Data Fusion by Matrix Factorization

Total Page:16

File Type:pdf, Size:1020Kb

Data Fusion by Matrix Factorization Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). Data Fusion by Matrix Factorization Marinka Zitnikˇ [email protected] Faculty of Computer and Information Science, University of Ljubljana, Trˇzaˇska 25, SI-1000 Ljubljana, Slovenia BlaˇzZupan [email protected] Faculty of Computer and Information Science, University of Ljubljana, Trˇzaˇska 25, SI-1000 Ljubljana, Slovenia Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX-77030, USA Abstract our in the study of disease. Let us say that we ex- For most problems in science and engineer- amine susceptibility to a particular disease and have ing we can obtain data that describe the access to the patients’ clinical data together with data system from various perspectives and record on their demographics, habits, living environments, the behaviour of its individual components. friends, relatives, and movie-watching habits and genre Heterogeneous data sources can be collec- ontology. Mining such a diverse data collection may tively mined by data fusion. Fusion can fo- reveal interesting patterns that would remain hidden if cus on a specific target relation and exploit considered only directly related, clinical data. What if directly associated data together with data the disease was less common in living areas with more on the context or additional constraints. In open spaces or in environments where people need to the paper we describe a data fusion approach walk instead of drive to the nearest grocery? Is the with penalized matrix tri-factorization that disease less common among those that watch come- simultaneously factorizes data matrices to dies and ignore politics and news? reveal hidden associations. The approach Methods for data fusion can collectively treat data sets can directly consider any data sets that can and combine diverse data sources even when they di↵er be expressed in a matrix, including those in their conceptual, contextual and typographical rep- from attribute-based representations, ontolo- resentation (Aerts et al., 2006; Bostr¨omet al., 2007). gies, associations and networks. We demon- Individual data sets may be incomplete, yet because of strate its utility on a gene function prediction their diversity and complementarity, fusion improves problem in a case study with eleven di↵erent the robustness and predictive performance of the re- data sources. Our fusion algorithm compares sulting models. favourably to state-of-the-art multiple kernel learning and achieves higher accuracy than Data fusion approaches can be classified into three can be obtained from any single data source main categories according to the modeling stage alone. at which fusion takes place (Pavlidis et al., 2002; Sch¨olkopf et al., 2004; Maragos et al., 2008; Greene & Cunningham, 2009). Early (or full) integration trans- arXiv:1307.0803v2 [cs.LG] 6 Feb 2015 1. Introduction forms all data sources into a single, feature-based ta- ble and treats this as a single data set. This is theo- Data abounds in all areas of human endeavour. Big retically the most powerful scheme of multimodal fu- data (Cuzzocrea et al., 2011) is not only large in vol- sion because the inferred model can contain any type ume and may include thousands of features, but it of relationships between the features from within and is also heterogeneous. We may gather various data between the data sources. Early integration relies on sets that are directly related to the problem, or data procedures for feature construction. For our exposome sets that are loosely related to our study but could example, patient-specific data would need to include be useful when combined with other data sets. Con- both clinical data and information from the movie sider, for example, the exposome (Rappaport & Smith, genre ontologies. The former may be trivial as this 2010) that encompasses the totality of human endeav- data is already related to each specific patient, while the latter requires more complex feature engineering. Note: Please refer to the extended version of this paper published in the IEEE Transactions on Pattern Analysis and Machine Intelligence (10.1109/TPAMI.2014.2343973). Data Fusion by Matrix Factorization Early integration neglects the modular structure of the imize Bregman divergence (Singh & Gordon, 2008). data. The cost function can be further extended with vari- ous constraints (Zhang et al., 2011; Wang et al., 2012). In late (decision) integration, each data source gives Wang et al. (2008) (Wang et al., 2008)deviseda rise to a separate model. Predictions of these models penalized matrix tri-factorization to include a set of are fused by model weighting. Again, prior to model must-link and cannot-link constraints. We exploit this inference, it is necessary to transform each data set approach to include relations between objects of the to encode relations to the target concept. For our ex- same type. Constraints would for instance allow us ample, information on the movie preferences of friends to include information from movie genre ontologies or and relatives would need to be mapped to disease asso- social network friendships. ciations. Such transformations may not be trivial and would need to be crafted independently for each data Although often used in data analysis for dimension- source. Once the data are transformed, the fusion can ality reduction, clustering or low-rank approximation, utilize any of the existing ensemble methods. there have been few applications of matrix factoriza- tion for data fusion. Lange et al. (2005) (Lange The youngest branch of data fusion algorithms is in- & Buhmann, 2005) proposed an