Estudio Comparativo De Frameworks De Instrumentación Dinámica De

Total Page:16

File Type:pdf, Size:1020Kb

Estudio Comparativo De Frameworks De Instrumentación Dinámica De Escuelade Ingenieríay Arquitectura Proyecto Fin de Carrera de Ingenier´ıa en Inform´atica Estudio Comparativo de Frameworks de Instrumentaci´on Din´amica de Ejecutables Juan Antonio Artal Lozano Director: Ricardo J. Rodr´ıguez Fern´andez Ponente: Jos´eJavier Merseguer Hern´aiz Departamento de Inform´atica e Ingenier´ıa de Sistemas Escuela de Ingenier´ıa y Arquitectura Universidad de Zaragoza Abril de 2012 Curso 2011/2012 A mi mujer, Conchita. Those types are not ’abstract’; they are as real as int and float. Doug McIlroy Agradecimientos A mis padres, hermanos y abuela. A todos mis compa˜neros de promoci´on. A Ricardo y su paciencia conmigo. A Jos´eMerseguer. A mis compa˜neros de trabajo. GRACIAS. Estudio comparativo de frameworks de Instrumentaci´on Din´amica de Ejecutables RESUMEN La Instrumentaci´on Din´amica de Ejecutables (Dynamic Binary Instrumentation, DBI) es una t´ecnica muy potente que permite analizar el comportamiento, en tiem- po de ejecuci´on, de cualquier aplicaci´on. DBI se puede usar, por ejemplo, para contar el n´umero de instrucciones que ejecuta o contar todas las transferencias (lectura y/o escritura) a memoria que realiza un determinado programa. DBI tiene diferentes usos seg´un sea el perfil de la persona que lo use. Por ejemplo, para un programador, DBI ayudar´aa identificar las partes cr´ıticas del c´odigo; para un desarrollador de un procesador nuevo, DBI simular´aesta nueva arquitectura; y para un programador de compiladores en una nueva arquitectura, DBI ayudar´aa la colo- caci´on de las instrucciones para mejorar el paralelismo o c´omo preparar profile-guided optimizacions (PGO). Un framework de DBI es una plataforma software que incluye programas, librer´ıas, do- cumentaci´on y una API para manipulaci´on de instrucciones en tiempo de ejecuci´on. Exis- ten diferentes frameworks de DBI (p.e., Pin, Valgrind, DynamoRIO, Paradyn/Dyninst), que proporcionan APIs muy extensas para que cada ingeniero pueda desarrollar sus pro- pias herramientas de an´alisis din´amico, llamadas herramientas DBA (Dynamic Binary Analysis). Las herramientas DBA permiten analizar, generar optimizaciones y monito- rizar el comportamiento de programas. El objetivo de este PFC es realizar un estudio comparativo centrado a nivel de im- pacto en rendimiento (performance) de diferentes frameworks de DBI. Es decir, se com- probar´ael rendimiento de una aplicaci´on ejecutada de forma nativa, sin instrumentar, y se comparar´acon esta misma aplicaci´on instrumentada por herramientas programadas bajo diferentes frameworks de DBI. De esta forma se obtiene el impacto en rendimiento de cada uno de los frameworks. Para poder llevar a cabo este estudio, se han seleccio- nado un conjunto de aplicaciones para crear un benchmark, que nos dar´ainformaci´on de rendimiento de cada framework de DBI. Adem´as, se pretende comparar cada framework de DBI atendiendo a las siguientes caracter´ısticas: plataformas y tipos de ejecutables que aceptan, necesidad de disponer del c´odigo fuente, API proporcionada, facilidad de programaci´on de herramientas DBA, licencia/coste y la posibilidad de vincular a un proceso en ejecuci´on. ii ´Indice 1. Introducci´on 1 1.1. Objetivo..................................... 2 1.2. Motivaci´on ................................... 2 1.3. Organizaci´on del documento . .... 3 2. Conocimientos previos 5 2.1. GranularidadenDBI. .. .. .. .. .. .. .. .. .. 6 2.2. OrigendeDBI ................................. 7 3. Frameworks de DBI 9 3.1. Pin........................................ 10 3.2. Valgrind..................................... 