Characterisation of the Contribution of the GABA-Benzodiazepine &Alpha

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation of the Contribution of the GABA-Benzodiazepine &Alpha View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Journal of Cerebral Blood Flow & Metabolism (2012) 32, 731–744 & 2012 ISCBFM All rights reserved 0271-678X/12 www.jcbfm.com Characterisation of the contribution of the GABA-benzodiazepine a1 receptor subtype to [11C]Ro15-4513 PET images James FM Myers1, Lula Rosso2, Ben J Watson1, Sue J Wilson1,3, Nicola J Kalk3, Nicoletta Clementi1, David J Brooks2, David J Nutt3, Federico E Turkheimer2 and Anne R Lingford-Hughes3 1Psychopharmacology Unit, University of Bristol, Bristol, UK; 2Department of Medicine, Centre for Neuroscience, Imperial College London, London, UK; 3Division of Experimental Medicine, Neuropsychopharmacology Unit, Imperial College London, London, UK This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARa5 relative to the GABARa1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARa1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARa5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume (VT) differences in regions populated by different GABA receptor subtypes. Those with low a5 were best fitted by one-tissue compartment models; and those with high a5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that zolpidem caused a significant VT decrease (B10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both a1 and a5 subtypes compared with those containing only a1. Zolpidem reduced one component (mean±s.d.: 71%±41%), presumed to reflect a1-subtype binding, but not another (13%±22%), presumed to reflect a5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands. Journal of Cerebral Blood Flow & Metabolism (2012) 32, 731–744; doi:10.1038/jcbfm.2011.177; published online 4 January 2012 Keywords: GABA; imaging; kinetic modelling; pharmacokinetics; positron emission tomography Introduction locations in the brain, and their functional implica- tions. For instance, knock-in and knockout genetic Imaging studies of benzodiazepine receptors over the manipulations in mice have shown that the GABA- past 20 years have revealed different levels of benzodiazepine receptor subtype containing the a1 binding in patients with anxiety and panic disorders, subtype is important in sedation and sleep, the a2/3 alcoholism, schizophrenia, epilepsy, and other dis- subtype is involved in anxiety, and the a5 in learning orders (Malizia et al, 1998; Lingford-Hughes et al, and memory (Mo¨hler et al, 2002). In the light of 2010; Busatto et al, 1997; Hammers et al, 2001). these discoveries, it is important to study the role of There is increasing knowledge about the six different these receptor subtypes in humans. Neuroimaging, subtypes of the GABA-benzodiazepine receptor, their in particular positron emission tomography (PET) and single-photon emission tomography (SPET) Correspondence: Professor AR Lingford-Hughes, Division of imaging with receptor-selective ligands, remains Experimental Medicine, Neuropsychopharmacology Unit, Imper- the only way of quantifying benzodiazepine recep- ial College, Burlington Danes Building, Hammersmith Hospital tors in the human brain in vivo. Site, 160 Du Cane Road, London W12 0NN, UK. [11C]flumazenil with PET is the most commonly E-mail: [email protected] used in vivo marker of benzodiazepine receptor This study was supported by MRC Programme Grant (G0400575), binding and its iodinated analogue, [123I]iomazenil, UK Medical Research Council PET Methodology Programme Grant, and MRC/University of Bristol PhD studentship (JFM). can be used with SPET. Flumazenil is an antagonist Received 27 April 2011; revised 16 September 2011; accepted 12 that binds with high affinity to benzodiazepine October 2011; published online 4 January 2012 receptors of the a1, a2, a3, or a5(KiB1 nmol/L) GABARa1 contribution