Air Handler Installation Instructions

Total Page:16

File Type:pdf, Size:1020Kb

Air Handler Installation Instructions AIR HANDLER INSTALLATION INSTRUCTIONS Table of Contents AIR HANDLER SAFETY .................................................................1 Verify Orifice Size .........................................................................8 INSTALLATION REQUIREMENTS ................................................3 Connect Refrigerant Lines ...........................................................8 Tools and Parts ............................................................................3 Make Electrical Connections .......................................................9 System Requirements..................................................................3 Wiring Diagram...........................................................................21 Location Requirements ................................................................3 Complete Installation .................................................................22 Electrical Requirements ...............................................................4 SEQUENCE OF OPERATION ......................................................23 Ductwork Requirements...............................................................4 Cooling—Cooling Only or Heat Pump.......................................23 INSTALLATION INSTRUCTIONS ..................................................5 Heating—Electric Heat Only ......................................................23 Inspect Shipment .........................................................................5 Heating—Heat Pump.................................................................23 Installation Configurations............................................................5 AIR HANDLER MAINTENANCE..................................................24 Install Condensate Drain ..............................................................7 ASSISTANCE OR SERVICE.........................................................24 Install Ductwork............................................................................8 AIR HANDLER SAFETY Recognize this symbol as a safety precaution. CAUTION Recognize Safety Symbols, Words and Labels Goodman 9 Hazards or unsafe practices may result in property The following symbols and labels are used throughout this or product damage. manual to indicate immediate or potential hazards. It is the owner’s responsibility to read and comply with all safety information and instructions accompanying these symbols. Failure to heed safety information increases the risk of serious WARNING personal injury or death, property damage and/or product Installation and repair of this unit should be damage. performed ONLY by individuals meeting (at a minimum) the requirementsGoodman of an “Entry 7 Level WARNING Technician,” at a minimum, as specified by the Air-Conditioning, Heating and Refrigeration Institute Hazards or unsafe practices could result in property (AHRI). Attempting to install or repair this unit without such damage, product damage, severe personal injury or death. background may result in product damage, personal injury Goodman 1 or death. CAUTION Hazards or unsafe practices may result in property WARNING damage, product damage, personal injury or death. HIGH VOLTAGE! Disconnect ALL powerGoodman before servicing. 6 Multiple power sources may be present. Failure to do so may cause property damage, personal injury or death. Whirlpool® Model WAHMV WPIO-287G WARNING DANGER Goodman 33 This product is factory-shipped for use with 208/240/1/60 electrical power supply. DO NOT reconfigure this air handler to operate with any other power supply. WARNING CARBON MONOXIDE POISONING HAZARD Special Warning for Installation of Furnace or Air Handling To avoid property damage, personal injury or death due to Units in Enclosed Areas such as Garages, Utility Rooms or electrical shock, this unit MUST have an uninterrupted, Goodman 38 Parking Areas. unbroken electrical ground. The electrical ground circuit may consist of an appropriately sized electrical wire Carbon monoxide producing devices (such as an connecting the ground lug in the unit control box to the automobile, space heater, gas water heater, etc.) should building electrical serviceGoodman panel. 