Fungal Growth on a Corpse: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MOLD and MILDEW – an OVERVIEW/MARINE UPHOLSTERY Mold and Mildew Problems in the Marine Or Exterior Likely Element to Control Is Moisture
performance products PERFORMANCE PRODUCTS DIVISION MOLD AND MILDEW – AN OVERVIEW/MARINE UPHOLSTERY Mold and mildew problems in the marine or exterior likely element to control is moisture. Keep a surface upholstery, wallcovering, paint, tarpaulin, swimming dry and the ambient air dry, and you can break the pool and shower curtain markets, to name a few, link in the Mildew Square. In actuality, this is very have been well documented over the last 25 years. difficult. Marine upholstery may be dry when one sits The objective of this overview is to review the causes on it, but it is constantly exposed to rain, splashes and and cures of these unsightly and odoriferous wet bathing suits. problems and suggest actions to reduce their impact on the quality of goods as perceived by the Spores consumers. Food THE CAUSE – MICROORGANISMS The two principal causes of offensive odors and Water unsightly stains and growths are bacteria and fungi, Warmth commonly called microorganisms. Bacteria are simple, single-celled organisms. Fungi, referred to as mold and mildew, are significantly more complex. A A COMPLEX PROBLEM – AN EXAMPLE subset of fungal organisms is a type that produces One can observe an unsightly stain, dirt, or mildew colored byproducts as part of its digestive process. growth on the surface of a marine seat and ask the These byproducts are recognized as stains and are question, “How did it get there?” Dirt carried by the typically pink, yellow, purple or black. All wind or sudden shower will carry the spores or seeds, microorganisms require a source of energy; carbon inoculating the surface. -
BIO 201 Unit 1 Introduction to Microbiology
Professor Diane Hilker I. Exp. 3: Collection of Microbes 1. Observe different types of microbial colonies 2. Identification of molds 3. Isolation of molds 4. Isolation of bacteria I. Exp. 3: Collection of Microbes 1. Observe different types of microbial colonies 2. Identification of molds 3. Isolation of molds 4. Isolation of bacteria 1. Microbial Colonies ◦ Colony: a visible mass of microbial cells originating from one cell. ◦ (2) Types Large, fuzzy, hairy, 3D, growing upward & touching the lid, various colors-MOLD Small, creamy, moist, circular, various colors-BACTERIA 1. Microbial Colonies Mold Colonies Bacterial Colonies Culture Media Used ◦ Potato Dextrose Agar (PDA) Supports more mold growth pH 5.2-acidic High in carbohydrates ◦ Nutrient Agar (NA) Supports more bacterial growth pH 7.0-neutral High in proteins I. Exp. 3: Collection of Microbes 1. Observe different types of microbial colonies 2. Identification of molds 3. Isolation of molds 4. Isolation of bacteria Molds Vegetative Structures: obtains nutrients ◦ Absorb nutrients thorough cell wall ◦ Can’t identify a mold based on vegetative structure • Thallus: body of mold consisting of filaments • Hyphae or hypha: filaments-multicellular • Can be very long; elongate at the tips • Septa or septum: cross-walls • Coenocytic hyphae: no cross-walls • Mycelium: filamentous mass visible to the eye Fig. 12.1 Textbook Molds Reproductive Structures: Spores ◦ How molds are identified ◦ 2 Types Sexual: genetic exchange between 2 parents (meiosis) Not as common in nature To be discussed in lecture Asexual: no genetic exchange (mitosis) More common in nature To be discussed in lab Asexual Spores: 2 Types 1. Conidiospores or conidia: 2 types Microconidia Conidiophore: supporting structure Holds conidia Examples: Penicillium sp. -
The Corporeality of Death
Clara AlfsdotterClara Linnaeus University Dissertations No 413/2021 Clara Alfsdotter Bioarchaeological, Taphonomic, and Forensic Anthropological Studies of Remains Human and Forensic Taphonomic, Bioarchaeological, Corporeality Death of The The Corporeality of Death The aim of this work is to advance the knowledge of peri- and postmortem Bioarchaeological, Taphonomic, and Forensic Anthropological Studies corporeal circumstances in relation to human remains contexts as well as of Human Remains to demonstrate the value of that knowledge in forensic and archaeological practice and research. This article-based dissertation includes papers in bioarchaeology and forensic anthropology, with an emphasis on taphonomy. Studies encompass analyses of human osseous material and human decomposition in relation to spatial and social contexts, from both theoretical and methodological perspectives. In this work, a combination of bioarchaeological and forensic