11 3.3. DynamoRIO .................................. 11 3.4. Similitudes y diferencias entre estos frameworks . ........... 12 4. Trabajo relacionado 15 5. Creaci´on de benchmark 17 5.1. Alternativas estudiadas . 17 5.2. Definici´ondebenchmark. 17 5.3. Descripci´ondelbenchmark . 20 5.4. Herramientasparaelbenchmark . 21 5.5. Medicionesenelbenchmark. 21 5.5.1. Tiempo ................................. 21 5.5.2. Memoria................................. 22 6. Experimentos 23 6.1. Entornodepruebas............................... 24 6.2. Resultados.................................... 24 7. Conclusiones y trabajo futuro 29 A. Fases de Desarrollo 35 A.1. Diagrama de Gantt ............................... 35 iii ´INDICE ´INDICE B. Problemas encontrados 37 B.1. Cuentadeinstrucciones . 37 B.2. Falloenejecuci´on. 40 C. Aplicaciones usadas en el benchmark 43 C.1.bzip2....................................... 43 C.2.GNUgo ..................................... 44 C.3.hmmer...................................... 44 C.4.libquantum ................................... 44 C.5.h264ref...................................... 45 C.6.ripemd...................................... 45 C.7.aes........................................ 46 C.8.whirlpool .................................... 46 C.9.memtester.................................... 46 C.10.ffmpeg...................................... 47 C.11.milc ....................................... 47 C.12.povray...................................... 48 C.13.mlucas...................................... 48 C.14.namd ...................................... 48 C.15.linpack...................................... 49 D. Resultados del benchmark 51 D.1.bzip2....................................... 52 D.2.GNUgo ..................................... 53 D.3.hmmer...................................... 54 D.4.libquantum ................................... 55 D.5.h264ref...................................... 56 D.6.ripemd...................................... 57 D.7.aes........................................ 58 D.8.whirlpool .................................... 59 D.9.memtester.................................... 60 D.10.ffmpeg...................................... 61 D.11.milc ....................................... 62 D.12.povray...................................... 63 D.13.mlucas...................................... 64 D.14.namd ...................................... 65 D.15.linpack...................................... 66 D.16.Tiempo de ejecuci´on de los benchmarks . ...... 67 E. C´odigo fuente aplicaciones usadas en el benchmark 69 E.1. Instrumentaci´on por instrucciones . ....... 69 E.1.1. Pin.................................... 69 E.1.2. DynamoRIO .............................. 70 E.1.3. Valgrind................................. 71 iv ´INDICE ´INDICE E.2. Instrumentaci´on por bloques b´asicos . ........ 73 E.2.1. Pin.................................... 73 E.2.2. DynamoRIO .............................. 73 E.2.3. Valgrind................................. 74 v Indice de figuras 6.1. Tiempo de ejecuci´on de la aplicaci´on h264ref con instrumentaci´on por instrucciones y optimizaciones. 25 6.2. Slowdown en el benchmark de ffmpeg con instrumentaci´on por instruc- cionesyoptimizaciones. .. .. .. .. .. .. .. .. 25 6.3. Slowdown medio en el benchmark usando instrumentaci´on por instrucciones. 26 6.4. Consumo medio de memoria de las aplicaciones. ....... 27 6.5. Slowdown en instrumentaci´on por instrucciones y por bloques b´asicos por frameworksyoptimizaciones. 28 A.1.Diagramadegantt................................ 35 A.2.Horasdedicadas. ................................ 