<<

Efren Cazaresand DanielL. Luoma, Departmentof ForestScence OregonState Unvefsty, Corva is Oregon 973317501 MichaelP. Amaranthus, USDA Forest Serv ce Paclfc NorthwestBesearch Stat on Box4'10 GrantsPass Oregon 97526 CarolL. Chambersr,Department of ForestScience Oregon State U n versty. Corva s Oregon 97331-7501 John F.Lehmkuhl. USDA Forest Serv ce PaclflcNorthwest Research Station, Wenatchee Wash ngton 98801

Interactionof FungalSporocarp Production with Small Mammal Abundanceand Diet in Douglas-firStands of the Southern CascadeRange

Abstract

Snlall nanmal populariondensitie! arc highl! \'.rfi.rbleacross fofest stundsand landscapes.Thc speciescomposilion and abun- rlarcc of ecromy:conhizatfungi (EN{F) nraf influencc the abilit} of for.sls to pfovide suitablchabitrt for snlall mammals. Iden tilica(ion and interprctationof chang.s in the rbunduncc of the\e organisms.or in their inrcr rclationshrpsduc lo cxperimentrl har!cn. requife thar \c ilrsr idenrii_v(hc pattefnsllnd porcn!ial causesof nriLrra!r'afiabilily in drc pre-h.rNestcommunjtie\' Pre- treahlcnt data $ere gathcredtiolll the Warson!-alls block of a green-treerelcnlion experinent lo cslablishblL\eline conditions. The sir crpcrimentai lrcal cnts that comprise ihi,i block lic in r$o sprtiall) di\ljncl areasthat dillcr in en|ironmenl and ibresl composirion. the initial !ariabilit) in ENIF. snrall maDrnals.and lheif rel.rtionshjpswas documenlcd. Three prilnary qucsllons xre addrcsscdin this papcri (l) Afe the abundanceand specic! compositionof ENiF sporocarpssinilar bet$een the two arca\ ol (3)Forcommon the Vatson l-alls block l ( I ) Hox doessporoc arp consumplion\ ary rmong small n1annnalspecic\ and h) e.Ll rru11]cgcnera. is sporocarpbiomrss conclated$'ith the sporciiequency oftho\c generaiD smNllmlmmxldiel\? TheWalson Fall\ bloct iras founrtlo have spatial rnd lcmporrl larirrioli in ENIF production. small mammal n,vcophrgy..rnd srrall mrnnnal lbundance. Ho\\e!cr. truiTles$ere con\istenlly the primar,vfood item in thc diet of.rlL three lmall mamnal sPecicsin thrs study Snull rna'nmrls rre polcniall,\'illrpo(ant agentsofrruIl. dispeA.Llinlo dislurbedafers \NhercEMF afe locally c:.liryated. This studyfu hcrskno$ledgcoflheroleofsntll manmal nycophigy inthe funcaonjngof fofestccosvsGms. lntroduction tion. varyilg trom a lew scatteredtiuitbodies to conceDtratedclustcls of numerousfruitbodies (EMF) lbtm symbiotrc Ectomycorrhizalfurgi (Nonhet al. 1997,States and Gaud 1997, Whters with the rootsoftrecs andothet vcg- relationslips et al. 1997).In plannedexperinrenls, docunen- ctiltion. Trees supply carbon fuom phok)synthe tationof eristing fruiling patternsis critical to sis to the fungi. ir turn. EMF absorbminetals the irterpretationofchanges that nay resultfron] and nutrientslronr the soil and transfer them to rnanipulationof treatmentunits. hcc roots(Smith and Read 1997). Mycorrhizae ale essentialfor survivaland gro$'th ofnost con- Small nammals are integralcomponcnls ot iferoLrsforest trces alld olher shntbs anclherba man_"-forcst ecosystemsincluding the Douglas ceousvcgetation (Fogcl and Trappe 1978). Ir (Pseudotstrl.iunerate.sli) forests that dominate nuch ofthe rvesternCrscade landscape. Numerous Ectomlconhizalllngal specicsvary in thcir speciesol forestdwelling, srnall natrmals rcly rbundanceand phcnology oft'ruiting (Fogell98l; on the fruiting bodiesof EMF asa primary source Huntand Trappe 1987: Luoma 1988, 1991 I Luoma oflixrl (Fogeland Trappe 197E, Mascr et al. 1986, et al. 1991.1997r Amaranthus et al. 199.1:Nofth and Maser 1988.Hall 1991,\,\'alers and et al. 1997:States and Caud 1997)and in the Mrser 1995).A fbocl-wcblinkage of pa icular nutritional value of thcir fruit bodics (Fogel and Zabel thecldangered nodhcm spotted Trappe 19781.Various abiotic and biotic factors interestis between (Strir ..rrri?.r) and lhc nofihelt intlucncethe lruiting of EMF (Villeneuveet al. owl ot:t:itlentall.r (Glaricotnts The norlhem 19911.Sporocrrps are non-uniform ill distribu flying squinel sabrinus). spottedowl fecdsprimarily on flying squirrels (Forsman Cuncrt addres\:School of Fofe\tf).\orlhern Arizor| Unr over most of their range et al. 198.1. \cr\it!. POBox 15018,trhg\t.rll. AriTona Sfi)ll 50ltl Thomasctal.1990, Carcl' l99l). Nodhcmflying

o+ NorlhwestScience, Vol.73. Speciallssue, 1999

(!r lt!! l.\ rhr \oirhre\L S.,.dr'ni1\nnrrrr.n \lln!h6r.\enr(l squin.els,in tum, require , bclow-ground diversemosaic ofhost species,habitats. and struc fiuiting bodiesof EMF. asthcir primary food source turespronrote EMF diversitvat thescale oIland- (Maseret al. 1985.Carey 1995). Other mvco- scapcs.Variation in communitiesol EMF u'ill phagous( eating.) small mammals. such as retlectvariation in fbresttype. successional stagc, chipmunks(TZurlas spp.) are prey lbr raptors(e.g.. and the distinctiveassemblages of plantsand goshawks)tud mammaliancamivores (e.g., martcn microhabitatswithin eachof these.Silviculturrl andlisher) (Foge1 and Trappe 1978. Mclntire 198.1, practlcescan bc usedto createhabitat colditions Hayeset al. l986. Carey1991). that maintainor increaseEMF divcrsity. For ex- The presenceand abundance of EMF species rmple.1