taphonomic methods are used to address the question of what processes have shaped mortuary contexts. Specifically, these questions are raised in relation to the peri- and postmortem circumstances of the dead in the Iron Age ringfort of Sandby borg; about the rate and progress of human decomposition in a Swedish outdoor environment and in a coffin; how this taphonomic knowledge can inform interpretations of mortuary contexts; and of the current state and potential developments of forensic anthropology and archaeology in Sweden. The result provides us with information of depositional history in terms of events that created and modified human remains deposits, and how this information can be used. Such knowledge is helpful for interpretations of what has occurred in the distant as well as recent pasts. In so doing, the knowledge of peri- and postmortem corporeal circumstances and how it can be used has been advanced in relation to both the archaeological and forensic fields. -
Critical Corpse Studies: Engaging with Corporeality and Mortality in Curriculum
Taboo: The Journal of Culture and Education Volume 19 Issue 3 The Affect of Waste and the Project of Article 10 Value: April 2020 Critical Corpse Studies: Engaging with Corporeality and Mortality in Curriculum Mark Helmsing George Mason University, [email protected] Cathryn van Kessel University of Alberta, [email protected] Follow this and additional works at: https://digitalscholarship.unlv.edu/taboo Recommended Citation Helmsing, M., & van Kessel, C. (2020). Critical Corpse Studies: Engaging with Corporeality and Mortality in Curriculum. Taboo: The Journal of Culture and Education, 19 (3). Retrieved from https://digitalscholarship.unlv.edu/taboo/vol19/iss3/10 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Taboo: The Journal of Culture and Education by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. 140 CriticalTaboo, Late Corpse Spring Studies 2020 Critical Corpse Studies Engaging with Corporeality and Mortality in Curriculum Mark Helmsing & Cathryn van Kessel Abstract This article focuses on the pedagogical questions we might consider when teaching with and about corpses. Whereas much recent posthumanist writing in educational research takes up the Deleuzian question “what can a body do?,” this article investigates what a dead body can do for students’ encounters with life and death across the curriculum. -
All About Mold What Is Mold?
Michigan Department of Community Health All About Mold What is mold? Mold is a living thing. It has tiny seeds, called spores, that are always in the air, indoors and outside. The spores are so small, you can’t see them without a microscope. Most of the time, the spores land on something dry and nothing happens. They get sucked up in your vacuum or wiped away when you dust. But if the spores land on something that is wet, they can begin to grow into mold that you can see. How do I know if I have mold growing in my house? You cannot see mold spores because they are too small, but once the mold starts to grow, you will notice it. Mold can grow on almost anything, as long as there is a little bit of water for a couple of days. The growing mold can be different colors: white, gray, brown, black, yellow, orange or green. It can be fluffy, hairy, smooth or flat and cracked, like leather. Mold growing on a wall. Even if you can’t see the mold, you will be able to smell it. Mold can smell very musty, like old books or wet dirt. Should I hire someone to test for mold in my home? Having someone test your house for mold costs a lot of money and is not really useful. You can probably find the mold just using your eyes and your nose. Look in places that you know are often wet or damp, like bathrooms or the kitchen; or that have been wet because of leaks, floods or broken pipes. -
Recent Advances in Forensic Anthropology: Decomposition Research
FORENSIC SCIENCES RESEARCH 2018, VOL. 3, NO. 4, 327–342 https://doi.org/10.1080/20961790.2018.1488571 REVIEW Recent advances in forensic anthropology: decomposition research Daniel J. Wescott Department of Anthropology, Texas State University, Forensic Anthropology Center at Texas State, San Marcos, TX, USA ABSTRACT ARTICLE HISTORY Decomposition research is still in its infancy, but significant advances have occurred within Received 25 April 2018 forensic anthropology and other disciplines in the past several decades. Decomposition Accepted 12 June 2018 research in forensic anthropology has primarily focused on estimating the postmortem inter- KEYWORDS val (PMI), detecting clandestine remains, and interpreting the context of the scene. Taphonomy; postmortem