36 vii Indice de tablas 3.1. S.O./Arquitecturas soportadas por framework. ......... 12 3.2. Granularidades soportadas por framework. ........ 14 3.3. Similitudes y diferencias entre frameworks. .......... 14 5.1. Aplicaciones de c´alculo entero. ...... 19 5.2. Aplicaciones de c´alculo real. ...... 19 5.3. Aplicaciones con gran demanda de entrada/salida. ......... 19 5.4. Aplicaciones de acceso a memoria. 20 6.1. Hardware utilizado en las pruebas. ..... 23 6.2. Software utilizado en las pruebas. ...... 23 6.3. ConsumomediodememoriaporFramework. 27 6.4. Slowdown relativo entre instrucciones y bloques b´asicos. 28 A.1.Horasdedicadas. ................................ 36 B.1. Instrucciones contadas por framework de DBI. ....... 37 B.2. Instrucciones contadas para las aplicaciones whirlpool y memtester . 39 ix Cap´ıtulo 1 Introducci´on El t´ermino de instrumentaci´on se refiere a la inserci´on de c´odigo adicional sobre un de- terminado software. Principalmente, hay dos tipos de instrumentaci´on: de c´odigo fuente, cuando el programador a˜nade l´ıneas de c´odigo antes de la compilaci´on; y de ejecutable, si hay otra aplicaci´on que modifica el programa una vez compilado. La instrumentaci´on permite incorporar al programa desarrollado c´odigo adicional para recoger informaci´on en tiempo de ejecuci´on, que principalmente tiene dos usos diferentes: para estudio de arquitecturas, donde se puede hacer modelado de cach´es y simulaci´on de instrucciones nuevas de procesadores; y para an´alisis de c´odigo, donde se puede generar informaci´on para an´alisis de rendimiento, p.e., para averiguar cu´ando, d´onde y por qu´enuestro c´odigo tarda tanto en ejecutar cierta tarea. Hay diferentes tipos de instrumentaci´on, como la manual, en la que el programador a˜nade directamente las l´ıneas de c´odigo que le interesan; como por ejemplo, para calcular tiempos de ejecuci´on, contar eventos o llamadas a una interfaz de programaci´on de aplicaciones (API). Hay herramientas tipo automated source level que modifican el c´odigo fuente para a˜nadir instrumentaci´on de acuerdo a una determinada configuraci´on. Existen otros tipos de instrumentaci´on como la asistida por el compilador, que es a˜nadida en tiempo de compilaci´on, y binary translation, donde se modifica el software con llamadas a una API de instrumentaci´on para que la propia aplicaci´on genere informaci´on en tiempo
Recommended publications
  • Automatic Benchmark Profiling Through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin
    Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin To cite this version: Alexis Martin, Vania Marangozova-Martin. Automatic Benchmark Profiling through Advanced Trace Analysis. [Research Report] RR-8889, Inria - Research Centre Grenoble – Rhône-Alpes; Université Grenoble Alpes; CNRS. 2016. hal-01292618 HAL Id: hal-01292618 https://hal.inria.fr/hal-01292618 Submitted on 24 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin , Vania Marangozova-Martin RESEARCH REPORT N° 8889 March 23, 2016 Project-Team Polaris ISSN 0249-6399 ISRN INRIA/RR--8889--FR+ENG Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin ∗ † ‡, Vania Marangozova-Martin ∗ † ‡ Project-Team Polaris Research Report n° 8889 — March 23, 2016 — 15 pages Abstract: Benchmarking has proven to be crucial for the investigation of the behavior and performances of a system. However, the choice of relevant benchmarks still remains a challenge. To help the process of comparing and choosing among benchmarks, we propose a solution for automatic benchmark profiling. It computes unified benchmark profiles reflecting benchmarks’ duration, function repartition, stability, CPU efficiency, parallelization and memory usage.