early integration by termediate (partial) integration. It relies on algorithms non-negative matrix factorization of a target matrix, that explicitly address the multiplicity of data and fuse which was a convex combination of similarity matri- them through inference of a joint model. Intermediate ces obtained from multiple information sources. Their integration does not fuse the input data, nor does it de- work is similar to that of Wang et al. (2012) (Wang velop separate models for each data source. It instead et al., 2012), who applied non-negative matrix tri- retains the structure of the data sources and merges factorization with input matrix completion. them at the level of a predictive model. This particular approach is often preferred because of its superior pre- Zhang et al. (2012) (Zhang et al., 2012) proposed a dictive accuracy (Pavlidis et al., 2002; Lanckriet et al., joint matrix factorization to decompose a number of 2004b; Gevaert et al., 2006; Tang et al., 2009; van Vliet data matrices Ri into a common basis matrix W and et al., 2012), but for a given model type, it requires the di↵erent coefficient matrices H , such that R WH i i ⇡ i development of a new inference algorithm. by minimizing i Ri WHi . This is an interme- diate integration approach|| − with|| di↵erent data sources In this paper we report on the development of a new that describe objectsP of the same type. A similar ap- method for intermediate data fusion based on con- proach but with added network-regularized constraints strained matrix factorization. Our aim was to con- has also been proposed (Zhang et al., 2011). Our work struct an algorithm that requires only minimal trans- extends these two approaches by simultaneously deal- formation (if any at all) of input data and can fuse ing with heterogeneous data sets and objects of di↵er- attribute-based representations, ontologies, associa- ent types. tions and networks. We begin with a description of related work and the background of matrix factoriza- In the paper we use a variant of three-factor matrix n k tion. We then present our data fusion algorithm and factorization that decomposes R into G R ⇥ 1 , F m k k k 2 T 2 finally demonstrate its utility in a study comparing it R ⇥ 2 and S R 1⇥ 2 such that R GSF (Wang to state-of-the-art intermediate integration with multi- et al., 2008).2 Approximation can be⇡ rewritten such ple kernel learning and early integration with random that entry R(p, q) is approximated by an inner product forests. of the p-th row of matrix G and a linear combination of the columns of matrix S, weighted by the q-th column 2. Background and Related Work of F. The matrix S, which has relatively few vectors compared to R (k n, k m), is used to represent 1 ⌧ 2 ⌧ Approximate matrix factorization estimates a data many data vectors, and a good approximation can only matrix R as a product of low-rank matrix factors that be achieved in the presence of the latent structure in are found by solving an optimization problem. In two- the original data. factor decomposition, R = n m is decomposed to a R ⇥ We are currently witnessing increasing interest in the product WH,whereW = n k, H = k m and R ⇥ R ⇥ joint treatment of heterogeneous data sets and the k min(n, m). A large class of matrix factoriza- emergence of approaches specifically designed for data tion⌧ algorithms minimize discrepancy between the ob- fusion. These include canonical correlation analy- served matrix and its low-rank approximation, such sis (Chaudhuri et al., 2009), combining many inter- that R WH. For instance, SVD, non-negative ma- action networks into a composite network (Mostafavi trix factorization⇡ and exponential family PCA all min- & Morris, 2012), multiple graph clustering with linked Note: Please refer to the extended version of this
Recommended publications
  • The Application of Data Fusion Method in the Analysis of Ocean and Meteorology Observation Data
    International Journal of Hydrology Research Article Open Access The application of data fusion method in the analysis of ocean and meteorology observation data Abstract Volume 3 Issue 3 - 2019 Data fusion is a new technology of data processing for multi - source ocean meteorology 1 2 3 data. In order to clearly understand how to apply this technology in the data processing Wang Wei, Liu Zhi-jie, Zhao Yue, Gong 1 of ocean meteorology observation, the author first divides the fusion methods into three Xiao-qing categories, i.e., pixel-level fusion, feature-level fusion and decision-making level fusion. 1Tianjin Institute of Meteorological Science, China Then, the corresponding methods of each data fusion are discussed in detail. Afterward, the 2Meteorology Administrative of Xiqing District, China SST fusion data from China Meteorological administrative is analyzed in order to explain 3Meteorology Administrative of Jinnan District, China that the fusion data is applied in numerical forecast model on the China’s Bohai sea region. Finally, the authors believe that the data fusion technology of multi-source observation data Correspondence: Wang Wei, Tianjin Institute of has a good application value when the observation data is processed into grid data of ocean Meteorological Science, Tianjin, China, Tel 086-022-23358783, meteorology, which can be used as the grid truth-value of numerical model inspection. Email In addition, the fusion technology at decision-making level can also develop with the intelligent technology, and deeply mine the application of data fusion technology to the Received: May 13, 2019 | Published: June 03, 2019 ocean meteorology observation data. Keyword: data fusion, ocean meteorology, observation data, data processing Introduction evaluation tasks.
