Cheminformatics and the Semantic Web: Adding Value with Linked Data and Enhanced Provenance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open Data, Open Source, and Open Standards in Chemistry: the Blue Obelisk Five Years On" Journal of Cheminformatics Vol
Oral Roberts University Digital Showcase College of Science and Engineering Faculty College of Science and Engineering Research and Scholarship 10-14-2011 Open Data, Open Source, and Open Standards in Chemistry: The lueB Obelisk five years on Andrew Lang Noel M. O'Boyle Rajarshi Guha National Institutes of Health Egon Willighagen Maastricht University Samuel Adams See next page for additional authors Follow this and additional works at: http://digitalshowcase.oru.edu/cose_pub Part of the Chemistry Commons Recommended Citation Andrew Lang, Noel M O'Boyle, Rajarshi Guha, Egon Willighagen, et al.. "Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on" Journal of Cheminformatics Vol. 3 Iss. 37 (2011) Available at: http://works.bepress.com/andrew-sid-lang/ 19/ This Article is brought to you for free and open access by the College of Science and Engineering at Digital Showcase. It has been accepted for inclusion in College of Science and Engineering Faculty Research and Scholarship by an authorized administrator of Digital Showcase. For more information, please contact [email protected]. Authors Andrew Lang, Noel M. O'Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean- Claude Bradley, Igor Filippov, Robert M. Hanson, Marcus D. Hanwell, Geoffrey R. Hutchison, Craig A. James, Nina Jeliazkova, Karol M. Langner, David C. Lonie, Daniel M. Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck, Adam L. Tenderholt, Kevin J. Theisen, and Peter Murray-Rust This article is available at Digital Showcase: http://digitalshowcase.oru.edu/cose_pub/34 Oral Roberts University From the SelectedWorks of Andrew Lang October 14, 2011 Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on Andrew Lang Noel M O'Boyle Rajarshi Guha, National Institutes of Health Egon Willighagen, Maastricht University Samuel Adams, et al. -
A Java-Based Platform for Evolutionary De Novo Molecular Design
Article MoleGear: A Java-Based Platform for Evolutionary De Novo Molecular Design Yunhan Chu and Xuezhong He * Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-73593942 Received: 25 March 2019; Accepted: 10 April 2019; Published: 11 April 2019 Abstract: A Java-based platform, MoleGear, is developed for de novo molecular design based on the chemistry development kit (CDK) and other Java packages. MoleGear uses evolutionary algorithm (EA) to explore chemical space, and a suite of fragment-based operators of growing, crossover, and mutation for assembling novel molecules that can be scored by prediction of binding free energy or a weighted-sum multi-objective fitness function. The EA can be conducted in parallel over multiple nodes to support large-scale molecular optimizations. Some complementary utilities such as fragment library design, chemical space analysis, and graphical user interface are also integrated into MoleGear. The candidate molecules as inhibitors for the human immunodeficiency virus 1 (HIV-1) protease were designed by MoleGear, which validates the potential capability for de novo molecular design. Keywords: de novo design; evolutionary algorithm; drug molecules; fitness; multi-objective function 1. Introduction Computational chemistry plays an important role in the design of new drug-like molecules [1– 5], catalysts [6–8], and novel solvents of ionic liquids [9–11]. De novo molecular design has been an active research area of drug design/discovery over the last decades, and many approaches such as LUDI [12], LEA3D [13], Flux [14,15], and pharmacophore-linked fragment virtual screening (PFVS) [16] have been developed by using protein and ligand structures. -
Molecular Structure Input on the Web Peter Ertl
Ertl Journal of Cheminformatics 2010, 2:1 http://www.jcheminf.com/content/2/1/1 REVIEW Open Access Molecular structure input on the web Peter Ertl Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminfor- matics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on tech- nologies like JavaScript and Flash, is discussed. Introduction this trend and input of molecular structures directly A program for the input and editing of molecules is an within a web browser is therefore of utmost importance. indispensable part of every cheminformatics or molecu- In this overview a history of entering molecules into lar processing system. Such a program is known as a web applications will be covered, starting from simple molecule editor, molecular editor or structure sketcher. -
Designing Universal Chemical Markup (UCM) Through the Reusable Methodology Based on Analyzing Existing Related Formats