to [11C]Ro15-4513 PET images JFM Myers et al 732 subtypes and with lower affinity to the a4ora6 spectral analysis (Cunningham and Jones, 1993) to subtypes (Ki B150 nmol/L (Sieghart, 1995)). Until both [11C]Ro15-4513 and [11C]flumazenil data sets to recently, there was no way of preferentially visualis- deduce the spectral band of the GABA-benzodiaze- ing particular subtypes. Ro15-4513 shows 10- to 15- pine a1 subtype. The range obtained was used fold selectivity for the a5 subtype over others in vitro to determine the occupancy by zolpidem of the (Ki 0.07 nmol/L versus 1 to 5 nmol/L), and in vivo GABA a1 subtype from the [11C]Ro15-4513 data using [11C]Ro15-4513 PET provides a relatively selective the Lassen plot (Lassen et al, 1995; Cunningham marker for the GABARa5 subtype (Hadingham et al, et al, 2010). 1993; Lingford-Hughes et al, 2002; Maeda et al, 2003). These studies, among others, show that in vivo [11C]Ro15-4513 uptake targets the limbic system, Materials and methods with the anterior cingulate cortex, ventral striatum, This study was approved by a NHS Research Ethics and hippocampus showing particularly high levels Committee, the Administration of Radioactive Substances (Onoe et al, 1996), whereas high [11C]flumazenil Advisory Committee and local NHS Research and Devel- binding is seen in all cortical areas, with highest opment. It was conducted in accordance with Good levels in the occipital cortex. Therefore, the limbic Clinical Practice—International Conference on Harmonisa- pattern of [11C]Ro15-4513 binding is likely to be tion guidelines. relevant to learning, memory, reward, and addiction. For example, we have shown that an inverse agonist at the a5 subtype can reverse the memory-impairing Design effects of acute alcohol consumption (Nutt et al, 2007), and [11C]Ro15-4513 binding is related to There were two separate randomised double-blind placebo- performance on a verbal memory task in alcohol controlled studies, each with six healthy volunteer parti- dependence (Lingford-Hughes et al, 2010). The a5 cipants. The study procedures were identical apart from subtype has also been implicated in the reinforc- the PET ligand used: [11C]flumazenil for one study and ing effects of alcohol in mice (Stephens et al, 2005), [11C]Ro15-4513 for the other. Positron emission tomo- and we have shown a reduction in [11C]Ro15-4513 graphy scans were performed twice for each participant, binding in the nucleus accumbens in alcohol depen- once after zolpidem and once after placebo, with at least a dence compared with healthy controls (Lingford- week between scans. Binding of the ligand was compared Hughes et al, 2010). between the two conditions. Although the distribution of [11C]Ro15-4513 bind- ing is consistent with relatively greater labelling of the a5 subtype, the affinity of [11C]Ro15-4513 is only Subjects an order of magnitude greater for the a5 over other Healthy male volunteers (age mean±s.d.: [11C]Ro15-4513: subtypes. Given the abundance of the a1 subtype 44±6 years; [11C]flumazenil: 43±4 years) underwent 2 throughout the brain, it is important to assess the PET scans at least a week apart, after zolpidem or placebo, contribution of a1 binding to [11C]Ro15-4513 bind- the order of which was randomised. They were all ing. This study compares the binding of [11C]Ro15- screened with urinalysis for illicit drugs of abuse, had no 4513 with that of [11C]flumazenil in the presence and current or previous significant physical or mental dis- absence of zolpidem, a compound with selectivity orders, had taken no psychotropic drugs in the last month, for the a1 receptor subtype that is > 5,000-fold over nor were regular benzodiazepine users. that for the a5 subtype (Hanson et al, 2008; Langer et al, 1992). Unlike classical benzodiazepines, the sedative/hypnotic effect of zolpidem occurs at Zolpidem and Measures much lower doses than the other pharmacological