    [Show full text]
  • Causal Inference and Data Fusion in Econometrics∗
    TECHNICAL REPORT R-51 First version: Dec, 2019 Last revision: March, 2021 Causal Inference and Data Fusion in Econometrics∗ Paul Hunermund¨ Elias Bareinboim Copenhagen Business School Columbia University [email protected] [email protected] Learning about cause and effect is arguably the main goal in applied economet- rics. In practice, the validity of these causal inferences is contingent on a number of critical assumptions regarding the type of data that has been collected and the substantive knowledge that is available about the phenomenon under investiga- tion. For instance, unobserved confounding factors threaten the internal validity of estimates, data availability is often limited to non-random, selection-biased sam- ples, causal effects need to be learned from surrogate experiments with imperfect compliance, and causal knowledge has to be extrapolated across structurally hetero- geneous populations. A powerful causal inference framework is required in order to tackle all of these challenges, which plague essentially any data analysis to varying degrees. Building on the structural approach to causality introduced by Haavelmo (1943) and the graph-theoretic framework proposed by Pearl (1995), the artificial intelligence (AI) literature has developed a wide array of techniques for causal learn- ing that allow to leverage information from various imperfect, heterogeneous, and biased data sources (Bareinboim and Pearl, 2016). In this paper, we discuss recent advances made in this literature that have the potential to contribute to econo- metric methodology along three broad dimensions. First, they provide a unified and comprehensive framework for causal inference, in which the above-mentioned problems can be addressed in full generality.
    [Show full text]
  • Data Fusion – Resolving Data Conflicts for Integration
    Data Fusion – Resolving Data Conflicts for Integration Tutorial proposal, intended length 1.5 hours Xin (Luna) Dong Felix Naumann AT&T Labs Inc. Hasso Plattner Institute (HPI) Florham Park, NJ, USA Potsdam, Germany [email protected] [email protected] 1. MOTIVATION entity into a single record and resolving possible conflicts The amount of information produced in the world in- from different data sources. Data fusion plays an important creases by 30% every year and this rate will only go up. role in data integration systems: it detects and removes dirty With advanced network technology, more and more sour- data and increases correctness of the integrated data. ces are available either over the Internet or in enterprise Objectives and Coverage. The main objective of the pro- intranets. Modern data management applications, such as posed tutorial is to gather models, techniques, and systems setting up Web portals, managing enterprise data, managing of the wide but yet unconsolidated field of data fusion and community data, and sharing scientific data, often require present them in a concise and consolidated manner. In the integrating available data sources and providing a uniform 1.5-hour tutorial we will provide an overview of the causes interface for users to access data from different sources; such and challenges of data fusion. We will cover a wide set of requirements have been driving fruitful research on data in- both simple and advanced techniques to resolve data con- tegration over the last two decades [13, 15]. flicts in different types of settings and systems. Finally, we Data integration systems face two folds of challenges.