Additionally, while much of the work has focused on forensic-related questions, an interdis- interval; carrion ecology; ciplinary focus on the ecology of decomposition has also advanced our knowledge. The pur- decomposition pose of this article is to highlight some of the fundamental shifts that have occurred to advance decomposition research, such as the role of primary extrinsic factors, the application of decomposition research to the detection of clandestine remains and the estimation of the PMI in forensic anthropology casework. Future research in decomposition should focus on the collection of standardized data, the incorporation of ecological and evolutionary theory, more rigorous statistical analyses, examination of extended PMIs, greater emphasis on aquatic decomposition and interdisciplinary or transdisciplinary research, and the use of human cadavers to get forensically reliable data. Introduction Not surprisingly, the desire for knowledge about the decomposition process and its applications to Laboratory-based identification of human skeletal medicolegal death investigations has not only remains has been the primary focus of forensic anthropology for much of the discipline’s history. -
State of the Science on Molds and Human Health Stephen C. Redd, M.D
Statement for the Record Before the Subcommittees on Oversight and Investigations and Housing and Community Opportunity Committee on Financial Services United States House of Representatives State of the Science on Molds and Human Health Statement of Stephen C. Redd, M.D. Chief, Air Pollution and Respiratory Health Branch National Center for Environmental Health Centers for Disease Control and Prevention, U.S. Department of Health and Human Services For Release on Delivery Expected at 2:00 PM on Thursday, July 18, 2002 Good afternoon. I am Dr. Stephen Redd, the lead CDC scientist on air pollution and respiratory health at the Centers for Disease Control and Prevention (CDC). Accompanying me today is Dr. Thomas Sinks, Associate Director for Science of environmental issues at CDC. We are pleased to appear before you today on behalf of the CDC, an agency whose mission is to protect the health and safety of the American people. I want to thank you for taking the time to hear about the mold exposures in poorly maintained housing and other indoor environments and their effect on people’s health. While there remain many unresolved scientific questions, we do know that exposure to high levels of molds causes some illnesses in susceptible people. Because molds can be harmful, it is important to maintain buildings, prevent water damage and mold growth, and clean up moldy materials. Today I will briefly summarize for the committee ∙ CDC’s perspective on the state of the science relating to mold and health effects in people; ∙ CDC’s efforts to evaluate health problems associated with molds, ∙ CDC’s collaborations with other Federal agencies related to mold and people’s health; ∙ CDC’s collaboration with the Institute of Medicine on mold and health; and ∙ CDC’s next steps regarding mold and health. -
Dfs-3051 Yeast and Mold
State of Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Food Safety dfs-3051-1202 December 2002 FACT SHEET FOR FOOD PROCESSORS Yeast, Mold and Mycotoxins Background Food borne yeast and molds (fungi) are a large and diverse group of microorganisms that comprise several hundred species. The ability of these organisms to attack many foods is largely due to their versatile environmental requirements. · The majority, but not all, require free oxygen for growth. · Their pH requirement is broad, ranging from pH 2 to pH 9. · Their temperature range is also broad, ranging from 10º to 35ºC (50º – 95º F). · Moisture requirements for mold are quite low (water activity of 0.85 or less), with yeast requiring a slightly higher water activity. Significance Both yeast and mold can cause deterioration or decomposition of foods. Abnormal flavors and odors may be produced. The food may become slightly or severely blemished and slime, white cottony mycelium or highly colored mycelium may develop. Virtually any type of food product may be affected – from raw products such as nuts, beans , grains or fruits to processed foods. Contamination of foods by yeast or mold can result in substantial economic losses to the producer, the processor and the consumer. Several foodborne molds, and possibly yeast, may also be hazardous to human health. Some molds have the ability to produce toxic metabolites known as mycotoxins. Most mycotoxins are stable compounds that are not destroyed during food processing or home cooking. Even though the generating organisms may not survive heat treatment, the preformed toxin may still be present. -