34 not be operated in enclosed areas such as unventilated Other methods of grounding are permitted if performed garages, utility rooms or parking areas because of the in accordance with the National Electric Code (NEC) danger of carbon monoxide (CO) poisoning resulting from /American National Standards Institute (ANSI) /National the exhaust emissions. If a furnace or air handler is Fire Protection Association (NFPA) 70 and local/state installed in an enclosed area such as a garage, utility room codes. In Canada, electrical grounding is to be in or parking area and a carbon monoxide producing device is accordance with the Canadian Electric Code (CSA) C22.1. operated therein, there must be adequate, direct outside ventilation. This ventilation is necessary to avoid the danger of CO poisoning which can occur if a carbon monoxide producing CAUTION device continues to operate in the enclosed area. Carbon When installing or servicing this equipment, safety monoxide emissions can be (re)circulated throughout the clothing, includingGoodman hand and eye protection,35 is strongly structure if the furnace or air handler is operating in any recommended. If installing in an area that has special mode. safety requirements (hard hats, etc.), observe these requirements. CO can cause serious illness including permanent brain damage or death. IMPORTANT: The United States Environmental Protection WARNING Agency (EPA) has issued various regulations regarding the introduction and disposal of refrigerants in this unit. Failure to Do not connect to or use any device that is not design- Goodman 36 follow these regulations may harm the environment and can lead certified for use with this unit. Serious property damage, to the imposition of substantial fines. These regulations may vary personal injury, reduced unit performance and/or hazardous by jurisdiction. A certified technician must perform the installation conditions may result from the use of such non-approved and service of this product. Should questions arise, contact your devices. local EPA office. This product is designed and manufactured to permit installation in accordance with national codes. It is the installer’s WARNING responsibility to install this unit in accordance with national codes Goodman 37 and/or prevailing local codes and regulations. To prevent the risk of property damage, personal injury, or death, do not store combustible materials or use gasoline or other flammable liquids or vapors in the vicinity of this unit. 2 INSTALLATION REQUIREMENTS These instructions are intended as a general guide only for use by Parts Needed qualified persons and do not supersede any national or local Check local codes, check existing electrical supply, and read codes in any way. Compliance with all local, state, or national “Ductwork Requirements” and “Electrical Requirements” before codes pertaining to this type of equipment should be determined purchasing parts. prior to installation. ■ UL Listed/CSA approved wire connectors Read this entire instruction manual, as well as the instructions supplied in separate equipment, before starting the installation. ■ Replacement orifice (if needed). See “Verify Orifice Size.” The correct orifice size may be contained in the replacement All models are designed for indoor installation only. orifice package located inside the control box of the outdoor The installation of the air handler, field wiring, warm air ducts, unit. If this package does not contain the correct orifice for etc., must conform to the requirements of the National Electrical your air handler, you must purchase the correct orifice size. Code, ANSI/NFPA No. 70 (latest edition) in the United States, and any state laws, and local ordinances (including plumbing or wastewater codes). Local authorities having jurisdiction should System Requirements be consulted before installation is made. Such applicable The air handler is designed to match, and must be used with regulations or requirements take precedence over the general outdoor units as rated. The indoor units are manufactured with an instructions in this manual. interchangeable refrigerant metering orifice to provide optimum Install the conditioned air plenum, ducts and air filters (not refrigerant control and system performance with a variety of provided) in accordance with NFPA 90B Standard for the different capacities of outdoor units. Installation of Warm Air Heating and Air-Conditioning Systems In some cases, the rating of the outdoor unit may require that the (latest edition). air handler coil assembly orifice be changed to obtain rated The air handler is provided with flanges for the connection of the performance. plenum and ducts. Air filters (not provided) must be listed as Class 2 furnace air filters. Location Requirements NOTE: When used on cooling applications, excessive sweating The air handler can be used with R-410A from the factory. may occur when the air handler is installed in a very humid The air handler is shipped from the factory completely space. assembled. Some models are configured for upflow air discharge ■ If the air handler is installed in an unconditioned space, only, and some models are configured for upflow or horizontal sealant should be applied around the electrical wires, left-hand air discharge. The air handler cabinet conforms to refrigerant tubing, and condensate
Recommended publications
  • HVAC Controls (DDC/EMS/BAS) Evaluation Protocol
    Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 – December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Subcontract Report NREL/SR-7A40-63167 November 2014 Contract No. DE-AC36-08GO28308 Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 – December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik Prepared under Subcontract No. LGJ-1-11965-01 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-7A40-63167 Golden, CO 80401 November 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • American Standard Installer's Guide Air Conditioner Heat Pump 4A7Z0