SnrallManmal Mycophagy 65 ronmentand forest composition. Thus. it is nec- dispersed)applied to the 15 and,109creteDtior essaryto quantil) the initial variability in EMF. treatnerts. The aggregatedpattem consistsof small mammals,and thcir interactionsto facili- residualtrees retained in I ha circularpatches; tate the sepantion of treatment-eflectsfiom an) the disper-sedpattern consists of lesidual tlees etlectsduc to prc-htrNcsldilTcrcnccs. Tothiscnd, unitbnnly dispersedthroughout the unit (seeAubrl we llose three fundanental questionsabout the et al.ll999l for detlils). .patialirrd tenrporul\ rirtiL,noI EMF .l]tJro(irLi?. and their consLlmptionby srnallmammals prior StudyArea to lbrest han'est: ( I ) Are the abundanceand species compositionof EMF sporocrrpssinrilar betn een Threetreatmel]l Lrnils \\ere es|ablishcdin cachol the two areasofthe WatsonFalls blockl (2) Ho$ the hro pimary sludl areasthat comprisc the cloessporocarp consumption vary amongsnrall WatsonFalls block of theDEN4O cxpcrimcnt (see mammalspecies and by location:)(3) For the cotrt Figure3 ofAubry cl al. [1999]). The two areas. nron truflle genela.is sporocarpbionass corre nanredtbr local geographicleatures. ToketeeAir latedwith the liequenc) of sporestiruncl in the strip and Mowich Park. Iie approximatelyl2 krr Itcal matcrialof snall mammals? apartu'ith an elevationaldit'ference of about 350 Sinilar studieswill be conductedfbllo*ing n (Table I ). Both areasare comprised of I I 0- k) I 3(I harvcstthus yiclcling iniirrnation on hou levels yr old forestsdominated by DouglasIir thaLorigi- andpatterns of green tee retentionalter the iibuo- nrtcJ iollouing u ilJfirc. Otherlrsc \fsri(\ \Jr\ danceand distributionof EMF and of thc small in impo anccrrnong trcatmcnlunits (Tablel). nranrmalsthat consume these species. Both sets \\ratson Falls lies nofihwest of Crater Lake of studiesare critical as lbrest managersseek to NationalPark u'ithin the zoneof helvy dcposi- incorporatebasic ecolo-gical knowled-qe into tirr- lion of volcaniccjccta that oliginatcdfronr the policies practices. estmanagelnent and eruplioDof Mt. Mazama7.000 1-r B.P (Baldrvin 1981). Thus. soilsarc dccp (1.0-2..1m). well- Methods drlincd, loamy slndsdcrivccl fronr volcanic ash andpumice. Surfacesoils contlin low levelsol ExperimentaDes gn organicmatter. clal compounds.nitlogen. cal The Denonstration of Ecos,vstemManagement cium, andmagnesium (Radtke and Edwards 1976). Options(DEMO) studyconsists of sixgreen-tree The terain is flat to gentlysloping. Thc climatc rclenliontrealn'rents replicated at eightgeographic is moderale,uith u,ann dry summcrs and coo) locations(blocks) in rlesternOregon and \!'rsh- \\,etu'inters. Precipitatioll lalls in cqualpropor- ington(Aubr)'et al. 1999).The treatmentscon tionsas rain and snowat the Airslrip unils.but sistof tbur levelsof lir,etree retention(15. ;10. primarilyas snowal thc Mowich units. Annual 75. and 1009iof cxistinglivc-tree basal area), precipitationaverages ca. 1.525 nm (U.S.Wtather wilh 1lr,opaltems of retention(aggregated and Selvice lecords tbl LemoJoLake).

'I,\BLL l. Ecologic.rlr Lrke Rrnger Disrricl. Tolcrc.j. Orcson .rndH.r\ren cLrl. (1999j.

ArrsrripL. irs Nlo$icl U il\ Tr..,lnr.nrlxr I l

Orefslo|) \pecies PSN{E.ABCO. PSN'IE.ABCO. PS\IE. ABCO. PSNIE.ABCO. PSNIE.ABCO. PSNlE.AtsCO. PtPO.Pt\10 P1PO.TSH[ PIPO.TSHI TSHI: TSH[. PITlC) TSHE.ABN'IAS 36.1 51.6 .ll.7 1l.7 \{e.in DBH (cm) :17.I 18.1 .r0.8 .10l 10.5 11.8 .{3e (!fr I l0 ll0 t30 lt0 lll) ll{) Slopc111 ) 05 05 0a 0 l0 0 t0 0 t0 [Lc\rrLon1n) 9.15 915 915 l-rll t-1tl ||E9

NIlljo|IIeesPeciesino|de|0]decreaSn!domiI.rDccItndc0dcd!!:ABc]o=lb/.''.1,,..,li,'AB J,r/lk,l.\iJ.PlNlO=P,?lt\D1ot1|i|ola'P|Po=PD oo Cazareset al- b A

I @

B

c &r. ,HI;I

F

2 @ G

40m H M Irigure 1. Sche m.rtic ol slm p le I lol la) o u! li ). li rsi . Plots $ ere dispefsedthroLrghour cach c\pcrimental unit. Three peflnancnl. 2 \ 50 r mushroon srnrple pl(ns (numbered I -l) $crc loc.rted witlin the pfimar! sa pling grid (8 x 8 rr,10-nr \prcins). l hree trin\ic|l. I r 50 Dl murhroo plot\ (nuJnbered:l 6l $ crc c \r.rblishedat clift-erentlocations around lhc grid.rnd$efe replacedcach sinplc \casoD.Trunsects loc.rteddor\. lhc ccnlcrofthe non-pefn nenrmlr\hroo plol!, contrined.re\pecti!el\.8.9. and 8. cncular:l nl'trufile plols fof n 100nrr lolalsalnple are.r. Trufile plds $ere pliccd .. 4 nlin.l.-,,r' r,r. l|Ir\..1

Samplng of Funga Sporocarps plots werepernanentlv inslallcd and$'ere pLaced systematicalJyto maintain Sporocarpsof EMF werc sampledfrom all treat a disperscdsanrple lnenl unitscluring October 1993 and June 199.1. pattern. The relnainingthree plots wele also sys- Theseare the peak t'r'uiting tinrcs tirt EMF in our temrtically locatedwithin eachunit, but rvereused region. Mushroomspecies \\'erc collccted t'rom only onceduring eachseasonal sample: three new 6 strippiots (2 x 50 m) pertreatment unit 1or cach locationsu'ere chosen the following season. Use seasonalsample (Figurc 1). Threeofthe stdp ol thc tcmporarysffip plots increascdthe areaand

Small Mammal l\{ycophagv 67 diversit)'of habitatsampled. All sporocarpsof Small Mammals EMF mushroomswere collected fiom the plots Smallmammals were sampled using Shennan live anddisLinguishing licld charactcristicsnotcd. ln traps (8 x 9 x 23 cn) and non-tatal pitfirll traps the field facility or laboratory.sporocarps were (twoNo. l0-tincans, stacked ardioined with duct genus identilied to or species.dried. andweighed Lapc).Shcman trapswere placed l0 m apart on to thenearest 0.01 g Lodeterlline biomass. a l0 x l0 grid within the larger permanentgrid Trufl'leswere collectedfiom 25. circular 4-ml systemlbr a total of 100traps per stand.We used plotsin eachtreatnrent unit. )'ieldingatotal sample a subset(36) ofthe permanentgrid points forpit areaof 100 m'erch season.Truffle plotswere lall traps. Both typesoftraps were placedwithin placcdcvcr)' 6 m alonga transcctwithin thc thrcc 3 m ofeachgrid pointalong a naturaldrift tence. lenporary mushroomstrip plots (Figurel). ln Shermantraps were coveledwith a waxedcarton each trullle ploL,the forest floor was raked to a slecvcto providcinsulation and shelter and poly- depthof5-10 cm. exposingsporocarps in theupper ester batting was added to minimizc hypother- *'il lrrler'..Distirrgui.hing fielJ (hirr.rL.lcri.li!. mia. A plastic collar nestedin the top of the pir prevented suchas handlingreaction and odor rverenoted. t'alltrap animals fiom escaping.A waxed polyester placcd In thc laborat()ry.sporocarps wcre idcntifiedto caftoncontaining battingwas in the bottom of eachpitfall trap to provide insula species.dried. and weighed to thenearest 0.01 g tion. All trapswere baitedwith a mixture ofpea- to determinebionass. nut buttct molasses,and oats.