Designing Universal Chemical Markup (UCM) through the reusable methodology based on analyzing existing related formats Background: In order to design concepts for a new general-purpose chemical format we analyzed the strengths and weaknesses of current formats for common chemical data. While the new format is discussed more in the next article, here we describe our software s t tools and two stage analysis procedure that supplied the necessary information for the n i r development. The chemical formats analyzed in both stages were: CDX, CDXML, CML, P CTfile and XDfile. In addition the following formats were included in the first stage only: e r P CIF, InChI, NCBI ASN.1, NCBI XML, PDB, PDBx/mmCIF, PDBML, SMILES, SLN and Mol2. Results: A two stage analysis process devised for both XML (Extensible Markup Language) and non-XML formats enabled us to verify if and how potential advantages of XML are utilized in the widely used general-purpose chemical formats. In the first stage we accumulated information about analyzed formats and selected the formats with the most general-purpose chemical functionality for the second stage. During the second stage our set of software quality requirements was used to assess the benefits and issues of selected formats. Additionally, the detailed analysis of XML formats structure in the second stage helped us to identify concepts in those formats. Using these concepts we came up with the concise structure for a new chemical format, which is designed to provide precise built-in validation capabilities and aims to avoid the potential issues of analyzed formats. -
Downloaded in MS Word Format (.Docx)
Wang and Tseng J Cheminform (2019) 11:78 https://doi.org/10.1186/s13321-019-0401-4 Journal of Cheminformatics SOFTWARE Open Access IntelliPatent: a web-based intelligent system for fast chemical patent claim drafting Pei‑Hua Wang1 and Yufeng Jane Tseng1,2* Abstract The frst step of automating composition patent drafting is to draft the claims around a Markush structure with sub‑ stituents. Currently, this process depends heavily on experienced attorneys or patent agents, and few tools are avail‑ able. IntelliPatent was created to accelerate this process. Users can simply upload a series of analogs of interest, and IntelliPatent will automatically extract the general structural scafold and generate the patent claim text. The program can also extend the patent claim by adding commonly seen R groups from historical lists of the top 30 selling drugs in the US for all R substituents. The program takes MDL SD fle formats as inputs, and the invariable core structure and variable substructures will be identifed as the initial scafold and R groups in the output Markush structure. The results can be downloaded in MS Word format (.docx). The suggested claims can be quickly generated with IntelliPatent. This web‑based tool is freely accessible at https ://intel lipat ent.cmdm.tw/. Keywords: Web server, Markush structure, Pharmaceutical patent Introduction of visualizing and analyzing Markush structures from a Claims are the most important sections in composition composition patent [7]. Its web based application, iMa- patents [1]. In the pharmaceutical industry, claims should rVis, revised the underlying R group numbering system include key compounds and all structural derivatives that to deal with nested R group presentation [8]. -
Open Data, Open Source and Open Standards in Chemistry: the Blue Obelisk five Years On
Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk ¯ve years on Noel M O'Boyle¤1 , Rajarshi Guha2 , Egon L Willighagen3 , Samuel E Adams4 , Jonathan Alvarsson5 , Richard L Apodaca6 , Jean-Claude Bradley7 , Igor V Filippov8 , Robert M Hanson9 , Marcus D Hanwell10 , Geo®rey R Hutchison11 , Craig A James12 , Nina Jeliazkova13 , Andrew SID Lang14 , Karol M Langner15 , David C Lonie16 , Daniel M Lowe4 , J¶er^omePansanel17 , Dmitry Pavlov18 , Ola Spjuth5 , Christoph Steinbeck19 , Adam L Tenderholt20 , Kevin J Theisen21 , Peter Murray-Rust4 1Analytical and Biological Chemistry Research Facility, Cavanagh Pharmacy Building, University College Cork, College Road, Cork, Co. Cork, Ireland 2NIH Center for Translational Therapeutics, 9800 Medical Center Drive, Rockville, MD 20878, USA 3Division of Molecular Toxicology, Institute of Environmental Medicine, Nobels vaeg 13, Karolinska Institutet, 171 77 Stockholm, Sweden 4Unilever Centre for Molecular Sciences Informatics, Department of Chemistry, University of Cambridge, Lens¯eld Road, CB2 1EW, UK 5Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden 6Metamolecular, LLC, 8070 La Jolla Shores Drive #464, La Jolla, CA 92037, USA 7Department of Chemistry, Drexel University, 32nd and Chestnut streets, Philadelphia, PA 19104, USA 8Chemical Biology Laboratory, Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA 9St. Olaf College, 1520 St. Olaf Ave., North¯eld, MN 55057, USA 10Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA 11Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA 12eMolecules Inc., 380 Stevens Ave., Solana Beach, California 92075, USA 13Ideaconsult Ltd., 4.A.Kanchev str., So¯a 1000, Bulgaria 14Department of Engineering, Computer Science, Physics, and Mathematics, Oral Roberts University, 7777 S. -
The Impact of Academic Patenting on the Rate, Quality, and Direction of (Public) Research Output