    11-BC25D1-7 Installer’s Guide Air Conditioner/Heat Pumps 4A7Z0/4A6Z0 with AccuLinkTM and Charge AssistTM ALL phases of this installation must comply with NATIONAL, STATE AND LOCAL CODES IMPORTANT — This Document is customer property and is to remain with this unit. Please return to service informa- tion pack upon completion of work. These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser’s purposes, the matter should be referred to your installing dealer or local distributor. NOTE: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacture’s split systems are A.H.R.I. rated only with TXV/EEV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability. Table of Contents Section 1. Safety ..................................................................................... 2 Section 2. Unit Location Considerations.............................................. 3 Section 3. Unit Preparation .................................................................... 5 Section 4. Setting the Unit ..................................................................... 5 Section 5. Refrigerant Line Considerations ......................................... 6 Section
    [Show full text]
  • Hydronic Air Handler for 5100 Series Comfort Plus Furnaces
    Hydronic Air Handler for 5100 Series Comfort Plus Furnaces FEATURES: GENERAL: Heavy duty The Steffes Air Handler is insulation an optional device provides designed to interface with maximum the Comfort Plus sound control Hydronic (5100 Series) for quiet furnace to allow it to operation provide forced air heating Durable design as a stand alone furnace with urethane or as a supplement to exterior paint other ducted heating finish systems such as a heat Built-in, pump. When used with a automatic static heat pump, it allows the heat recovery Comfort Plus Hydronic system furnace to serve as the back-up heat source and 5-Year Limited provide comfort Manufacturer’s modulation. Heat pumps Warranty can be operated to much lower temperatures allowing for full utilization of their efficiency while optimizing system performance. A duct sensor constantly monitors outlet air temperature and modulates the precise amount of stored off-peak heat needed to eliminate uncomfortable discharge air temperatures typically associated with heat pump systems during cool outdoor temperatures. The air handler also directs the heat lost statically through the furnace’s outer panels into the ductwork for delivery to the living space (automatic static heat recovery). The internal controls of the Comfort Plus Hydronic furnace automatically regulate the operation of the air handler. OPERATION: A heat call from the room thermostat will energize the pump to circulate a water/glycol solution through the Comfort Plus Hydronic’s heat exchanger where it is heated to the appropriate temperature. This heated water solution is then circulated through the air handler’s water coil.
    [Show full text]
  • READ ONLY Trane Variable Refrigerant Flow Systems a Completely Customizable Solution for Efficient, Room-By-Room Comfort, Where and When You Need It
    Trane Variable Refrigerant Flow Systems Room-by-Room Customizable Comfort READ ONLY Trane Variable Refrigerant Flow Systems A completely customizable solution for efficient, room-by-room comfort, where and when you need it. More Heating and Cooling Options Trane has a tradition of quality The addition of Trane Variable Refrigerant Flow (VRF) lasting more than a century. systems to our full line of HVAC solutions affirms the Trane commitment to giving our customers the options Over one hundred years they need to precisely meet their heating and cooling ago, Reuben and James needs. Trane VRF systems can be the perfect solution Trane made the decision for many structures, and may be the perfect heating to stand out from the and cooling solution for these situations: crowd and build a comfort • Historic buildings where installing duct work can be system like no other, using difficult or impossible uncompromising quality, • Large commercial buildings like schools, medical innovation and reliability. offices and retail stores Today, their legacy is found in everything Trane makes, from • Multi-tenant buildings, retail spaces and strip malls where heating and cooling needs vary from room to our premium materials to our room and space to space industry-leading technology to our extensive product • New construction where the efficiency of a ductless testing under the harshest system and zone control is desired Trane Storefront La Crosse, Wisconsin 1891 conditions. When you buy • Applications where simultaneous heating and Courtesy of the La Crosse (Wisconsin) a Trane, you’re buying a cooling from a single unit is required to provide Public Library Archives commitment from us, to you.