Samplingof Arborea Rodentsand Small Small mammalswere trapped fbr two consecu- tive .1 day periods in October 1993. The total Nlammas number of trap nights per standwas 1088 (800 Within cachof the trcatmcntunits, arborcal ro- for Shcrmantraps.28U filr pitlall traps). dents and small namnals were sampledusing an 8 x 8 or 7 x 9 trapping grid *ith a:10 m spac Diet Analyses ing betweengdd points and a buflel of at least 50 m betrveenstand edges and the trappinggrid. Fecalpellets from trappednorthern flying squir- reis. (?nrias Animal abundancewas determinedfron first Siskiyouchipmunks slsi4'oir),and wcstcrn rcd-backed voles (CIethrionon1"scali- capturcsonly. ftrnricris)were collected from individualsthat had bccn capturcdfor the tirst time cluringboth:l- Arboreal Rodents day trapping intervals,and from all captufeson Alboleal rodentsrvere sampledusing the meth the 1llst captureday of Lhesecond wcck (we as- odologyofCarey et al. (1991).Two Tonahawk sumedthe 3-dayperiod between fapping sessions 201livc Lrapswcrc placed at eachgrid point. One wasadequate firrbait to passthrcugh the animal). trap rvaspltcecl 1.5 m aboveground on a trcc. Fecalpellets were taken directly from individual animals or. if pellets fell during handling, they and the secondat thc -sroundncxt to a natural driti t'encc(c.g.. krg or snag).All tlapswcrc placed werecollected only fiom clean,dirt-free surfaces *ithin l0 m ol the grid poini. Traps were cov to avoidintroduction ofextaneous sporesorplant natcrial into thc sample. to five f'ecalpel- eredwith a waxedcafion to protectanimals lron One lets wereobtained lrom eachindividual and were rain. A nestbox containingpolyester batting and placedin paperenvelopes labeled with collection bait (a mixture of peanutbutter. molasses, and information.Fccal pellets of Siskiyouchipmunks oats)was placed in eachtrap to provideshelter. and westernred-backed voles were not collected nrnrnr/c h)pt'rhr: rmn. .rnJprerent .tcrrrlion. duringthe springsample period. Arboreal rodents were trappcd ti)r two con- In thc laboratory.two samplesof pooledfecal seculive4 day periodsin Septenber1993 and pellets were preparedtbr each small mamnal June 199.1.Total nunber of trap nights per tfeat spcciesfrom eachof thc six treatmentunits (fol- mentunit per sampleseason was 102:lfor treat lowingMethod 2 ofColganet al. [997]). Each ment unils with an 8 x 8 grid spacingand 1008 pooled sampleconsisted of pelletsrandomly se fi)r thoscwith a 9 x 7 spacing. lectedfrom threetosix individuals.Podingreduces

68 Cnzareser nl. the time requiredto collect and processsamples, phorales,Russulaceag, other ,lerco- and is efficientfor examiningheatment-level re- gaster,othertruffles). Nothem flying squirreland sponseswhere among-individual vadation is not Siskiyouchipmunk abundance values were square of interest. Eachpooled sarnple was placedin a ()ot fansformed. Westemred-backed vole abun- small vial with two or three drops of 957" etha- dancewas log transformed.Dietary item variables nol to dissolvelipid layers of viruses. Four to wereall ranktransfomed. Fisher'sprotected least five drops of distilled water were then addedto significantdifference was used as a multiplecom- rehydratethe samplesfor48 hr at room tempera- parisonprocedure (p S 0.1) oniy when thc ovcr- ture. Pelletswere macerated and mixed thorougl y. all ANOVA 2 valuewas ( 0.15. Giventhe nu- Thrcedrops ofthe lesultingsuspension were placed merousANOVAs conducted,tindings of statistical on a microscopeslide. Two dropsof Melzer's significanceshould be interyretedwith caution. reagent(iodine, potassiuDr iodide, and chloral Abundanceof truffles may allect the amount hydratein aqueoussolution) were added and cov- ofplant matedal that mycophagousanimals con- ered with a covcr slip. Three slides \\"erepre- sume. Regressionanalysis was used to testthe paredin this nanner tbr eachpooled tccal sample. rclationship between truffle sporoceLrpbiomass Foreach of the3 slides.25 randomlyselected producedin a unit and phnt material frcquency fields of view wcre examinedat:100x magnitica- recordcdfron fecal pellet analysisof the three tion with acompoundmicroscope. Fungal smallmammal species. Plant material frequency were identitiedto genusaccording to Castellano valueswere log tfansformed. etal. (1989). It is difticultto distinguishbetween Becausethe assumptionsof normaldistribu- theclosely related gcncra Rhizopogtnt utdTrt,r.<:o- tion and constantvariance could not be mct by colr.rnel1asolely by sporcmoryhology: thus these transtbrmationof truftlc sporefrequency values, taxa were grouped in subsequentanal)'ses. ln non-parametriccorrelation was used to test the effect.this groupingaffects only lall dat becruse relationshipbetween truftle standing crop biom TnorocolumeLlacloes not fruit in the spring assand meanfrequency of truflle sporesin fecal (Luoma1988). Plantmaterial (e.g., seed pafts, pellets.In all analyses. andTruntttt:o pollen, and other vegetativcrnaLerial identified fuze11asporocarp biomass was combined,con- by morphologyand the presenceofchloroplasts) sistentwiththe procedure usedin identitying spores *'rs also identilled. Frequencyof each item of liom lecalpellets (above). the diet (e.9.,spore type or phnt matcrial)was percentage calculatedas thc of occurrenceof a Results particular tbod type frorn the 75 possible lields in cach pooled fecal sample. FungaB omass Statlstca Anayses Perk'eurunul truHle strn,ling cr,'p bi.)rnir\. c\- ceededthat of ectomycorrhizalmushroom bio Statistica)comparisons of EMF sporocarpbiom massin both fall 1993and spring 199:1(Table 2). ass,small manmal abundance.or f'requencyof Over 85c/cof the total EMF sporocarpstanding pellets dietaryitcms in small mammal fecal were crop bionass was composedof truffles. ,llftl:r., conductcdusing two way or one rvayanalysis of pogon/Tnncocolumella had the grcatcstsporo- (ANOVA). variance Main effects for these carp biomassof all groupsin lall 1993(Table 2) u'ere specics.or season. ANOVAs area,animal and Cautieria rn spring 1994(nrble 2). Datawcrc variously tnnsformed to more closely ( meetthe assumptionsol normaldistribution and Sporocarpbiomass was different@ 0.10) constantvariarce (Sabin and Statiord 1990). tbr sometruffle or mushroomspecies groups be (Table Sporocarpbiomass rvas log lcaLtieriu. H|ster tween the Ai$trip and Mowich areas 2). tirr Russulaceac,Hlslerza- ang i unt, RI ti.- o p og o r t/Tt' un c o u une I Ia, total tntftles ) Seasonaldifterences or squareroot (Bolctaccae.Co inadaceae.total giLrn, Leu.oguster, and Rhizoltogon/Truncoco- mushrooms)transtirrmed. Sporocarp biomass luntelLqdid not vary betweenareas (Table 2). variablesthat could not besuccesstully trurstormed Sporocarpbiomass did show an interaction to meetthe assumptionsof normaldistribution bctweenseason and location (Airstrip andMowich) and constantvariance (as measuredby skewness for Boletaceae,Cofiinariaceae, total mushrooms, and kertosis) were rank transformed(Aphyllo Gaut ie ria,

Smrll MrmrnLrlMlcophagl 6q I ABI-1_-l. \4cin slandrrg crcp sporocaF bromai! (g,he dr) $cighl) (t I SE) rnd,{NO\A resultsir t$o stud) rreas at Walson Frlls .rndfof the t$1r seasonss npled. fall l99l xnd \pring 199.| n = 6.