    [Show full text]
  • Automated Performance Testing for Virtualization with Mmtests
    Automated Performance Testing For Virtualization with MMTests Dario Faggioli <[email protected]> Software Engineer - Virtualization Specialist, SUSE GPG: 4B9B 2C3A 3DD5 86BD 163E 738B 1642 7889 A5B8 73EE https://about.me/dario.faggioli https://www.linkedin.com/in/dfaggioli/ https://twitter.com/DarioFaggioli (@DarioFaggioli) Testing / Benchmarking / CI Tools & Suites • OpenQA • Jenkins • Kernel CI • Autotest / Avocado-framework / Avocado-vt • Phoronix Test Suite • Fuego • Linux Test Project • Xen-Project’s OSSTests • … • ... SRSLY THINKING I’ll TALK ABOUT & SUGGEST USING ANOTHER ONE ? REALLY ? Benchmarking on Baremetal What’s the performance impact of kernel code change “X” ? Baremetal Baremetal Kernel Kernel (no X) VS. (with X) CPU MEM CPU MEM bench bench bench bench I/O I/O bench bench Benchmarking in Virtualization What’s the performance impact of kernel code change “X” ? Baremetal Baremetal Baremetal Baremetal Kernel Kernel Kernel (no X) Kernel (no X) (with X) (with X) VM VS. VM VS. VM VS. VM Kernel Kernel Kernel (no X) Kernel (no X) (with X) (with X) CPU MEM CPU MEM CPU MEM CPU MEM bench bench bench bench bench bench bench bench I/O I/O I/O I/O bench bench bench bench Benchmarking in Virtualization What’s the performance impact of kernel code change “X” ? Baremetal Baremetal Baremetal Baremetal Kernel Kernel Kernel (no X) Kernel (no X) (with X) (with X) VM VS. VM VS. VM VS. VM Kernel Kernel Kernel (no X) Kernel (no X) (with X) (with X) We want to run the benchmarks inside VMs CPU MEM CPU MEM CPU MEM CPU MEM bench bench bench bench bench bench bench bench I/O I/O I/O I/O bench bench bench bench Benchmarking in Virtualization What’s the performance impact of kernel code change “X” ? Baremetal Baremetal Baremetal Baremetal Kernel Kernel Kernel (no X) Kernel (no X) (with X) (with X) VM VS.
    [Show full text]
  • Zhodnocení Použitelnosti Raspberry Pi Pro Distribuované Výpočty
    Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Petr Stefan Zhodnocení použitelnosti Raspberry Pi pro distribuované výpoèty Katedra softwarového inženýrství Vedoucí bakaláøské práce: RNDr. Martin Kruli¹, Ph.D. Studijní program: Informatika Studijní obor: Obecná informatika Praha 2015 Prohla¹uji, že jsem tuto bakaláøskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenù, literatury a dalších odborných zdrojù. Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona è. 121/2000 Sb., autorského zákona v platném znění, zejména skuteènost, že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této práce jako ¹kolního díla podle x60 odst. 1 autorského zákona. V Praze dne 29. èervence 2015 Petr Stefan i ii Název práce: Zhodnocení použitelnosti Raspberry Pi pro distribuované výpoèty Autor: Petr Stefan Katedra: Katedra softwarového inženýrství Vedoucí bakaláøské práce: RNDr. Martin Kruli¹, Ph.D., Katedra softwarového inženýrství Abstrakt: Cílem práce bylo zhodnotit výkonnostní vlastnosti mikropočítače Rasp- berry Pi, a to především z hlediska možnosti sestavení výpoèetního klastru z více těchto jednotek. Součástí práce bylo vytvoření sady testù pro měření výpočetního výkonu procesoru, propustnosti operační paměti, rychlosti zápisu a čtení z per- sistentního úložiště (paměťové karty) a propustnosti síťového rozhraní Ethernet. Na základě porovnání výsledků získaných měřením na Raspberry Pi a na vhod- ném reprezentativním vzorku dalších běžně dostupných počítačů bylo provedeno doporučení, zda je konstrukce Raspberry Pi klastru opodstatněná. Tyto výsledky rovněž poskytly přibližné ekonomické a výkonnostní projekce takového řešení. Klíčová slova: Raspberry Pi výkon distribuovaný výpoèet benchmark Title: Assessing Usability of Raspberry Pi for Distributed Computing Author: Petr Stefan Department: Department of Software Engineering Supervisor: RNDr.