    [Show full text]
  • Trane Air Handlers Every Home Deserves Unprecedented Comfort and Efficiency
    Trane Air Handlers Every home deserves unprecedented comfort and efficiency. Trane air handler options. Advanced solutions for energy efficiency and reliable comfort. When it comes to heating and cooling homes, Trane has a tradition of quality people view Trane equipment as the most reliable lasting more than a century. in the industry.* People expect more from a leader, and Trane delivers. Over a hundred years Every component of our air handlers, from the ago, Reuben and James smallest screw to the revolutionary unique Hyperion Trane made the decision cabinet, has been carefully designed to deliver to stand out from the Trane’s legendary reliability, innovation and crowd. To build a comfort efficiency with your complete comfort in mind. system like no other, using uncompromising quality, With two Trane air handler platforms from which to innovation and reliability. choose, there is sure to be one that will meet the Today, their legacy is needs of your household. Because when you buy found in everything Trane a Trane, you’re buying more than an air handler. makes, from our premium You’re buying a commitment to your perfect materials to our industry- indoor environment. leading technology to Trane Storefront La Crosse, Wisconsin 1891 our extensive product Courtesy of the La Crosse (Wisconsin) Public Library Archives testing under the harshest conditions. When you buy a Trane, you’re buying a commitment from us, to you. A commitment to your total comfort, and your total peace of mind. Because that’s what Reuben and James would have done. *Ingersoll Rand Marketing Insights, Trane Claim Consumer Survey, September 2014 You’ll appreciate the energy savings from your Annual savings for cooling your home 60% Trane air handler the day your dealer installs it, based on the efficiency of a and for many years to come.
    [Show full text]
  • Split System Heat Pumps
    Split System Heat Pumps Split System Heat Pumps 7 1/2 - 20 Tons - 60 Hz Air Handlers 5 - 20 Tons - 60 Hz August 2005 SSP-PRC001-EN Introduction Split System Heat Pump Units . Designed With Your Needs In Mind. The Trane reputation for quality and Designing the Details Filters reliability in air conditioning is appar- Careful attention was given to design- The 5, 7½ and 10 ton air handlers are ent with Odyssey™ light commercial ing the details — from control wiring supplied with 1" throwaway filters as split systems. These Trane systems to the access panels. Odyssey units standard. The filter racks were are designed to meet your job feature time-saving colored and num- designed to easily convert for installa- requirements every time...and at a bered wiring and removable panels tion of 2" filters. The 15 and 20 ton air competitive price. which allow complete access to all handlers have 2" filters as standard. Odyssey has Trane quality and reli- major components and controls. All UL Listed and ARI Certified ability built-in; couple that with out- outdoor units feature external high Trane meets or exceeds all nationally standing efficiency, flexibility and and low pressure switches for easy recognized agency safety and design installation ease and you have an diagnosing and servicing of the unit. standards. Each condensing unit is UL unbeatable combination for years of Service valves with gauge ports are designed, approved and labeled in ac- worry-free service and operation. provided on all units. cordance to UL Standards: UL 1995 for Manufacturing Control Standardized Cabinets central cooling air conditioners, refrig- Trane’s exclusive control over the In addition, all cabinets have been eration and air conditioning condens- design and manufacturing of all major standardized.
    [Show full text]
  • Focus on Energy Cold Climate Variable Refrigerant Flow Program Study Copyright © 2021 Slipstream
    Final Deliverable: Final Report | JUNE 30, 2021 Focus on Energy Cold Climate Variable Refrigerant Flow Program Study Copyright © 2021 Slipstream. All rights reserved This document was prepared as an account of work by Slipstream. Slipstream, any organization(s) named herein, or any person individually or on behalf of any organization(s) named herein: (a) does not make any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this document, or represent that such use does not infringe upon privately owned rights; (b) does not assume any liability incurred with respect to or damages arising out of the use of any information, apparatus, method, or process disclosed in this document. Project Manager: Greg Marsicek Acknowledgements Other Slipstream authors: Kevin Frost, Scott Hackel, Scott Schuetter, Allie Cardiel CEE authors: Ben Schoenbauer, Russ Landry 431 Charmany Drive | Madison, WI 53719 slipstreaminc.org Table of Contents Table of Contents ............................................................................................................................. i Executive Summary ........................................................................................................................ 4 Background and Objective .......................................................................................................... 4 Results ........................................................................................................................................