Fullgal(lrorp N{o$ich Sping

Nlushroons Aph,,-lloph0rrlcs ltE { 100) l1l (117) 0.l9 251 (106) 211 (157) 0.3| B0lclrccircl :19 (2E) 58 (r8) 0.11 50 ciJ) 58 (18) 0.?| 2ri (6) 106 cgl 0.01 16 (1r) 9il 13ll 0.01 56 (53) 17.1(126) 0.79 229 (r2t) I r l) 0.002 Othef lnusbrooIns .:16 (20) )9 (23) 0.57 18 (9) 5',7 (27) 0.61 Tolal nrushroomsl 307 199) IUs ( l.1E) 0.03 5rJ5( 102) .130(187) 0.l7 '71 s08 (216) 2278( I ,l l0) 0.82 (5)) 27101r3t8) 0.002 121 i91) 913 (,160) 0.49 8s (ss) r255 (365) 0.007 133 (7O ,120 (2211) 0.3'1 32 (32) 521 (203) 0.00.1

Ttu|toel rn(lla r509( r051) | 39.1(5 r3) 0.62 21/1 l91t) ,t?8 (125) 0.03 Other truftle\ l 80 (-18) l106 (666) 0.l5 68 (.14) I I l7 (662) 0.03 Totrl truftles l t655 (979) 611I(2260) 0.11 2736 (98:l) 6031(1281) 0.11

/, vrlue\ frcm ANOVA br\ed on tmnsfbrmeddata. :Sjgniilcantarea bi sersoninteracrion precludes simple main elTects compadsons. SeeTable 3 fofdetailedinteraciion effects.

(Table3). Total ectomycorhizal mushroombio- contrast,the frequency of sporesin massvus signiticantlylowcr in thcAirstip area l'ecalpellets was very low: thus,mushrooms were in springl994 (Table3). More than92% of the dropped fiom the analysesof dietary patterns. sporocarpbionrass in spring199,1was fron hlffles Sporesfrom the mushroomgroups Aphylio- and total truffle bionass was signilicantly grcater phorales and Russulaceaewere not detectedin in the Mowich area(Table 3). t'ecalpellets despite their common tiuiting in all stands(Table 2). Sma N,4ammalDiets Fall Sporesfron a total of I I truffle generawere de- tcctcd in thc fecal pcllcts ofthe threesmall man] In fall 11993,1l/rirr.,pr )!.iotL/TrLn.ocolLmk llo truffles mal species.Four generawere encounteredu'ith werethe dominantfbod itemsin the dietsof all liequencies) l07r (Table:l) andrvere considcrcd thrcc mammal species(Table 4) and shorvcdno the majorfood itcnrsfor anallticalpurposes. In diflerencesin occunenceamong them (Table5).

I AtsLE 3 Afer bI \erson interartLonelleets on mean nandirg crop sporocaF bionass (g/ha dr) lvcisht) (:t I SE) in lwo slud,"- re.rs ut $'atson l.rlls and ibr thc t$ o sca\ons sanrplcd.tall | 993 and sprirg | 99,1. Fungalgroups thal do nol s| are a supehcript lcrrerucro!s arca\ and \ca\ons arc signiiicantl) different b,vFisheis ProtectedLSD test(/ < 0. | ) bascdon trlnslinnrcd dala: n = 3.

q ir\trip N{o\iich fungal Crcup Fall Spring Fall Sp.ing

Ntu\hIIxnns Bolctirccrc (:llJl 10" (6) 10. (8) 106" ('10) Coftinarirceae 21" (i2l 33 (3) -50 (23) 161" cl) Totrl mushroolns 503 {95) 11l' (,11) 666- (19 r) 7.19. (266) Trul11es 1-]]" r100) EE-l' r2E6) lof (10) :1517 (229,1) Orher lrulllc! ri0, (80) t9" (26) 57- (57) 2156b ( 105.1) TolaltruJllc\ -r030. c079) t280" (57r) 2.1.10- (657) 9780h (3.110 )

70 Cazareset al. TABLE 4. Mean frequency(c,) (1 I SE) oitruifle sporesor occurencc in ttcal pellets and sporocarpbiom- piantliagmentsir lecal pelletsfrom weslcm rcd asswithin a trcatmentunit (Table7). Total truffle brcked volcs. northernflr"ing squlrrels.and standingcrop within a unit did not colTelatesig- Sisltiyor chipnunls at [htson F. ]s. lall 19931 nificantly with the liequency of plant materialin the diets of the three mammal species,horvevcr therewas an inversecofielation fbl westernred- Frequenc,v (rho = = (1 l sE) backcdvoles 0.60.p 9.13).

Trulllc\ Spring 37.3 (.t.E) I | ,1. (.t.-l) ln spring l99'1,Cautierio. Hl.sterangiun,Leuco- l+.5b {3.1) guster a\d Rhia.oprrgofi(TrurtcocoluntelLa docs Rh i.opeon/Tn LoL oI tIDt ( I | |L 997. (0.3) not fruit in spdng) were major tixrd itcns in thc Phnt materiul 63.1. c.3) dietof northernl1ying squirels, the only animal cxanined that season.No difterencesin the tie- Food item liequerc_r-\ulucs lha! do not shrfe a mpefscript qucncics of truffle sporesin lecal pellets rvere lettef rre signif'Lcarllr dillircnt by Fishef \ ProtectedLSD observcdbctween the Airstrip andMou,ich areas test(t < 0.l). (Table 8). The frequencies of Gurtiericr tnd Thc impo anceof other tungal generavaried in Hrsterdtryilln sporcswere higher in spring thrn (Tables thediets of smallmammds. Norhem llying squir- in fall for northernflying squirrels 5 and 8). The Mowich area had lower Rlti:oltogon/ relshad a significantlyQr 3 0.1)higher tiequency of Gdrticri.i sporesin fecalpellets than did westem Trunutcolumella sporeliequency in spring than red'backedvoles or Siskiyou chipmunks (Table fall (Tables5 and 8). 5). Westernred-backed voles had a signiticantly For the tbur majorspring tind itemsas a group (p ( 0.02) lower fiequencyol Z.rirc.rg.rr /c,. spores and individually.no strongcorrclation belween in f'ecalpellets than did Siskiyouchipmunks (Tible truiile.tanJingerop and :p(\re frequrncic. $er( 5r. Signilicrnturcl-b1 .rnimll interrction'uere lirund (Tablc 9). For northem flying squinels. found for lfi stcrrriig,rrl andplant material(Table the dietaryfrcqucncy ofplant matedal\\"as nega 61. Gautieia sporeswerc more frequentin fecal tivel), correlatedwith R/rli..?.rgo, sporocarpbio pcllet.ti 'rnrhc \4ou ich rrer rnd Hti, rniqiu l mass(r = -0.75,p = 0.011). sporesliom the Airship area(Table 5). Small l\,4ammaAbu ndance For the three mosttiecluent truftlcs as a group. the corrclationbelween truffle starding crop and Wcstcmrcd-backed voles wele nost abundant(fall truflle dietary frequcncy rvas significant for all onlv) lbllowed by Siskiyouchipmunks and north threc marnmalspecies (Table 7). Individually. ern flying squirels (p ( 0.05). Siskiyou chip however.none ofthe najor truffle generashowcd munks wcre more abundantin the Morvich area strong cotrelationsbenvccn frcquencl' of spore thanthe Airstrip uea (Table10).

lABLE 5. I{eru tiequenc} (riI (l I SE) ol rruiilc sporesor planl fragment\ in ltcal pellets liom rhfee $r rtrl speciesand A\OVA rerult\ in mo \rud] afe.rs.rt \\:rLt\on Frll\. firll 1991. lood ilcn !aluc! thal do nor shirc a \upcrlcript lcrrer among anin l\ rre significltllrl) difllrcnl by Fishcr's PrctectcdI-SI] Iest (tr < 0.I ) basedon tmn\fofmed drt.r.