effects attributed to benzodiazepine-site action, such Zolpidem (20 mg) or an identical placebo was administered as anticonvulsant activity and muscle relaxation 90 minutes before radioligand injection and at the start of (Sanger, 2004). the PET scan. Plasma zolpidem levels were measured at the After predosing with zolpidem or placebo, time of PET ligand injection. one group of healthy volunteers was scanned with The following tasks provided a measure of the effect [11C]Ro15-4513 and another group with [11C]fluma- of zolpidem on brain function. Saccadic eye movements zenil. Our hypothesis was that, because [11C]fluma- to a target were measured using electrooculography as zenil labels the a1 subtype, its binding would described previously (Lingford-Hughes et al, 2005). The be reduced by zolpidem. In contrast, we hypo- subject was asked to fixate on a red light as it appeared thesised that [11C]Ro15-4513 binding would not be on the screen mounted 67 cm in front of him. Data were altered by zolpidem in a5-rich regions such as then collected for 48 eye movements of 151 to 401 and a the hippocampus, whereas in a1-rich regions with main sequence curve obtained, the measurement for peak limited or no a5, such
Recommended publications
  • NIH Public Access Author Manuscript Synapse
    NIH Public Access Author Manuscript Synapse. Author manuscript; available in PMC 2010 May 4. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Synapse. 2006 November ; 60(6): 411±419. doi:10.1002/syn.20314. GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε Joyce Besheer, Veronique Lepoutre, Beth Mole, and Clyde W. Hodge* Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Abstract Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild- type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • Benzodiazepine Actions Mediated by Specificg-Aminobutyric Acida
    letters to nature ..................................................................................................................................... erratum Benzodiazepine actions mediated by speci®c g-aminobutyric acidA receptor subtypes Uwe Rudolph, Florence Crestani, Dietmar Benke, Ina BruÈnig, Jack A. Benson, Jean-Marc Fritschy, James R. Martin, Horst Bluethmann & Hanns MoÈhler Nature 401, 796±800 (1999) .......................................................................................................................................................................................................................................................................... The quality of Fig. 2 was unsatisfactory as published. The ®gure is reproduced again here. M 3 3 a d [ H]Ro15-4513 [ H]Ro15-4513, Ki (nM) + diazepam 1(H101R) 1(H101R) α α Wild-type Wild-type α1 α5 Wild-type α2 β2/3 α3 γ2 1(H101R) α α b Wild-type 1(H101R) e Wild-type 3 µM GABA+Dz +Ro15 3 µM GABA α1 α1(H101R) 3 µ µ c Displacement of [ H]Ro15-4513, Ki (nM) 3 M GABA+Dz +Ro15 3 M GABA Wild-type α1(H101R) Clonazepam 3 ± 2 > 10,000 Diazepam 28 ± 15 > 10,000 Zolpidem 13 ± 5 > 10,000 500 pA 2 s ................................................................. suggest that pairing occurs primarily on the electrons on the g- correction sheet of the Fermi surface under the conditions of the experiment. However, the orientation of the FLL, interpreted within Agterberg's two-component Ginzburg±Landau (TCGL) theory1,2, is no longer consistent with g-band pairing if we take the values of Fermi surface Observation of a square ¯ux-line anisotropy used in refs 1, 2, and obtained by recent band structure calculations3. However, other calculations (T. Oguchi, private lattice in the unconventional communication) give a different sign of Fermi surface anisotropy. TCGL theory predictions may be modi®ed by extra anisotropy of superconductor Sr2RuO4 the superconducting energy gap3, by substantial pairing on the a- and/or b-sheets4 or by anisotropy in the electron mass enhance- T.