Methodology Data & Measurement Results Summary The Impact of Academic Patenting on the Rate, Quality, and Direction of (Public) Research Output Pierre Azoulay1 Waverly Ding2 Toby Stuart3 1Sloan School of Management MIT & NBER [email protected] 2Haas School of Business University of California — Berkeley 3Graduate School of Business Harvard University January 23, 2007 — Northwestern University Azoulay, Ding, Stuart The Impact of Academic Patenting Methodology Data & Measurement Results Summary Outline 1 Motivation(s) 2 Methodology Problems with existing approaches Selection on observables with staggered treatment decisions Implementing IPTCW estimation 3 Data & Measurement Data sources Measuring “patentability” Descriptive statistics 4 Results The determinants of selection into patenting The impact of academic patenting on the rate of publications The impact of academic patenting on the quality of publications The impact of academic patenting on the content of publications 5 Caveats, Summary & Future Directions Azoulay, Ding, Stuart The Impact of Academic Patenting Methodology Data & Measurement Results Summary Outline 1 Motivation(s) 2 Methodology Problems with existing approaches Selection on observables with staggered treatment decisions Implementing IPTCW estimation 3 Data & Measurement Data sources Measuring “patentability” Descriptive statistics 4 Results The determinants of selection into patenting The impact of academic patenting on the rate of publications The impact of academic patenting on the quality of publications The impact -
The Application of Data Fusion Method in the Analysis of Ocean and Meteorology Observation Data
International Journal of Hydrology Research Article Open Access The application of data fusion method in the analysis of ocean and meteorology observation data Abstract Volume 3 Issue 3 - 2019 Data fusion is a new technology of data processing for multi - source ocean meteorology 1 2 3 data. In order to clearly understand how to apply this technology in the data processing Wang Wei, Liu Zhi-jie, Zhao Yue, Gong 1 of ocean meteorology observation, the author first divides the fusion methods into three Xiao-qing categories, i.e., pixel-level fusion, feature-level fusion and decision-making level fusion. 1Tianjin Institute of Meteorological Science, China Then, the corresponding methods of each data fusion are discussed in detail. Afterward, the 2Meteorology Administrative of Xiqing District, China SST fusion data from China Meteorological administrative is analyzed in order to explain 3Meteorology Administrative of Jinnan District, China that the fusion data is applied in numerical forecast model on the China’s Bohai sea region. Finally, the authors believe that the data fusion technology of multi-source observation data Correspondence: Wang Wei, Tianjin Institute of has a good application value when the observation data is processed into grid data of ocean Meteorological Science, Tianjin, China, Tel 086-022-23358783, meteorology, which can be used as the grid truth-value of numerical model inspection. Email In addition, the fusion technology at decision-making level can also develop with the intelligent technology, and deeply mine the application of data fusion technology to the Received: May 13, 2019 | Published: June 03, 2019 ocean meteorology observation data. Keyword: data fusion, ocean meteorology, observation data, data processing Introduction evaluation tasks. -
Biomolecular Simulation Data Management In
BIOMOLECULAR SIMULATION DATA MANAGEMENT IN HETEROGENEOUS ENVIRONMENTS Julien Charles Victor Thibault A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biomedical Informatics The University of Utah December 2014 Copyright © Julien Charles Victor Thibault 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Julien Charles Victor Thibault has been approved by the following supervisory committee members: Julio Cesar Facelli , Chair 4/2/2014___ Date Approved Thomas E. Cheatham , Member 3/31/2014___ Date Approved Karen Eilbeck , Member 4/3/2014___ Date Approved Lewis J. Frey _ , Member 4/2/2014___ Date Approved Scott P. Narus , Member 4/4/2014___ Date Approved And by Wendy W. Chapman , Chair of the Department of Biomedical Informatics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Over 40 years ago, the first computer simulation of a protein was reported: the atomic motions of a 58 amino acid protein were simulated for few picoseconds. With today’s supercomputers, simulations of large biomolecular systems with hundreds of thousands of atoms can reach biologically significant timescales. Through dynamics information biomolecular simulations can provide new insights into molecular structure and function to support the development of new drugs or therapies. While the recent advances in high-performance computing hardware and computational methods have enabled scientists to run longer simulations, they also created new challenges for data management. Investigators need to use local and national resources to run these simulations and store their output, which can reach terabytes of data on disk. -
Construing Patentability of Chemical Technology Inventions, with Focus