Arcafn = l8i Aninl(n=l:) nofthernflying Siski)-ou Food Item Nio$ich squrnel lhipmunk

1.6 (5.2) 59.9(1. r) 0.000.1 11.0"(s 2) 6.1.7b(15.0) 28.3 (10.9) 0.15 2li.E (6.-1) l0.l (5..1) 0.02 20.9 (10.9) l8.it (9.7j O.1l 10.5(3.2) 20.3 (6.7) 0.5t -r.,1'(1.3)17.2r t0.l) _:976 (r0.5) 0.02

Tnolcocolunielld 100.0(0.0) 99.1 Q.7) 0.r5 99.9 (0.1) 1000 ()0) 91i.7 (1.31 05,1 Plant nlaterial 58.,+(3.1) 69.8 c.6) 0.0006 61.6 (1.6) 51.7 (11.3) 70.1 (3.51 008

'Signifcant ea by annn|l inter!ction prcchrdc\ \irnplc nriin etfectscorrparison,t. SeeTable 6 for detrLiledintefaction .fect\.

'71 Snall Mammal Mycophagl' TABLE 6. Arer b) .rDinal interactioDellects on the mern frequenc) ( t; ) (1 ISE) of ,Yrrr"r.JrRirrl, sporesofpl.rntfragmen!sjn fecal pelleis frorn lhrcc small mamlnal speciesir two study locationsat \\arson l-alls.fall 199]. Vdues rhar do not shafer superscr4xletter acrossareas and animals arc sjgnilicantly dillerent by Fisber'\ ProrectedLSD lcsl (/ < 0.l) balcd on lftnslbnned data: n = 6.

Alr!lno $in.rr r.J nJ hcmr 'ir." S'.1i1,r. uestem red- nortlrerniting Siskiyou Food Item b1cl.d \^ c .ourn(l (h.pmu.l. backedvde squirrcl chipmunk

33.,1' (7.7) 17.0' (21.9) 3.0f (1.51 0.0b (0.0) 10.2, (10.2) 3.1.7.(17.6) Plant rl1alcrirl 63.1 (1.2) 20.5b(15.1) 66.3" (.1.2) 6:1.7" (2.0) 12.6" (8..1) 78.0. (1.6)

TABLE 7. Spearnranrank corrclation.rho. bctwccn trullle standirg crop biunass and meanfrequencv of tmfllc sporesir lecrl peI lets. ranked b! trealmen!uni! (n = 6) of thc WatsonFalls block, lall I 993I I lalues rn parenthcscs.

Food Item westernred-hacked \.'ole norlhcrnLl) inI squlLrel Si\k\nu chitmunk

0.5E (0.20) 0.65 (0.15) -0.18 ().5:ll ,0.34 (0.,13) -0.36 (0.43) 0.09 () 8,1) Rhi.t) p og on/Trut rc oc d wn( II a 0.13 (0.77) 0.50 (0.26) 0.66 (0.1,t) 0.70 (0.00,1) 0.66 0.007) 0.6,1 (0.u08)

TABLE 8. Mean frequency(%) (11 Sts)of lrufflc sporesor TABLE 9. Spearmanrank correlation.rho. betweenlrulllc plant iiagmenis in norihern flying squirrel tecal nanding crop biomass ard mean frequency o1' pelletsand ANOVA fesultsfrom iwo study areas lrulllc sporesin lecal pelleis of nofthern flying at\lirrson Falls. spring 199,1.Whole block food lquirrel!. rankcd b) trealmentunit (n = 6) ofthe itelns that donot shareasuperscript letter are sig- \latson Fallsblock. spring 199,1:p valuesin pa- nificantly differentb)' Fisher'sProtected LSDtest rentheser. (,, < 0.I ) basedon translbnned data. Food ltem lp)

F00d lteln Mowich 0.09 (0.E.l) ti.38 (0.,rl ) Truilles -0.6.1 (0.rs) 91.9(8.1)96.5 (-1.,1) 0.79 9,+.2'(,1.1) 0.52 (0.251 87.r(,1.1)56.7 (22.5) 0.73 71.9F(11.3) 0.2-l (0.2o 10.9(6..1) 9.7 (5.5)0.85 10.3'(3.E1 99.3(0.7) 8,r.8(10.r) 0.26 92.0.(5.6) Planl llratefial 7.3(r.6) 29.0(12.2)0.16 18.1.(7..1)

Discussion the Airstripsites. Similarseasonal vadation in truffle production has been notcd at the H. J. SporocarpAbundance AndrewsExperimental Forcst. 100km to thenorth Our resultssuggest that thereare potentially large of WatsonFalls (Luoma 1991). differencesin the distribution and abundanceof Truffle biomassgreatly cxceedednrushroom lungal sporocarpsamong our study sites,but that biomassduring both sampleperiods. Sinilarly. these diff'erencesmay bc apparcntonly during in a studyof 15 Douglas-tirstands tiom south particularseasons. Truftles in particular showed westernOregon, truffle specieswere sevenofthe strong seasoDaleffects. For example, the pro- ten nost abundantproduccrs of sporocarps(D. lific springfruiting of Cartlerla andother minor L. Luoma,unpubl. data). These below groundfirit trufflc speciesat Mowich producedstanding crops ing fungi areinsulated fiom desiccationand lieez threeto four times greaterthan thoseobserved in ing effectsthatcan prevcnt mushrooms from reach- the samelocations in tall or in eitherseason at ing sporematwation. Although fall is generally

12 Cazareset al. TABLE 10. Numberofcaprures per l00lrap oights(11 SE) ollhrce manrnralspeciesin the iwo stud) localions alWatson Falls. andtbr rherwo seasonssampled, tall 1993and spring 1994;n = 6 exceptn = 3 lbr lhc Airstrip vs. Nioll ich compari- son of westemred-backed loles.