    [Show full text]
  • Data Mining and Fusion Techniques for Wsns As a Source of the Big Data Mohamed Mostafa Fouada,B,E,F, Nour E
    Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 65 ( 2015 ) 778 – 786 International Conference on Communication, Management and Information Technology (ICCMIT 2015) Data Mining and Fusion Techniques for WSNs as a Source of the Big Data Mohamed Mostafa Fouada,b,e,f, Nour E. Oweisb,e, Tarek Gaberb,c,e,f, Maamoun Ahmedd, Vaclav Snaselb aArab Academy for Science, Technology, and Maritime Transport, Cairo, EGYPT bFaculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava - Czech Republic cFaculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt dMiddle East University, Amman - Jordan eIT4Innovations, VSB-Technical University of Ostrava, Ostrava - Czech Republic fScientific Research Group in Egypt (SRGE), http://www.egyptscience.net Abstract The wide adoption of the Wireless Senor Networks (WSNs) applications around the world has increased the amount of the sensor data which contribute to the complexity of Big Data. This has emerged the need to the use of in-network data processing techniques which are very crucial for the success of the big data framework. This article gives overview and discussion about the state-of-the- art of the data mining and data fusion techniques designed for the WSNs. It discusses how these techniques can prepare the sensor data inside the network (in-network) before any further processing as big data. This is very important for both of the WSNs and the big data framework. For the WSNs, the in-network pre-processing techniques could lead to saving in their limited resources. For the big data side, receiving a clean, non-redundant and relevant data would reduce the excessive data volume, thus an overload reduction will be obtained at the big data processing platforms and the discovery of values from these data will be accelerated.
    [Show full text]
  • Data Fusion and Modeling for Construction Management Knowledge Discovery
    Data Fusion and Modeling for Construction Management Knowledge Discovery Lucio Soibelman *, Liang Y. Liu ** and Jianfeng Wu *** * Assistant Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana- Champaign, 205 N. Mathews Avenue, Urbana, IL 61801, U.S.A. [email protected] * Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana- Champaign, 205 N. Mathews Avenue, Urbana, IL 61801, U.S.A. [email protected] * Research Assistant, Department of Civil and Environmental Engineering, University of Illinois at Urbana- Champaign, 205 N. Mathews Avenue, Urbana, IL 61801, U.S.A. [email protected] Abstract Advances in construction data analysis techniques have provided useful tools to discover explicit knowledge on historical databases supporting project managers’ decision making. However, in many situations, historical data are extracted and preprocessed for knowledge discovery based on time-consuming and problem-specific data preparation solutions, which often results in inefficiencies and inconsistencies. To overcome the problem, we are working on the development of a new data fusion methodology, which is designed to provide timely and consistent access to historical data for efficient and effective management knowledge discovery. The methodology is intended to be a new bridge between historical databases and data analysis techniques, which shields project managers from complex data preparation solutions, and enables them to use discovered knowledge for decision making more conveniently. This paper briefly describes the motivation, the background and the initial results of the ongoing research. 1. Introduction In today’s competitive market, the success of construction projects depends largely on project managers’ capabilities to make corrective decisions during construction planning and control stages.
    [Show full text]
  • An Overview of Iot Sensor Data Processing, Fusion, and Analysis Techniques
    sensors Review An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques Rajalakshmi Krishnamurthi 1, Adarsh Kumar 2 , Dhanalekshmi Gopinathan 1, Anand Nayyar 3,4,* and Basit Qureshi 5 1 Department of Computer Science and Engineering, Jaypee Institute of Information Technology, Noida 201309, India; [email protected] (R.K.); [email protected] (D.G.) 2 School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India; [email protected] 3 Graduate School, Duy Tan University, Da Nang 550000, Vietnam 4 Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam 5 Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia; [email protected] * Correspondence: [email protected] Received: 21 August 2020; Accepted: 22 October 2020; Published: 26 October 2020 Abstract: In the recent era of the Internet of Things, the dominant role of sensors and the Internet provides a solution to a wide variety of real-life problems. Such applications include smart city, smart healthcare systems, smart building, smart transport and smart environment. However, the real-time IoT sensor data include several challenges, such as a deluge of unclean sensor data and a high resource-consumption cost. As such, this paper addresses how to process IoT sensor data, fusion with other data sources, and analyses to produce knowledgeable insight into hidden data patterns for rapid decision-making. This paper addresses the data processing techniques such as data denoising, data outlier detection, missing data imputation and data aggregation. Further, it elaborates on the necessity of data fusion and various data fusion methods such as direct fusion, associated feature extraction, and identity declaration data fusion.