    [Show full text]
  • OPERATOR's MANUAL for Chilled Water Air Conditioning
    OTCW For Chilled Water Air Conditioning Systems OPERATOR’S MANUAL Technicold Marine Systems | www.technicold.com Technicold by Northern Lights 1419 W. Newport Center Drive Deerfield Beach, FL 33442 Tel: (954) 421-1717 Fax: (954) 421-1712 Copyright ©2014, Northern Lights, Inc. All rights reserved. Northern Lights, Technicold, the Northern Lights logo, and the Technicold logo are trademarks of Northern Lights, Inc. Printed in U.S.A. PART NO.: OTCW 4/14 OPERATOR'S MANUAL for Chilled Water Air Conditioning Read this operator's manual thoroughly before starting to operate your equipment. This manual contains information you will need to run and service your new unit. Table of Contents COMPONENT LOCATIONS Chilled Water Air Conditioning .............................................................. 2 - 3 IMPORTANT SAFETY WARNINGS Safety ...................................................................................................... 4-5 Hazards ................................................................................................... 6-7 PART 1: OPERATION, TROUBLESHOOTING, ELECTRICAL DRAWINGS, VFD PROGRAMMING Technicold Temperature Control ........................................................... 8-10 Chilled Water Troubleshooting Guide ................................................. 11-14 Electrical Drawings ............................................................................. 15-16 SMV Variable Frequency Drive ........................................................... 17-20 PART 2: SERVICING - ADDING GLYCOL, FRESH
    [Show full text]
  • Measuring Air Handler Flow Accurately
    Measuring Air Handler Flow Accurately Paul Morin The Energy Conservatory © Copyright 2014 The Energy Conservatory Presentation Housekeeping • If you do not hear anything from your computer’s speaker system you will need to dial in and listen to the presentation over the phone • If you have a question for the presenter, please type it in the question box at the right of the screen • The webinar will be available on The Energy Conservatory website and our YouTube site within a week Agenda • Why measuring air handler flow is important • Advantages of using the TrueFlow® • TrueFlow system components • Gauge options • Basic TrueFlow test procedures • TrueFlow procedure with two returns • The Duct Blaster® Pressure matching method Why measuring air handler flow is important • Insufficient airflow is a common problem • Low airflow can lead to: • Decreased heating and cooling capacity • Increased energy usage • Comfort problems • Optimize the performance of heat pump and air conditioner Advantages of using the TrueFlow® • Widely used methods are problematic or time consuming • Simple and accurate method • Proven success over years of field testing • Can be used with any manometer with a resolution of 1 Pascal (0.005 inches H₂O) TrueFlow® Specs • Flow Accuracy: • +/- 7% when using gauge w/1% accuracy • +/- 9% when using a Magnehelic gauge • Flow Range: • #14 TrueFlow Plate 365 – 1565 CFM • #20 TrueFlow Plate 485 – 2100 CFM • System Weight: • 13 lbs. TrueFlow System Components • Carrying Case • Flow Conversion Tables • 10’ blue and 30’ clear tubing • Operations Manual 2 Calibrated TF Plates 8 spacers for sizing adjustments 1 static pressure probe Gauge options Gauge with a resolution of 1 Pa.
    [Show full text]
  • Air Leakage of Furnaces and Air Handlers
    Air Leakage of Furnaces and Air Handlers Iain S. Walker, Darryl Dickerhoff, and Woody Delp, Lawrence Berkeley National Laboratory Mike Lubliner, Washington State University ABSTRACT In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa. Practitioners have found that a significant barrier to meeting specifications like this is the air leakage of the furnace or air handler itself. Anecdotal evidence exists for the magnitude of the air leakage of furnaces and air handlers. The states of California and Florida include air leakage limits for the furnaces in their State Building Energy Codes. However, there is currently no standard test method for measuring this air leakage that could be used for uniform and reliable ratings. This paper presents the results of laboratory measurements air leakage testing of furnaces and air handlers. The results indicate that average air leakage is significant - confirming existing anecdotal evidence. Also, the air leakage has a wide range from furnace to furnace indicating that low levels of air leakage are already attainable with existing equipment and the rating for air leakage will be able to distinguish between good and poorly performing equipment. This paper will also discuss the development of a standard test procedure (ASHRAE Standard 193 "Method of Test for Determining the Airtightness of HVAC Equipment") that will be used by Federal, State and Local code authorities and efficiency programs as well as appliance standards, utility programs and a range of other applications.