Spring

westemred backed\'ole 5.0 (l.l) 3.1 (0.7) 0.13 ,1.r (0.8) ND: northcm flying squirrel 0.5 (0.2) 0.8 (0.1) 0.37 0.9 ().3) 0.3 (0.1) 0.23 Siskilouchipmunk t.5 (0.1) t.9 (0.1) 0.005 2.2 (0.5) 3.2 (0.9) 0.21 tr \aiues lio l$o $ayANOVA basedon fanslbrmcd data. rND = \(] data. when mushroomproduclion is greatest(Fogel alone.which if anything,was slightlyhigher in and Hunt 1979tNorth et al. 1997;D. L. Luoma. the Airstrip units during fall. The significantly unpubl. data), fall mushroom biomasswas low higher number of Siskiyou chiprnunksin the in this study. In subsequentyea6. mushrot)m Mowich unitscould have incrcased predation rates biomasson theWatsonFalls block was8-10 times en Gautieria in thal areaand therebylowered stand- greaterthan in fall 1993 (D. L. Luoma. unpubl. ing-crop biomass. Spatialpatterns of consump data). We hypothesizethat weatherpattems are tion may be a consequenceofinteractions between largely responsiblefor the low mushroom pro- sporocarpavailability, small mammalabundance. duction in 1993. Unusuallydroughty conditions and fbod item preferencesleading to complex persistedfrom late August through mid-October competitive effects among small mammal spe- tnat year. cies that vary spatially and temporally. Generally in our region, annualand seasonal In the 1all.the biomassof ectomycorrhizal truff'leprcduction arc Iessvariable than mushroom mushroomsequaled orexceeded that ofthe truff'le production(North et al. 1997;D. L. Luoma,unpubl. generaGautieri o and Ht,sterangium.Yet, despite data). Truffles also fruit over a longer period of the comparableabundance of mushroom sporo time (Fogeland Hunt 1979.North et al. 1997). carps.truffle generawere significantly more fre- Forerarnple. rr r,ne-l-hir pondero.a pine site in quent in the diets ofall threesmall mamrnalspe preferred southwestOregon. truffles have beenfbund ev- cies. This suggeststhat truffles arc a ery weekof theyear (J. M. Trappe.unpubl. data). food in theseDouglas-tir stands. No sporesof groups Aphyllo- Both the seasonally-extendedavailability and the mushroom Russulaceaeor phoraleswere found in the diet analysisofany of greaterbiomass of truffles increasetheir depend- the threesmall mammal species even though their ability as a food sourcefor small mammals. sporocarpbiomass exceededthat of all truff'le Mycophagy generaexcept for Rhiz.op o g on/Tr un tt xt t lumeIl a. Thus, EM mushroomsdo not appearto be a di- Ourtindingthat nonhem flying squirrelsconsumed etary staple for these small mammal speciesin Gautieri| morc ftequently than did westemred- the WatsonFalls block. roles chipmuntsprovides field- backed orSiskiyou Both Cautieria and H-\sterungiun appearto pattem basedsupport for a similar observedby be consumed,to some extent, in proportion the Zabelrnd Waters(1997) who lbund thatflying "cafeteria-style" their seasonalabundance. ln contrast,although squirrelsprefcrred Gartieri.i in Rhizop ogon/Tr unc ocolirmella biomass decreased t'eedingtrials. Theif study did not include Rll:o- .harplSin lhe spring.it remlinedln imponant 2ogarz,which we found to be nearly ubiquikrus componentof the diet of flying squirrels.Thc in fecal pelletsand which had the greatestsporo- results of other researchand our own observa- carpstanding crop during tall 1993.Rhizoltogon tions lead us to speculatethat Gaulieria Jnd and Gautieri.t sporocarpsmay be particularly Rhizopogonmay be equally prelerredas food by importantfood sourcesin theselbrests. northernflying squirels. When maintenanceof That allthreesmall rnammal species consumed smallmammal abundance and diversity are goals, Gautieria less frequently in the Airstdp units is managementthat maintains sporocarp production not easilyexplained by variationin standingcrop by truffle fungi may be crucial fbr success.

Small Mammal Mycophagy 13 DietaryCorrelatlons manrmals.In additionto higherSiskiyou chip- munkabundance at Mowich in fall. wcrehigher ln our study.the positive correlation betu'een fie- Grartierraconsumptionby all threeanimals studied quencyof Gtuttieriasporcs in northcrntlying and reducedGdrlie,.id standing-crop biomass. squirrelfecal pelletsand Gaurir:rlabiomass lends Hower.er.factors other than trufilc abundancecould further support to the hypothesisthat northern also affcct the densitiesof small marnnal spe- flying squirrelshave a prefercncc1br this gcnus. cies in thesestands. Variation in treebasal area, Colgan(1997) fbund thtrt despite the reduced tiuit- snags,downed trees, and treecavities may influ- ing ol Gautieriain thinnedstands. tlying squir- encethe availability of cover.fbod, and nesting rul. lrirppeLlin those.tunds \\ere e,'ntinuing t,' areas(Gilben andAllwine 1991).The movements utilizc Gautieria as a dominant food silurce. He ol animrl' fromrdjacent .land: xnd vrrirri,'n in hypothesizedthat flying squirrel preferencefbr local predationrates can also intluence Gaatir:rldcould furtherreduce standing crop bio- small mammalabundance (Carey 1991, massin thosestands (bcyond that induccd by the Lehmkuhl and Ruggiero1991). Thesepotential effects were not thinning) forcing flying squirreJsto obtain analyzedin thecurrent study but will Caillleia outsidethe thinned treatment areas. The be consid- crcd by other researchers nruchlrger. contiguoustreatment areas of the in subsequentanalyses patterns(Lehmkuhl DEMO expelimentwill reducethe influenceof of wiJdlit'e et al. 1998).Fur- this typc of edgeclfect. ther explorationof the soulcesof between-arca dillerenceswill bean impofiant pafi ofourbaselinc, The significantcorrelation between trutle pre harvest analysis;the pattems and causesol standing-cropbiomass and liequencyof truftle thcscdiflcrcnccs rvill be of fundamentalimpor- sporesin lecalpellets tbr the pooledtood items tanceto unde$tanding vadation in the relation- must be view with sone caution.The co[elation shipsthat energe follorvingimposition of the rvas n.rainly tl're result of a fe\\" hrgh Rhi:opogon/ DEMO harvesttreatments. Truncotoltunellu sporocalp biomassvalues co- incidirg with high dietaryfiequency values while Conclusions Gautieriu tnd Hl"sterurgfunrtended to havelorver bionassand spore liequenc_"- r'alues. As an indi- We identilledsignificant spatial and temporal vidual lbod item, thereis no correlationbetrveen variationin EMF production,small mamnral truffle standing crop biomassand frequency of mycophagy.and snall mammalabundance in the trutfle spores in fecal pellets for Rhizopogon/ prc-harvcsttbrests of the WatsonFalls block. Tt'un trtut ltone | la becausethese are eaten ubiqui However,truffles \\"ereconsistently the pinlary tousll'.regardless of vadationin peak seasonstand food iLemin thc dict of all threesmall mammal ing cropbiomass. speciesstudied. Small mammals ale potentially Negative correlations between the Siskiyou imponantdispersal agents ol'trufflcs into disturbed chipmunk r'nd (]autieria may indicate that in- areaswhere EMF arelocally extirpated.Although 'snap creasedcompetition for truft'lcsrcduccs sporo- this studyrepresents only a shot' in time. carpstanding-crop biomass. Norrh et al. (1997) futurcunul1..: rrillcrrtnttte 1g.pr'ttse' t,' rlri- hale demonstratedpredrtion eflects on trutlle ouslevels and pattems ofgreen treeretention o\er strndingcrop in northwesternWashington. In nultiplc ycars,thus broadening the scopeof in- sprin,r.the negativcconelation between fungal ferencetbr our trndings. biomassand sporesof Leri.ogas/e7-inthe diet Nonhernflying squirrelsand Siskiyouchip- (Trb1e8) againsuggcsts that mlcophagy may alltct nunks ncst in trccsor usc trccsns avenuestirr sporocarpstanding-crop biomass. When truffle travel (Carey 1991.). Arboreal rodents |nay bc biomassis lorvered.consumption of plantmate- ailtcted by forest managementactivities that irl mayincrease. hou'ever unexplored complexi- chrngcthe patterrt :rnd .lnr(lurc,'l' f,'r.'t ern,. ties involvinganimll abundance.competitive pies. Trees also provide the energy sourcesfor ability,and trxrdprcttrcncc limit our abilitl to EMF and their fmiting bodies. Therefore,dis- gcncralizc I'nrmthis study. turbancesthat influencethe levellncl patternof SrnaI lvlamnnaAbundance livetrees retained through harvcst arc also likely to inlluence the diversity,abundance, and distri- Trufllc irbundunccpr.rh.rhlr hu' un imp,'r1r'nlin- butionol EMF andtheir fiuiting bodies.Future flucnccon theabundancc of mycopha-uoussmaJl analysesof post-hilrveslpaltcrns will provide

