4h~' at 35°C, and was not significantly correlated with body mass over the mass range (0041-0086g) investigated. Burst volume, which could be accurately measured in one ant, decreased with temperature (Qio = 0'61). thus yielding the observed Vcc>2 Q10 °f 1-84. INTRODUCTION The dynamics of external gas exchange in insects has important implications in the measurement of insect metabolic rates; it also provides insights into the functioning of a respiratory system that is complex, efficient, and unique to insects and a few other arthropods. One of the most striking aspects of external gas exchange in insects is its discontinuous, or intermittent, nature. Reports of periodic emissions, or bursts, of CO2 from large insects have been present in the literature for many years (Schneiderman, 1953; Punt, Parser & Kuchlein, 1957; Hamilton, 1964), and such reports have now become commonplace (see reviews by Miller, 1981; Kaars, 1981).
    [Show full text]
  • Complexity and Behaviour in Leptothorax Ants
    Complexity and behaviour in Leptothorax ants Octavio Miramontes Universidad Nacional Aut´onomade M´exico ISBN 978-0-9831172-2-3 Mexico City Boston Vi¸cosa Madrid Cuernavaca Beijing CopIt ArXives 2007 Washington, DC CopIt ArXives Mexico City Boston Vi¸cosa Madrid Cuernavaca Beijing Copyright 1993 by Octavio Miramontes Published 2007 by CopIt ArXives Washington, DC All property rights of this publications belong to the author who, however, grants his authorization to the reader to copy, print and distribute his work freely, in part or in full, with the sole conditions that (i) the author name and original title be cited at all times, (ii) the text is not modified or mixed and (iii) the final use of the contents of this publication must be non commercial Failure to meet these conditions will be a violation of the law. Electronically produced using Free Software and in accomplishment with an Open Access spirit for academic publications Social behaviour in ants of the genus Leptothorax is reviewed. Attention is paid to the existence of collective robust periodic oscillations in the activity of ants inside the nest. It is known that those oscillations are the outcome of the process of short-distance interactions among ants and that the activity of individual workers is not periodic. Isolated workers can activate spontaneously in a unpredictable fashion. A model of an artificial society of computer automata endowed with the basic behavioural traits of Leptothorax ants is presented and it is demonstrated that collective periodic oscillations in the activity domain can exist as a consequence of interactions among the automata.
    [Show full text]
  • Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With­
    ~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus­ : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un­ ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro­ 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super­ _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- .
    [Show full text]
  • Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California
    Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California Prepared for: Nature Reserve of Orange County and The Irvine Co. Open Space Reserve, Trish Smith By: Krista H. Pease Robert N. Fisher US Geological Survey San Diego Field Station 5745 Kearny Villa Rd., Suite M San Diego, CA 92123 2001 2 INTRODUCTION: In conjunction with ongoing biospecies richness monitoring at the Nature Reserve of Orange County (NROC), ant sampling began in October 1999. We quantitatively sampled for all ant species in the central and coastal portions of NROC at long-term study sites. Ant pitfall traps (Majer 1978) were used at current reptile and amphibian pitfall trap sites, and samples were collected and analyzed from winter 1999, summer 2000, and winter 2000. Summer 2001 samples were recently retrieved, and are presently being identified. Ants serve many roles on different ecosystem levels, and can serve as sensitive indicators of change for a variety of factors. Data gathered from these samples provide the beginning of three years of baseline data, on which long-term land management plans can be based. MONITORING OBJECTIVES: The California Floristic Province, which includes southern California, is considered one of the 25 global biodiversity hotspots (Myers et al. 2000). The habitat of this region is rapidly changing due to pressure from urban and agricultural development. The Scientific Review Panel of the State of California's Natural Community Conservation Planning Program (NCCP) has identified preserve design parameters as one of the six basic research needs for making informed long term conservation planning decisions.
    [Show full text]
  • Floral Volatiles Play a Key Role in Specialized Ant Pollination Clara De Vega
    FLORAL VOLATILES PLAY A KEY ROLE IN SPECIALIZED ANT POLLINATION CLARA DE VEGA1*, CARLOS M. HERRERA1, AND STEFAN DÖTTERL2,3 1 Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain 2 University of Bayreuth, Department of Plant Systematics, 95440 Bayreuth, Germany 3 Present address: University of Salzburg, Organismic Biology, Hellbrunnerstr. 34, 5020 Salzburg, Austria Running title —Floral scent and ant pollination * For correspondence. E-mail [email protected] Tel: +34 954466700 Fax: + 34 954621125 1 ABSTRACT Chemical signals emitted by plants are crucial to understanding the ecology and evolution of plant-animal interactions. Scent is an important component of floral phenotype and represents a decisive communication channel between plants and floral visitors. Floral 5 volatiles promote attraction of mutualistic pollinators and, in some cases, serve to prevent flower visitation by antagonists such as ants. Despite ant visits to flowers have been suggested to be detrimental to plant fitness, in recent years there has been a growing recognition of the positive role of ants in pollination. Nevertheless, the question of whether floral volatiles mediate mutualisms between ants and ant-pollinated plants still remains largely unexplored. 10 Here we review the documented cases of ant pollination and investigate the chemical composition of the floral scent in the ant-pollinated plant Cytinus hypocistis. By using chemical-electrophysiological analyses and field behavioural assays, we examine the importance of olfactory cues for ants, identify compounds that stimulate antennal responses, and evaluate whether these compounds elicit behavioural responses. Our findings reveal that 15 floral scent plays a crucial role in this mutualistic ant-flower interaction, and that only ant species that provide pollination services and not others occurring in the habitat are efficiently attracted by floral volatiles.
    [Show full text]