    [Show full text]
  • Radiotracers for SPECT Imaging: Current Scenario and Future Prospects
    Radiochim. Acta 100, 95–107 (2012) / DOI 10.1524/ract.2011.1891 © by Oldenbourg Wissenschaftsverlag, München Radiotracers for SPECT imaging: current scenario and future prospects By S. Adak1,∗, R. Bhalla2, K. K. Vijaya Raj1, S. Mandal1, R. Pickett2 andS.K.Luthra2 1 GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, India 560066 2 GE Healthcare Medical Diagnostics, The Grove Centre, White Lion Road, Amersham, HP7 9LL, UK (Received October 4, 2010; accepted in final form July 18, 2011) Nuclear medicine / 99m-Technetium / 123-Iodine / ton emission computed tomography (SPECT or less com- Oncological imaging / Neurological imaging / monly known as SPET) and positron emission tomogra- Cardiovascular imaging phy (PET). Both techniques use radiolabeled molecules to probe molecular processes that can be visualized, quanti- fied and tracked over time, thus allowing the discrimination Summary. Single photon emission computed tomography of healthy from diseased tissue with a high degree of con- (SPECT) has been the cornerstone of nuclear medicine and today fidence. The imaging agents use target-specific biological it is widely used to detect molecular changes in cardiovascular, processes associated with the disease being assessed both at neurological and oncological diseases. While SPECT has been the cellular and subcellular levels within living organisms. available since the 1980s, advances in instrumentation hardware, The impact of molecular imaging has been on greater under- software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. standing of integrative biology, earlier detection and charac- The biggest change in the last decade has been the fusion terization of disease, and evaluation of treatment in human of CT with SPECT, which has improved attenuation correction subjects [1–3].
    [Show full text]
  • Pharmacological Properties of GABAA- Receptors Containing Gamma1
    Molecular Pharmacology Fast Forward. Published on November 4, 2005 as DOI: 10.1124/mol.105.017236 Molecular PharmacologyThis article hasFast not Forward.been copyedited Published and formatted. on The November final version 7, may 2005 differ as from doi:10.1124/mol.105.017236 this version. MOLPHARM/2005/017236 Pharmacological properties of GABAA- receptors containing gamma1- subunits Khom S.1, Baburin I.1, Timin EN, Hohaus A., Sieghart W., Hering S. Downloaded from Department of Pharmacology and Toxicology, University of Vienna Center of Brain Research , Medical University of Vienna, Division of Biochemistry and molpharm.aspetjournals.org Molecular Biology at ASPET Journals on September 27, 2021 1 Copyright 2005 by the American Society for Pharmacology and Experimental Therapeutics. Molecular Pharmacology Fast Forward. Published on November 4, 2005 as DOI: 10.1124/mol.105.017236 This article has not been copyedited and formatted. The final version may differ from this version. MOLPHARM/2005/017236 Running Title: GABAA- receptors containing gamma1- subunits Corresponding author: Steffen Hering Department of Pharmacology and Toxicology University of Vienna Althanstrasse 14 Downloaded from A-1090 Vienna Telephone number: +43-1-4277-55301 Fax number: +43-1-4277-9553 molpharm.aspetjournals.org [email protected] Text pages: 29 at ASPET Journals on September 27, 2021 Tables: 2 Figures: 7 References: 26 Abstract: 236 words Introduction:575 words Discussion:1383 words 2 Molecular Pharmacology Fast Forward. Published on November 4, 2005 as DOI: 10.1124/mol.105.017236 This article has not been copyedited and formatted. The final version may differ from this version. MOLPHARM/2005/017236 Abstract GABAA receptors composed of α1, β2, γ1-subunits are expressed in only a few areas of the brain and thus represent interesting drug targets.
    [Show full text]
  • Physiological Roles of Endogenous Neurosteroids at Α2 Subunit-Containing GABAA Receptors
    Physiological roles of endogenous neurosteroids at α2 subunit-containing GABAA receptors Elizabeth Jane Durkin A thesis submitted to University College London for the degree of Doctor of Philosophy October 2012 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT Declaration 2 Declaration I, Elizabeth Durkin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis Abstract 3 Abstract Neurosteroids are important endogenous modulators of the major inhibitory neurotransmitter receptor in the brain, the γ-amino-butyric acid type A (GABAA) receptor. They are involved in numerous physiological processes, and are linked to several central nervous system disorders, including depression and anxiety. The neurosteroids allopregnanolone and allo-tetrahydro-deoxy-corticosterone (THDOC) have many effects in animal models (anxiolysis, analgesia, sedation, anticonvulsion, antidepressive), suggesting they could be useful therapeutic agents, for example in anxiety, stress and mood disorders. Neurosteroids potentiate GABA-activated currents by binding to a conserved site within α subunits. Potentiation can be eliminated by hydrophobic substitution of the α1Q241 residue (or equivalent in other α isoforms). Previous studies suggest that α2 subunits are key components in neural circuits affecting anxiety and depression, and that neurosteroids are endogenous anxiolytics. It is therefore possible that this anxiolysis occurs via potentiation at α2 subunit-containing receptors. To examine this hypothesis, α2Q241M knock-in mice were generated, and used to define the roles of α2 subunits in mediating effects of endogenous and injected neurosteroids. Biochemical and imaging analyses indicated that relative expression levels and localization of GABAA receptor α1-α5 subunits were unaffected, suggesting the knock- in had not caused any compensatory effects.