    [Show full text]
  • Automatic Benchmark Profiling Through Advanced Trace Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hal - Université Grenoble Alpes Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin, Vania Marangozova-Martin To cite this version: Alexis Martin, Vania Marangozova-Martin. Automatic Benchmark Profiling through Advanced Trace Analysis. [Research Report] RR-8889, Inria - Research Centre Grenoble { Rh^one-Alpes; Universit´eGrenoble Alpes; CNRS. 2016. <hal-01292618> HAL Id: hal-01292618 https://hal.inria.fr/hal-01292618 Submitted on 24 Mar 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin , Vania Marangozova-Martin RESEARCH REPORT N° 8889 March 23, 2016 Project-Team Polaris ISSN 0249-6399 ISRN INRIA/RR--8889--FR+ENG Automatic Benchmark Profiling through Advanced Trace Analysis Alexis Martin ∗ † ‡, Vania Marangozova-Martin ∗ † ‡ Project-Team Polaris Research Report n° 8889 — March 23, 2016 — 15 pages Abstract: Benchmarking has proven to be crucial for the investigation of the behavior and performances of a system. However, the choice of relevant benchmarks still remains a challenge. To help the process of comparing and choosing among benchmarks, we propose a solution for automatic benchmark profiling.
    [Show full text]
  • Xeon Platinum 8280 Vs. AMD EPYC 7742 - Ubuntu Linux
    www.phoronix-test-suite.com Xeon Platinum 8280 vs. AMD EPYC 7742 - Ubuntu Linux AMD EPYC and Intel Xeon benchmarks by Michael Larabel... Mix of single and multi-threaded workloads. Admittedly somewhat random tests with the intent of just being to doing some validation on Phoronix Test Suite 9.4 and checking out the graphing code, PDF generation, etc. Take the actual results as you wish. Automated Executive Summary 2 x EPYC 7742 had the most wins, coming in first place for 61% of the tests. Based on the geometric mean of all complete results, the fastest (2 x EPYC 7742) was 1.2x the speed of the slowest (2 x Xeon Platinum 8280). The results with the greatest spread from best to worst included: Tungsten Renderer (Scene: Volumetric Caustic) at 3.53x - MBW (Test: Memory Copy - Array Size: 4096 MiB) at 3.22x - Parboil (Test: OpenMP MRI Gridding) at 3.02x - Hackbench (Count: 32 - Type: Process) at 3.01x - Tachyon (Total Time) at 2.62x - C-Ray (Total Time - 4K, 16 Rays Per Pixel) at 2.37x - dav1d (Video Input: Chimera 1080p) at 2.33x Xeon Platinum 8280 vs. AMD EPYC 7742 - Ubuntu Linux - Coremark (CoreMark Size 666 - Iterations Per Second) at 2.3x - dav1d (Video Input: Summer Nature 1080p) at 2.17x - GraphicsMagick (Operation: Sharpen) at 2.17x. Test Systems: 2 x Xeon Platinum 8280 Processor: 2 x Intel Xeon Platinum 8280 @ 4.00GHz (56 Cores / 112 Threads), Motherboard: GIGABYTE MD61-SC2-00 v01000100 (T15 BIOS), Chipset: Intel Sky Lake-E DMI3 Registers, Memory: 12 x 32 GB DDR4-2933MT/s HMA84GR7CJR4N-WM, Disk: 280GB INTEL SSDPED1D280GA, Graphics:
    [Show full text]
  • Fair Benchmarking for Cloud Computing Systems
    Fair Benchmarking for Cloud Computing Systems Authors: Lee Gillam Bin Li John O’Loughlin Anuz Pranap Singh Tomar March 2012 Contents 1 Introduction .............................................................................................................................................................. 3 2 Background .............................................................................................................................................................. 4 3 Previous work ........................................................................................................................................................... 5 3.1 Literature ........................................................................................................................................................... 5 3.2 Related Resources ............................................................................................................................................. 6 4 Preparation ............................................................................................................................................................... 9 4.1 Cloud Providers................................................................................................................................................. 9 4.2 Cloud APIs ...................................................................................................................................................... 10 4.3 Benchmark selection ......................................................................................................................................