    [Show full text]
  • Information Acquisition in Data Fusion Systems
    Information Acquisition in Data Fusion Systems Ronnie Johansson TRITA-NA-0328 Licentiate Thesis Royal Institute of Technology Department of Numerical Analysis and Computer Science Akademisk avhandling som med tillstånd av Kungl Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie licentiatexamen torsdagen den 18 december 2003kl. 14.00 i Kollegiesalen, Administrationsbyggnaden, Kungliga Tekniska Högskolan, Valhallavägen 79, Stockholm.. TRITA-NA-0328 ISSN 0348-2952 ISRN KTH/NA/R--03/28--SE ISBN 91-7283-655-5 CVAP283 © Ronnie Johansson, november 2003 Universitetsservice US AB, Stockholm 2003 Abstract By purposefully utilising sensors, for instance by a data fusion system, the state of some system-relevant environment might be adequately assessed to support decision-making. The ever increasing access to sensors offers great opportunities, but also incurs grave challenges. As a result of managing multiple sensors one can, e.g., expect to achieve a more comprehensive, resolved, certain and more frequently updated assessment of the environment than would be possible otherwise. Chal- lenges include data association, treatment of conflicting information and strategies for sensor coordination. We use the term information acquisition to denote the skill of a data fusion sys- tem to actively acquire information. The aim of this thesis is to instructively situate that skill in a general context, explore and classify related research, and highlight key issues and possible future work. It is our hope that this thesis will facilitate communication, understanding and future efforts for information acquisition. The previously mentioned trend towards utilisation of large sets of sensors makes us especially interested in large-scale information acquisition, i.e., acquisition using many and possibly spatially distributed and heterogeneous sensors.
    [Show full text]
  • CS 520 Data Integration, Warehousing, and Provenance
    CS 520 Data Integration, Warehousing, and Provenance Course Description: This course introduces the basic concepts of data integration, data warehousing, and provenance. We will learn how to resolve structural heterogeneity through schema matching and mapping. The course introduces techniques for querying several heterogeneous datasources at once (data integration) and translating data between databases with different data representa- tions (data exchange). Furthermore, we will cover the data-warehouse paradigm including the Extract-Transform-Load (ETL) process, the data cube model and its relational representa- tions (such as snowflake and star schema), and efficient processing of analytical queries. This will be contrasted with Big Data analytics approaches that (besides other differences) significantly reduce the upfront cost of analytics. When feeding data through complex processing pipelines such as data exchange transformations or ETL workflows, it is easy to loose track of the origin of data. In the last part of the course we therefore cover techniques for representing and keeping track of the origin and creation process of data - aka its provenance. The course is emphasizing practical skills through a series of homework assignments that help students develop a strong background in data integration systems and techniques. At the same time, it also addresses the underlying formalisms. For example, we will discuss the logic based languages used for schema mapping and the dimensional data model as well as their practical application (e.g., developing an ETL workflow with rapid miner and creating a mapping between two example schemata). The literature reviews will familiarize students with data integration and provenance research. Course Material: The following text book will be helpful for following the course and studying the presented material.
    [Show full text]
  • Cheminformatics and the Semantic Web: Adding Value with Linked Data and Enhanced Provenance
    Advanced Review Cheminformatics and the Semantic Web: adding value with linked data and enhanced provenance Jeremy G. Frey∗ and Colin L. Bird Cheminformatics is evolving from being a field of study associated primarily with drug discovery into a discipline that embraces the distribution, management, ac- cess, and sharing of chemical data. The relationship with the related subject of bioinformatics is becoming stronger and better defined, owing to the influence of Semantic Web technologies, which enable researchers to integrate hetero- geneous sources of chemical, biochemical, biological, and medical information. These developments depend on a range of factors: the principles of chemical identifiers and their role in relationships between chemical and biological enti- ties; the importance of preserving provenance and properly curated metadata; and an understanding of the contribution that the Semantic Web can make at all stages of the research lifecycle. The movements toward open access, open source, and open collaboration all contribute to progress toward the goals of integration. C " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1127 INTRODUCTION cipline of bioinformatics evolved more recently, in heminformatics is usually defined in terms of response to the vast amount of data generated by the application of computer science and infor- molecular biology, applying mathematical, and com- mationC technology to problems in the chemical sci- putational techniques not only to the management ences. Brown1 introduced the term chemoinformatics of that data but also to understanding the biological in 1998, in the context of drug discovery, although processes, pathways, and interactions involved.