    [Show full text]
  • Alcohol and Brain Damage in Adults with Reference to High-Risk Groups
    CR185 Alcohol and brain damage in adults With reference to high-risk groups © 2014 Royal College of Psychiatrists For full details of reports available and how to obtain them, contact the Book Sales Assistant at the Royal College of Psychiatrists, 21 Prescot Street, COLLEGE REPORT London E1 8BB (tel. 020 7235 2351; fax 020 3701 2761) or visit the College website at http://www.rcpsych.ac.uk/publications/collegereports.aspx Alcohol and brain damage in adults With reference to high-risk groups College report CR185 The Royal College of Psychiatrists, the Royal College of Physicians (London), the Royal College of General Practitioners and the Association of British Neurologists May 2014 Approved by the Policy Committee of the Royal College of Psychiatrists: September 2013 Due for review: 2018 © 2014 Royal College of Psychiatrists College Reports constitute College policy. They have been sanctioned by the College via the Policy Committee. For full details of reports available and how to obtain them, contact the Book Sales Assistant at the Royal College of Psychiatrists, 21 Prescot Street, London E1 8BB (tel. 020 7235 2351; fax 020 7245 1231) or visit the College website at http://www.rcpsych. ac.uk/publications/collegereports.aspx The Royal College of Psychiatrists is a charity registered in England and Wales (228636) and in Scotland (SC038369). | Contents List of abbreviations iv Working group v Executive summary and recommendations 1 Lay summary 6 Introduction 12 Clinical definition and diagnosis of alcohol-related brain damage and related
    [Show full text]
  • The Effect of Chronic Alcohol Abuse on the Benzodiazepine Receptor
    f Ps al o ych rn ia u tr o y J Journal of Psychiatry Shushpanova et al., J Psychiatry 2016, 19:3 DOI: 10.4172/2378-5756.1000365 ISSN: 2378-5756 Research Article OpenOpen Access Access The Effect of Chronic Alcohol Abuse on the Benzodiazepine Receptor System in Various Areas of the Human Brain Shushpanova TV1*, Bokhan NA2, Lebedeva VF2, Solonskii AV1 and Udut VV3 1Department of Clinical Neuroimmunology and Neurobiology, Mental Health Research Institute, Russia 2Department of Addictive Disorders, Mental Health Research Institute, Russia 3Department of Molecular and Clinical Pharmacology, Research Institute of Pharmacology and Regenerative Medicine, Russia Abstract Objective: Alcohol abuse induces neuroadaptive changes in the functioning of neurotransmitter systems in the brain. Decrease of GABAergic neurotransmission found in alcoholics and persons with a high risk of alcohol dependence. Benzodiazepine receptor (BzDR) is allosterical modulatory site on GABA type A receptor complex (GABAAR), that modulate GABAergic function and may be important in mechanisms regulating the excitability of the brain processes involved in the alcohol addiction. The purpose of this study was to investigate the effects of chronic alcohol abuse on the BzDR in various areas of the human brain. Materials and Methods: Investigation of BzDR properties were studied in synaptosomal and mitochondrial membrane fractions from different brain areas of alcohol abused patients and non-alcoholic persons by radioreceptor assay with using selective ligands: [3H] flunitrazepam and [3H] PK-11195. Brain samples obtained at autopsy urgent. In total 126 samples of human brain areas were obtained to study radioreceptor binding, including a study group and control group. Results: Comparative study of kinetic parameters (Kd, Bmax) of [3H] flunitrazepam and [3H] PK-11195 binding with membrane fractions in studding brain samples was showed that affinity of BzDR was decreased and capacity increased in different areas of human brain under influence of alcohol abuse.