    [Show full text]
  • Aligning Intent and Behavior in Software Systems: How Programs Communicate & Their Distribution and Organization
    © 2020 William B. Dietz ALIGNING INTENT AND BEHAVIOR IN SOFTWARE SYSTEMS: HOW PROGRAMS COMMUNICATE & THEIR DISTRIBUTION AND ORGANIZATION BY WILLIAM B. DIETZ DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Professor Vikram Adve, Chair Professor John Regehr, University of Utah Professor Tao Xie Assistant Professor Sasa Misailovic ABSTRACT Managing the overwhelming complexity of software is a fundamental challenge because complex- ity is the root cause of problems regarding software performance, size, and security. Complexity is what makes software hard to understand, and our ability to understand software in whole or in part is essential to being able to address these problems effectively. Attacking this overwhelming complexity is the fundamental challenge I seek to address by simplifying how we write, organize and think about programs. Within this dissertation I present a system of tools and a set of solutions for improving the nature of software by focusing on programmer’s desired outcome, i.e. their intent. At the program level, the conventional focus, it is impossible to identify complexity that, at the system level, is unnecessary. This “accidental complexity” includes everything from unused features to independent implementations of common algorithmic tasks. Software techniques driving innovation simultaneously increase the distance between what is intended by humans – developers, designers, and especially the users – and what the executing code does in practice. By preserving the declarative intent of the programmer, which is lost in the traditional process of compiling and linking and building software, it is easier to abstract away unnecessary details.
    [Show full text]
  • Download Vol 8, No 3&4, Year 2015
    The International Journal on Advances in Systems and Measurements is published by IARIA. ISSN: 1942-261x journals site: http://www.iariajournals.org contact: [email protected] Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers, staff, or contractors. IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the content for quality improvements. Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print, providing the reference is mentioned and that the resulting material is made available at no cost. Reference should mention: International Journal on Advances in Systems and Measurements, issn 1942-261x vol. 8, no. 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/ The copyright for each included paper belongs to the authors. Republishing of same material, by authors or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and must include proper reference. Reference to an article in the journal is as follows: <Author list>, “<Article title>” International Journal on Advances in Systems and Measurements, issn 1942-261x vol. 8, no. 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/ IARIA journals are made available for free, proving the appropriate references are made when their content is used. Sponsored by IARIA www.iaria.org Copyright © 2015 IARIA International Journal on Advances in Systems and Measurements Volume 8, Number
    [Show full text]
  • Phoronix Test Suite V4.0.1 (Suldal)
    www.phoronix-test-suite.com Phoronix Test Suite v4.0.1 (Suldal) User Manual Phoronix Test Suite v4.0.1 Test Client Documentation Getting Started Overview The Phoronix Test Suite is the most comprehensive testing and benchmarking platform available for Linux, Solaris, Mac OS X, and BSD operating systems. The Phoronix Test Suite allows for carrying out tests in a fully automated manner from test installation to execution and reporting. All tests are meant to be easily reproducible, easy-to-use, and support fully automated execution. The Phoronix Test Suite is open-source under the GNU GPLv3 license and is developed by Phoronix Media in cooperation with partners. Version 1.0 of the Phoronix Test Suite was publicly released in 2008. The Phoronix Test Suite client itself is a test framework for providing seamless execution of test profiles and test suites. There are more than 200 tests available by default, which are transparently available via OpenBenchmarking.org integration. Of these default test profiles there is a range of sub-systems that can be tested and a range of hardware from mobile devices to desktops and worksrtations/servers. New tests can be easily introduced via the Phoronix Test Suite's extensible test architecture, with test profiles consisting of XML files and shell scripts. Test profiles can produce a quantitative result or other qualitative/abstract results like image quality comparisons and pass/fail. Using Phoronix Test Suite modules, other data can also be automatically collected at run-time such as the system power consumption, disk usage, and other software/hardware sensors. Test suites contain references to test profiles to execute as part of a set or can also reference other test suites.