    [Show full text]
  • Course: Principle of Duct Design in HVAC Systems
    PDHonline Course M246 (4 PDH) HVAC Ducting - Principles and Fundamentals Instructor: A. Bhatia, B.E. 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course M246 www.PDHonline.org CONTENTS 1.0. INTRODUCTION 1 2.0. DUCT COMPONENTS 1 3.0. DUCT CLASSIFICATION 2 3.1 Velocity Classification 2 3.2 Pressure classification 3 4.0. DUCT MATERIALS 4 4.1 Metallic Ducts 4 4.2 Non Metallic ducts 5 5.0. DUCT SHAPES 6 5.1 Round Ducts 7 5.2 Rectangular Ducts 7 5.3 Oval Ducts 8 6.0. SUPPLY DUCT CONFIGURATIONS 8 6.1 Extended Plenum Systems 8 6.2 Reducing Trunk System 10 6.3 Spider System 11 6.4 Radial System 11 6.5 Perimeter Loop System 12 7.0. RETURN DUCT SYSTEMS 12 7.1 Return Duct Configurations 13 7.2 Maintaining Neutral Pressure 13 8.0. DUCT SIZING 13 8.1 Constant friction loss method 14 8.2 Velocity Reduction Method 17 8.3 Static Regain Method 19 9.0. DUCT CONSTRUCTION & REINFORCEMENT 20 9.1 Duct Sheet Metal Thickness 20 9.2 Duct Hanger Spacing 21 10.0. RECOMMENDED PRACTICES FOR DUCTING LAYOUT 21 10.1 Zoning 22 10.2 Selecting Outlets and Intakes for Supply, Return and Extract 22 10.3 Location of supply, return and exhaust registers 24 © 2007 A. Bhatia ii of 53 www.PDHcenter.com PDH Course M246 www.PDHonline.org 10.4 Mechanical Rooms 25 10.5 Duct Routing & Layout 25 10.6 Duct Locations 27 10.7 Duct Fittings and Transitions 28 10.8 Aspect Ratio 32 10.9 Standard Duct Sizes 32 11.0.
    [Show full text]
  • Humidity Control: Supplemental Technote Dehumidification in Hot-Humid Climates
    TechNote Humidity Control: Supplemental Dehumidification in Hot-Humid Climates Managing indoor humidity in hot-humid climates is more important than ever for new, energy efficient homes equipped with whole- house mechanical ventilation. In these homes, air conditioning systems are less effective at removing humidity from the air, particularly during part-load conditions or shoulder seasons when cooling is normally not required (e.g., November-March). Yet, more humid outdoor air is brought into the house as a result of increased ventilation rates. Although tighter construction practices help reduce air infiltration, the net effect is an increased supply of humid outdoor air into the house. These conditions tend to lead to increasing the risk for musty odors, mold-mildew, and comfort complaints (e.g., cold and clammy feeling). In addition, high indoor humidity can result in increased energy use because occupants tend to compensate by using a lower thermostat setting in the summer [1]. This TechNote provides an overview of strategies for improving humidity control in hot-humid climates (applicable as well in other humid climates). The focus is on supplemental dehumidification methods using commercially available equipment. Supplemental dehumidification is not intended to be used as a means for compensating for over-sized HVAC equipment or excessive building leakage rates. A strategy to improve humidity control can include combinations of the following: Air Conditioning. Air conditioning systems perform two functions: cooling (to reduce the temperature of the air) and dehumidification (to remove moisture from the air). Air conditioning controls are commonly designed to control temperature, not humidity. Two- or multi-stage systems may improve dehumidification depending on equipment and air flow selections [2].
    [Show full text]