11 Cazareset al valuableinsights into the effectsofretention har ancewas especiallyhelpful in dcvclopingthis veston EI4Fand small mammalabundance. Given contibutionto a Spcciallssue ofNofih$est Sci- thefunetionai imp,'nunie of thesegroups in our encc. Drs. AndrervClaridgc, Chris Maguire, forest ecosystems,the results of our work rvill Malcdm Nonh. Tiln Schowalter,and Cindy Zabel have important implications firr horv retentjon providednany helplulcomments. harvestsmay be implementedin the tuture. This is a productolthe Dcmonstntion ofEco- systemMiinagement Options (DEMO) study,a Acknowledgements joint eftortof thc USDA ForestService Region 6 We gratefully acknorvledgethe contributionsof andPacific Nofih\\'est Rescarch Station. Research partners of \\'ashington, JinrCaruthels. Wanda Caruthers. Joyce Eberhan, include the University Dr. Laura D. de Toledo.Rick Abbott. Debbie OregonState University, University of Oregon. NationalForests. Claridge,JelT Feen, Dr. Ari Jumpponen.Kim Ciftord Pinchotand Unpqur Kittridge,Tom Manning,Dr'. Bill McConb, and and the WashiDgtonState Department ofNatulal RebeccaThompson. Dr. ChrrlieHalpem's guid- Resources.

LiteratureCited Colganlll, W. A. B. Car.). andJ. \{. lrapte. I997. AreLi able nethod of ,rnal),,rngdretrfies ol m!cophasous Anruarrhus. N4.P.and Luoma. D.L. 1991. Dlt'ersib ofect{) smdl nrmmals. \orth$. \at. 78:65 69. ol \poroc.rps prcduccd h! ,r), *.1"/..1lJncr ., ore..if' ".rir'.: 'Irp.{ J1.. Fogel. R. 1981. Quantificatim hypogcouslungi. /n D. T.Wicklo$, rnd G.C.Carroll und con\crvation. /, N{. T. Nlanins. M. L Z. Sato.J. (eds.). Thc FLrngalComrnuniN. its Orglllliralior and Nl. Tiedje. L. C. )i. llagler. J. Diibefeiner.und P S. Role in the Ecoslslcrr. NiarcelDekker, lnc. Pp. 553 (cds.). Proc.7'rIn- SaDcher Pr(rgr.Nlicrobial Ecd. 568. rcr. Symt. on Vicrobial Ecol.. Sant$. Bruzil. Pp. Fogel.li.. andG. Hunt. 1979.Fungal and xfbofeal biom.rss 99,105. in .L$e\tern OrcgonDouglas fir eco\)stem:Distri A aranthrs M. P. J. NL Truppc. l-. Bedn . and D.,A.rthui bution pa ernsand turnoler Can. J. For. Res.9:2.15 199.1.liJpogeo s fungalprodLrclio. in atlneDou- t56. gh\-fir linrsr lragnenls rnd su||oundins plantatiolls I 1rl. R...rrrt | \1. lr..ttr. .0-q. fr r,r,. !i'r rrr fr , r rnd ii\ relalionto coarsc$ood) debfisrnd rnim. (mycophag))by smallanimrls. Noih$. Sci. 52:l nUcophag).C].tn. J. For Res.1.1:1157'2165. 31. l-oNmrn.E. D.. E. C. Nlcslo$.and H. N{.$ ighl l98.l. Dis Aubr). K. B . \'l. P Amaranthu\.C. B. Hrlpcrn.l. 1).While. tribuli(D rnd bioiog) of the spotted o$1 in Orelon u. t-. [ix)d fd. C. [. Pctcrson.C. A. L goud.tkis.and Wildl. tlonogr.87: I 6,1. l99c).E\alLrrting thc cllccls ofvar,\1ng A.J.Horlon. Cilberi.F. F., rrd R.,A.ll$lnc. 1991. Smallmltllrn l conr (\o. ri . Jt..rflr. ljlrrfei eerir: nunities in the Orcgon CxscadeRrnge. ,? L. Ia nrc lil designofthe DENIO \l'd,,'. \ordr$. Sci.13 Ruggiero.K. B. Aubry.A. B. C e], rLndll. H. Hull (Spcc.li\.1: L216. (tech.coord\.). Wijdlife hrbirrr felalionship\ in old 'Ihifd B.rld\\in.1-.. \{ 1981. Geolog}ol Or!'gon. edilion. gro$lh Douglas fir forests. LISDA For. S.r\.. Gcn. Kend l Hunt.DubrLquc. Tech.Rcp. PNw G IIt 285. Pp.156 267. ,iqLrirel C fcr-.A. B. l99l. lhebiolog) oi rfbor.aLrodcnl( jn l)ou- Hall. D. S. 1991. Diet oi rhcnonlcrn ll!ing rLtSagehen 12: 615 617. glrs ilf ible\t\ LISDA For. Scr\'.. a;en Tech. Rep. Cfeek.CrLlirirnia. J. Mu)mal. Ilalpern.C.B.. S. A. E\rns. C. R. Nel\on.l). l\{cKenzie.D. PN\\ 176. Liguofi. D E. Hibbs. ard \4. Cl. Hihj. 1999. Re- . 1995. Sciurds in Prcrllc Nonh\e\t n D.rged \porse oi tbrcsrconrrunilics to rxrl ing le\els md prt .rndold growrhlbf esrs. Ecol. Appl. 5i6.lE661. temsof lrecr h'ccrctcrlion : xn ovenie$ oirlon! C.rfe).A.8..B L. Bis*cll.and.l.\\.\\ili. 1991.itlcthod\ te|lnerpeimcnl. \orthx. Sci l3 (Spec.lss.):21-1.1. lin nr!'i\Ll|ing populrtior\ ol rrborcal rodeni\. LISDA Hrr-es.J. P. S. P C)o\s. rnd P w N{clntire. 1986. Se.rsonal l-of SeI\..Gen. Tech. Rcp. Pl'lW-GTR-ll3 varirtion ir nlcophag! b) Ihe $e\tefn red-brLcked C.Lfe).A.8..S.P Ilorton.rndB.L.Bi\$eLl. 1991. Nonh- \ole. Cldhia on\s culiltrnu us. in \outr\restenr cr spoftedo\rl\: iriluenlc ol prc! haseand land\crpe Oregon.Nonhw Sci.60:250156. . .,..r. 1. r rl' r":r 5l:llr 250 i{unr,C;. A.. rnd J. \I. Tfappc. l9lt7. Seasonrlh}pogeous ,ipofocrfp productior il] a wcstern Ofegon Dough\- C.r\rcllanolu. A..J. NL Tf.ippc.Z. N4a\el.ard C. N1aser1989. fif \tand. C.rn.J. Bol. 65:118+.15. Ker ro Stores of the Generuol Hr'pogcousFungi of Lehmkuhl.J. n. undL. F.Rrggiefo. I99L Foresttirslncn \orh TempcraruForc\ts $ith SpecLrlR.lcrc.cc ro tation in llc Picilic Nofih\lest rnLl ils polcnlial cl Press.Eufekr. Anirn.Ll\'llcoph.r-qt. Nltrd Rr\cr lectson $ildliti'. tr L-.F. Ruggierc. K. B. Aubr).,\. Colgan III. \\i 1997. Di! cl\ilr". pmdncn\ iI)-.rLnd ln] cophag) B. Cre\. and ]vl. ll. tlufT (iech.coo s.). \\ildlile ol hlpogcou\nr)corfhizrliirn!iir r \afiabl) thrnned habilatfehtionship\ in old grcr\th Dougl s-fi|1i)resls. 1)orglasfiflinest. OrcsonSlitc Llni\e|sit).Cof\rLllis. IISDA Fof.Serv., Cen. Tcch. Rep. PNW GTR 285 Ph.D.Di\!cr(auon Pp.35 16.