Construing Patentability of Chemical Technology Inventions, with Focus on their Patent Eligibility and Industrial Applicability: A Comparison on the Patent Examination Approach in the Philippines and in Japan By Anthea Kristine Y. Paculan Intellectual Property Office of the Philippines Supervised by Yorimasa Suwa, PhD., MBA Senior Researcher, Asia-Pacific Industrial Property Center, Japan Institution of Promoting Invention and Innovation Advised by Dr. Kazukiyo Nagai Professor, Department of Applied Chemistry, School of Science and Technology, Meiji University Tokiko Mizuochi, Ph.D Project Assistant Professor, Keio University Office for Open Innovation Final Report In fulfillment of the Study Cum Research fellowship program Sponsored by Japan Patent Office 27 June – 25 October 2019 The views and findings in this report are those of the author and do not necessarily reflect the views and policy of the organization or sponsor of this study. i ○c JPO 2020 Abstract The Intellectual Property Office of the Philippines (IPOPHL) must cope up with the emerging challenges in the patent examination of various fields of technology. The Chemical Technology field at IPOPHL covers a wide array of chemical-related subject-matters which in turn has resulted in handling concerns to the examiners assigned to perform substantive examination on such diverse technologies. Japan Patent Office (JPO) has provided comprehensive guidelines addressing various patentability issues, especially that of patent eligibility and industrial applicability of subject matters in the chemical field. By introducing conceptual aspects of the Japanese patent system as a model, this study allowed the investigation of the similarities and differences in JPO’s and IPOPHL’s examination procedure and assessment of patentability requirements, with focus on patent eligibility and industrial applicability of chemical technology inventions. -
Causal Inference and Data Fusion in Econometrics∗
TECHNICAL REPORT R-51 First version: Dec, 2019 Last revision: March, 2021 Causal Inference and Data Fusion in Econometrics∗ Paul Hunermund¨ Elias Bareinboim Copenhagen Business School Columbia University [email protected] [email protected] Learning about cause and effect is arguably the main goal in applied economet- rics. In practice, the validity of these causal inferences is contingent on a number of critical assumptions regarding the type of data that has been collected and the substantive knowledge that is available about the phenomenon under investiga- tion. For instance, unobserved confounding factors threaten the internal validity of estimates, data availability is often limited to non-random, selection-biased sam- ples, causal effects need to be learned from surrogate experiments with imperfect compliance, and causal knowledge has to be extrapolated across structurally hetero- geneous populations. A powerful causal inference framework is required in order to tackle all of these challenges, which plague essentially any data analysis to varying degrees. Building on the structural approach to causality introduced by Haavelmo (1943) and the graph-theoretic framework proposed by Pearl (1995), the artificial intelligence (AI) literature has developed a wide array of techniques for causal learn- ing that allow to leverage information from various imperfect, heterogeneous, and biased data sources (Bareinboim and Pearl, 2016). In this paper, we discuss recent advances made in this literature that have the potential to contribute to econo- metric methodology along three broad dimensions. First, they provide a unified and comprehensive framework for causal inference, in which the above-mentioned problems can be addressed in full generality. -
Intellectual Property in the Context of the WTO TRIPS Agreement: Challenges for Public Health MINISTER of HEALTH Humberto Costa
Intellectual Property in the Context of the WTO TRIPS Agreement: challenges for public health MINISTER OF HEALTH Humberto Costa PRESIDENT OF OSWALDO CRUZ FOUNDATION Paulo Marchiori Buss DIRECTOR OF NATIONAL SCHOOL OF PUBLIC HEALTH Jorge A. Z. Bermudez COORDINATOR OF NUCLEUS FOR PHARMACEUTICAL POLICIES Jorge A. Z. Bermudez Intellectual Property in the Context of the WTO TRIPS Agreement: challenges for public health EDITORS: Jorge A. Z. Bermudez Maria Auxiliadora Oliveira WHO/PAHO Collaborating Center for Pharmaceutical Policies National School of Public Health Sergio Arouca Oswaldo Cruz Foundation A S L U O T R E P O P A P H S O N I O D V I M U N Rio de Janeiro, September 2004 Copyrigth © 2004 ENSP/WHO – Oswaldo Cruz Foundation – FIOCRUZ, Jorge A.Z. Bermudez. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the National School of Public Health Sergio Arouca. ISBN: 85-88026-16-3 Cover and Graphic Design: Lucia ReginaPantojo de Brito English Translation: Laura Anne Krech Revisions: Claudia Garcia Serpa Osório de Castro Gabriela Costa Chaves Thiago Botelho Azeredo NOTE FROM THE AUTHORS This book presents information produced or compiled by Nucleus for Pharmaceutical Policies professionals and external collaborators regarding the process of implementation of the TRIPS Agreement in developing countries, focusing on its implications for public health policies, particularly those related to access to medicines. Interpretations and views expressed in this publication are solely the responsibility of the authors, not representing any official or institutional position, as to the issues here approached.