    [Show full text]
  • Information Quality Assessment for Data Fusion Systems
    data Article Information Quality Assessment for Data Fusion Systems Miguel A. Becerra 1,2,*,† , Catalina Tobón 2,† and Andrés Eduardo Castro-Ospina 1,† and Diego H. Peluffo-Ordóñez 3,4 1 Instituto Tecnológico Metropolitano, Cra. 74d #732, Medellín 050034, Colombia; [email protected] 2 Facultad de Ciencias Básicas, Universidad de Medellín, MATBIOM, Cra. 87 #30-65, Medellín 050010, Colombia; [email protected] 3 Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir 47963, Morocco; [email protected] or [email protected] 4 Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Carrera 28 No. 19-24, Pasto 520001, Colombia * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: This paper provides a comprehensive description of the current literature on data fusion, with an emphasis on Information Quality (IQ) and performance evaluation. This literature review highlights recent studies that reveal existing gaps, the need to find a synergy between data fusion and IQ, several research issues, and the challenges and pitfalls in this field. First, the main models, frameworks, architectures, algorithms, solutions, problems, and requirements are analyzed. Second, a general data fusion engineering process is presented to show how complex it is to design a framework for a specific application. Third, an IQ approach , as well as the different methodologies and frameworks used to assess IQ in information systems are addressed; in addition, data fusion systems are presented along with their related criteria. Furthermore, information on the context in data fusion systems and its IQ assessment are discussed. Subsequently, the issue of data fusion Citation: Becerra, M.A.; Tobón, C.; systems’ performance is reviewed.
    [Show full text]
  • The Use of Data Fusion on Multiple Substructural Analysis Based GA Runs
    J. Appl. Environ. Biol. Sci. , 7(2S)30-36, 2017 ISSN: 2090 -4274 Journal of Applied Environmental © 2017, TextRoad Publication and Biological Sciences www.textroad.com The Use of Data Fusion on Multiple Substructural Analysis Based GA Runs Nor Samsiah Sani Faculty of Information Science and Technology, National University of Malaysia, Bangi, Selangor, Malaysia Received: February 21, 2017 Accepted: April30,2017 ABSTRACT Substructural analysis (SSA) was one of the very first machine learning techniques to be applied to chemoinformatics in the area of virtual screening. Recently, the use of SSA method based on genetic traits particularly the genetic algorithm (GA) was shown to be superior to the SSA based on a naive Bayesian classifier, both in terms of active compound retrieval rate and predictive performance. Extensive studies on data fusion have been carried out on similarity-based rankings, but there are limited findings on the fusion of data obtained from evolutionary algorithm techniques in chemoinformatics. This paper explores the feasibility of data fusion on the GA-based SSA. Data fusion is a method to produce a final ranking list from multiple sets of ranking lists via several fusion rules. Based on the encouraging results obtained using the GA, the application of data fusion to the GA-based SSA weighting schemes are examined in this paper in order to enhance retrieval performance of 2D-based fingerprint predictive method. Our experiments used the MDDR and WOMBAT datasets. The results show that data fusion can indeed enhance retrieval performance of evolutionary techniques further in the case of evolutionary algorithm techniques, and specifically the GA- based SSA.
    [Show full text]
  • Enhancing Dust Storm Detection Using PCA Based Data Fusion
    Enhancing Dust Storm Detection Using PCA based Data Fusion Hesham El-Askary1, Abhishek Agarwal2, Tarek El-Ghazawi2, Menas Kafatos1, and Jacquline Le-Moigne3 1Center for Earth Observing and Space Research (CEOSR), George Mason University (GMU) 2Department of Electrical and Computer Engineering, George Washington University (GWU) 3NASA Goddard Space Flight Center, Greenbelt, MD [email protected], [email protected], [email protected], [email protected], [email protected] Abstract— Principal Component Analysis (PCA) has been widely used as a dimension reduction technique. It has the widely used as a data reduction technique to overcome the curse ability to reduce the dimensionality of a dataset while of dimensionality. In this research we show a different use for retaining most of the variance by concentrating the majority of PCA technique as a tool for data fusion. PCA as a data fusion the information into the first few components [6], [7], [8]. In technique is performed over the Multiangle Imaging this research we have used PCA as a data fusion tool of the Spectroradiometer (MISR) data, studying dust storms to better multi angular based MISR observations. This technique is serve their identification. The multi-angle viewing capability of MISR is used to enhance our understanding of the Earth’s demonstrated on a large dust plume, which was observed over environment that includes climate particularly of atmosphere Liaoning region of China on April 8, 2002, as a case study and of land surfaces. In this research the multi angle MISR shown in Fig. 1 images clearly show a dust storm over the Liaoning region of China as well as parts of northern and western Korea on April 8, 2002.
    [Show full text]