    [Show full text]
  • Evaluation of Cerebral Infarction with Iodine 123-Iomazenil SPECT
    Evaluation of Cerebral Infarction with Iodine 123-Iomazenil SPECT Jun Hatazawa, Takao Satoh, Eku Shimosegawa,Toshio Okudera, Atsushi Inugami, Toshihide Ogawa, Hideaki Fujita, Kyo Noguchi, Iwao Kanno, Shuhichi Miura, Matsutaroh Murakami, Hidehiro lida, Yuhko Miura and Kazuo Uemura Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Senshuh-Kubota Mach4 Akita, Japan predicted the clinical outcome (4). By measuring perfusion This study evaluatesischemicdamageto centralbenzodiaz and metabolism, the balance of the supply and demand of epine(BZD)receptorbindingin the brainwith r23oiom&enil substrates (i.e., misery or luxury perfusion) was evaluated SPECTin relationto CT hypodenselesionsand blood flow (5). Nevertheless, these imaging modalities are unable to abnormalities.Methods:Ninepatientswithmiddlecerebralar provide direct information on neuron-specific damage after teryterritoryinfarctionwerestudied.lomazenilimagesobtained ischemic insult. 180 mm postinjectionwere analyzedfor BZD receptor binding. Recently, Sette et al. performed in vivo mapping in the Thecorticalinfarction,visualizedasCThypodenseareaon CT, baboon of the central benzodiazepine (BZD) receptor after the peti-infarctarea,visualizedas normodensttysurroundingthe focal ischemia with PET and 11C-flumazenil (6). The cen infarctionon CT, the intrahemisphencremote areaand the car ebellum ware analyzedby taking the ratio of the lesionto con tral BZD receptor exists with variable density in the mem tralateral mirror region (tiC ratio).
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]
  • Total Intravenous Anesthesia with Midazolam, Ketamine
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Total invtravenous anesthesia with midazolam, ketamine, and xylazine or detomidine following induction with tiletamine, zolazepam, and xylazine in red deer (Cervus elaphus hippelaphus) undergoing surgery Auer, U ; Wenger, S ; Beigelböck, C ; Zenker, W ; Mosing, M Abstract: Sixteen captive female red deer were successfully anesthetized to surgically implant a telemetry system. The deer were immobilized with (mean±SD) 1.79±0.29 mg/kg xylazine and 1.79±0.29 mg/kg tiletamine/zolazepam given intramuscularly with a dart gun. Anesthesia was maintained for 69±2 min using a total intravenous protocol with a catheter placed in the jugular vein. Group X received xylazine (0.5±0.055 mg/kg/hr) and group D, detomidine (2±0.22 µg/kg/hr), both in combination with ketamine (2±0.02 mg/kg/hr) and midazolam (0.03±0.0033 mg/kg/hr), as a constant rate infusion. Anesthesia was reversed with 0.09±0.01 mg/kg atipamezole and 8.7±1.21 µg/kg sarmazenil given intravenously in both groups. These drug combinations provided smooth induction, stable anesthesia for surgery, and rapid recovery. Respiratory depression and mild hypoxemia were seen, and we, therefore, recommend using supplemental intranasal oxygen. DOI: https://doi.org/10.7589/0090-3558-46.4.1196 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-36361 Journal Article Originally published at: Auer, U; Wenger, S; Beigelböck, C; Zenker, W; Mosing, M (2010).
    [Show full text]