'75 SmallMammal Nlycophagl Lchmkuhl. J. F.. S. D. $tn. C. L. Clhambcn.W C. Mcconb. Sabin. T. E., and S. G. Staftbrd. 1990. Assessingthe need D. A. N{anu\ra]. K. B. Aubrr. J. L. Ericksor. R. A. fortransformationof response\,'ariables. Special Pub Giucn. and M. Lcu. 1999. As\essins $ildlile re licatjon 20. Fc'rcsrRcscarch Ldboralor,,-. Oregon Stare sponsc to \arying lclcls and pa(crns ol grccn trcc University, Corvallis. 3l p. rc|cl1lionin wc\trn OrcgonandWashington. Norlhw. Smith.S.8., andD. J. Read. 1997.Mycorrhizal Slmbiosis. (Spcc. Sci.73 lss.):,1561. Academic Press,London Luom.r. D. L. 1988. Bionass and coDrnunity structufe of States.J. S..and W. S. Caud. 1997. Ecolog) ofhlpogeous \porocarps lbmed b! h]'pogeous ectomvcorrhizal fungi associaied\lith ponderosapine. L Patiernsoi fungi !r'ithin sclcctcdforest habiratsof thc H. J. dislributioD and sporocarpproduction rn some An- Andrcws Expcrimcnul Forcsl.Orcg|)ll. Orcgon Stale zonaforests. N{ycologia 89:7l2 721. Uni!cnity. Corvdllis. Ph.D. DissertatroD. Tcmlorshuizcn.A. J. 1991. Succession of m) corrhizal fungi . 1991. Annual changesin seasonil producdon 01' iD standsof Pnrrr rflr'?r1rl.! in the Netherlands. hlpogcou\ \porccrlps ilr Orcgon Doug]as lL lbr.sls. J. 1, L.F. Ruggicro, K. B. Aubry. A. B. C.rre).and M. Veg.Sci.2: 555 56,1. H. Hul (rech.coords.). Wildlile habitatrelrtionships Thonas. J. W. E. D. Forsman.J. B. Lint. E. C Nfe\low. B. It. in old-gro",th Douglas-fir fofests. USDA For Sef\'.. \oon. JndJ. Vcrncr. loo0 A (.n.(.\rriur n ..r(f\ Cen. lech.Rep. PNw CTR 285. Pp.83 89. for the northern spottedoll l: a report officln|cr L.uona. D. I-.. J. L. Eberhari.and M. P Amarandus. 1991. rgenc) Scientific Comnittee tu Addreslithe Con\ef- B jodi!crsi!y of cctonlycorhizal typesliom Southwesl vation ofthe NorthernSpo[cd Owl. USDA For. Scrv. Orcgon. 1, T. N. Kale, A. Lisror. R. M. Lo!e. D. L. and USDI Bur. Land Manage.,FishWildl. SeI\.. and Luoma. R. J. Mcinkc. and M. V wilson (eds.). Con Nat. Pafk Sen'.,Pofiland, Olt. ,127p. scrvalionand Managcmcnlol Natilc PlantsandFungi, Trappe.J. Nl. 1977. Selectionof lungi lbr cclonlconliral Nalive Plant Societl ol Oregon.CoNallis. Pp. 2,19 inoculationnurseries. Ann. Rer'.Phltopathol. l5:203 :53. 12L. Luomr. D. L.. R. E. Frenkel,and J. M. Trappe.l99l. Fruit- USDA and USDL l994a. Final supplementalenviromncn ing of hypogeousfungi in Oregon Douglar fir for tal impact stalenenl on managementof h.rbitat fof cstsr scasonaland habilat variation. Mycologia late-successionaland old gro$,lh foresl rclalcd spc 83r335353. cics wilhin lhc rangc of the norlhern sported owl. \{ascr. C.. and Z. l\4aser 1988. lnlcraclions among squir USDA For. SeN., Ponland, Oregon. rcls. m!corrhi,/al ltrngi, and conilcrous lbrcstsin Or laq l5 kecnrdofde^ i\ion 'or amendmellslo lr'icn egon.Crea! uasin Nat..18r358 -169. Service and Burcau of Land Managemert planning \lascr.C.,J. Nl. Trappc.andR.A. Nussbaum.1978. Fun wilhin range gal sm.rll mrlnlnal irlerelationships with emphasis documents rhe of lhe northem spotcd on Oregon coniferou\ finests. Ecobgy 59:779-i109. owl. USDA For. Serv.,Ponhnd, Oregon. \4aser.C.. J. \\l Witt. and G. Hunt. 1986. The northernfly- Villeneuve. N.. F. I-e Tacon.and D. Bouchard. 1991. Sur- i.g squirrel: a m!cophagist in southwesternOregon. \i\Jl ,.l iru.rl.,reJIr,,. t;n h,.tt l r1connerirol Can.J. Zool.6,1110862089. with narive eclonrcorrhilal lungi and cilects on the \{aser.2..C. Maser,and.l. \'{. Trappe. 19E5. Ijoodhahirsof gr$vlhoi outplanrcdDouglas ljr seedlings.Plant and ihe northernfl)ing squinel((;hLon)\ vhrinu\) in Soil 135:95-107. Oregon.Can. J. Zool.6-l: 108:l-1088. Walers.J. R.. and C. J. Zabcl. 1995. No hcrn llling squir- Mcllrtrc. P \\. 198,1.Fungus consumplion by thc Siskir'ou fel densitie\ in fif fofests of northea,iiernCalifornia. chipnunk \lithin tr lrriousl) lrearedlLrrest. Ecology J. wildl. N1anuge.59:858 866. 65:137-1,19. \l'arers.J. R.. K. S. McKelvcy. D. L. Luomr. and C. J. Zabel. Nlehu,t.H. 1986. Fruit bod] production of macrofungi in 1997. Truftle prcductron in old-gro$,th and mature soine \orth Nor$egian ib.est lypes. Nord. J. Bot. fir standsin norllrcastcmCalilornia. For. Ecol. trllrn 6:679-101. age.96:155166. Norih. Nl..J. Nl. ltappe.and.1. Franklin. 1997. Standing Witt.J.W 1992.Home mnge and densit,v estimates tbr thc crop and animxl consu'nptionofiungal sporocarpsin norlhcm ilying squirrcl.Cl.xr.orrx rdl),ir?rlr,in $est- Pacific Norih$esr forens. hcology 7E:15.1-l155,1. em Oregon.J. Nfammal.'73:921919. Rxdlkc. S.. and R. \'. Ed$ads. Jr. 1976. Soil Resouce ln Zubel. C. J., rnd J. R. \\'aters. 1997. Food preferencesof \enlory. Unpqua N.rtionrl Foren. USDAFoT. Serv.. capti|e northen flying squincls liom lhc LasscnNa PN\\ Region,Portland, Oregon. 216p. Rosenberg.D. K.. andR. G.Anthonr''..1992. Characieri,itics tional Forestin nofheasternCalifomia. Nonhr'. Sci. 7l:10-l 107. ni I nflhir| fl)ine ,ql|inel lFt,rlJ i.r,, r]^u,re,ec- ond- and old-ero\\th fofest\ in westernOregon. Can. J.Zool. 70:161-166.

76 Cazareset al.