    [Show full text]
  • Process Authentication for High System Assurance
    168 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014 Process Authentication for High System Assurance Hussain M.J. Almohri, Member, IEEE, Danfeng (Daphne) Yao, Member, IEEE, and Dennis Kafura, Member, IEEE Abstract—This paper points out the need in modern operating system kernels for a process authentication mechanism, where a process of a user-level application proves its identity to the kernel. Process authentication is different from process identification. Identification is a way to describe a principal; PIDs or process names are identifiers for processes in an OS environment. However, the information such as process names or executable paths that is conventionally used by OS to identify a process is not reliable. As a result, malware may impersonate other processes, thus violating system assurance. We propose a lightweight secure application authentication framework in which user-level applications are required to present proofs at runtime to be authenticated to the kernel. To demonstrate the application of process authentication, we develop a system call monitoring framework for preventing unauthorized use or access of system resources. It verifies the identity of processes before completing the requested system calls. We implement and evaluate a prototype of our monitoring architecture in Linux. The results from our extensive performance evaluation show that our prototype incurs reasonably low overhead, indicating the feasibility of our approach for cryptographically authenticating applications and their processes in the operating system. Index Terms—Operating system security, process authentication, secret application credential, system call monitoring Ç 1INTRODUCTION YPICAL operating system kernels enforce minimal re- User authentication through techniques such as password Tstrictions on the applications permitted to execute, or public-key cryptosystem is common in multiuser system resulting in the ability of malicious programs to abuse or network environments.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Comparative Assessment of Cloud Compute Services Using Run-Time Meta-Data
    C: 40 C: 40 M: 2 M: 2 Y: 10 Y: 10 K: 0 K: 0 Comparative Assessment of Cloud Compute Services using Run-Time Meta-Data Michael Menzel C: 76 C: 76 Michael Menzel: Comparative Assessment of Cloud Compute Services using Run-Time Meta-Data Services using Run-Time of Cloud Compute Assessment Comparative Michael Menzel: M: 47 M: 47 Y: 30 ISBN 978-3-7375-5175-5 Y: 30 K: 5 K: 5 Comparative Assessment of Cloud Compute Services using Run-Time Meta-Data A Framework for Performance Measurements and Virtual Machine Image Introspections vorgelegt von Dipl. Wirt.-Inf. Michael Menzel geb. in Mainz von der Fakultät IV - Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Uwe Nestmann Gutachter: Prof. Dr. Stefan Tai Gutachter: Prof. Dr. Alexander Mädche Gutachter: Prof. Dr. Odej Kao Tag der wissenschaftlichen Aussprache: 21.04.2015 Berlin 2015 ii Credits As most projects in life, a dissertation stands on the shoulders of giants. Foremost, it is the result of collaborations, ongoing discussions, and inspirations from many ac- quaintances, companions, and friends. A particularly inspiring giant that supervised the present work is Prof. Stefan Tai whom I like to thank for his patient advises, engage- ment, and steady support of this project. Furthermore, I am deeply thankful I had the luck to spend time with the most intriguing colleagues1. The way all of them engage in discussions and strive for the best is remarkable. Companionships between like-minded researchers develop unaffected by distance or time zones.
    [Show full text]