Discovery of Bacteria by Antoni Van Leeuwenhoek D
MICROBIOLOGICAL REVIEWS, Mar. 1982, p. 121-126 Vol. 47, No. 1 0146-0749/82/010121-06$02.000/ Copyright 0 1983, American Society for Microbiology The Roles of the Sense of Taste and Clean Teeth in the Discovery of Bacteria by Antoni van Leeuwenhoek D. BARDELL Department ofBiology, Kean College ofNew Jersey, Union, New Jersey 07083 INTRODUCTION.............................................................. 121 INVESTIGATIONS ON THE SENSE OF TASTE AND THE DISCOVERY OF BACTERIA. 122 vAN LEEUWENHOEK'S PRIDE IN HIS CLEAN TEETH AND THE DEFINITIVE EVIDENCE FOR THE DISCOVERY OF BACTERA .................................... 124 CONCLUSIONS.............................................................. 125 LITERATURE CiTED ............... ............................................... 126 INTRODUCTION approach, van Leeuwenhoek observed bacteria in the course of the study. The discovery of protozoa, unicellular algae, It is true that van Leeuwenhoek's numerous unicellular fungi, and bacteria by Antoni van microscopic observations covered a broad spec- Leeuwenhoek is well recorded in standard trum of subjects, but they were not made with- books on the history of microbiology (1, 4), the out definite aim. If one reads the letters van history of biology (5, 6), and the history of Leeuwenhoek sent to the Royal Society in Lon- medicine (3). The discovery of such a variety of don, and the extant letters the Royal Society and microorganisms is the reason for books devoted individual persons sent to him, one can see that entirely to van Leeuwenhoek (2). Furthermore, he pursued investigations which he originated many microbiology and biology books, for what- because the subject interested him and also that ever purpose they were written, introductory studies were made in response to requests by textbooks or otherwise, give some attention to others to investigate a specified subject with the the discoveries. -
Microorganisms, Mold, and Indoor Air Quality INDOOR AIR QUALITY
Microorganisms, Mold, and Indoor Air Quality INDOOR AIR QUALITY Microorganisms, Mold, and Indoor Air Quality Contributing Authors Linda D. Stetzenbach, Ph.D., Chair, Subcommittee on Indoor Air Quality, University of Nevada, Las Vegas Harriet Amman, Ph.D., Washington Department of Ecology Eckardt Johanning, M.D., M.Sc., Occupational and Environmental Life Science Gary King, Ph.D., Chair, Committee on Environmental Microbiology, University of Maine Richard J. Shaughnessy, Ph.D., University of Tulsa About the American Society for Microbiology he American Society for Microbiology (ASM) is the largest single life science society, composed of over 42,000 scientists, teachers, physicians, and health Tprofessionals. The ASM’s mission is to promote research and research training in the microbiological sciences and to assist communication between scientists, policymakers, and the public to improve health, economic well being, and the environment.The goal of this booklet is to provide background information on indoor air quality (IAQ) and to emphasize the critical role of research in responding to IAQ and public health issues which currently confront policymakers. December 2004 Introduction Microscopic view of a cluster of Aspergillus fumigatus conidiophores and spores. ith every breath, we inhale not Although poor IAQ is often viewed as a prob- only life sustaining oxygen but also lem peculiar to modern buildings, linkages W dust, smoke, chemicals, microor- between air quality and disease have been known ganisms, and other particles and pollutants that for centuries. Long before the germ theory of dis- float in air. The average individual inhales about ease led to recognition of pathogenic microorgan- 10 cubic meters of air each day, roughly the vol- isms, foul vapors were being linked with ume of the inside of an elevator. -
The Medical Effects of Mold Exposure
AAAAI Position Statement February 2006 Environmental and occupational respiratory disorders Position paper The medical effects of mold exposure Robert K. Bush, MD, FAAAAI,a Jay M. Portnoy, MD, FAAAAI,b Andrew Saxon, MD, FAAAAI,c Abba I. Terr, MD, FAAAAI,d and Robert A. Wood, MDe Madison, Wis, Kansas City, Mo, Los Angeles and Palo Alto, Calif, and Baltimore, Md Exposure to molds can cause human disease through several well-defined mechanisms. In addition, many new mold-related Abbreviations used illnesses have been hypothesized in recent years that remain ABPA: Allergic bronchopulmonary aspergillosis largely or completely unproved. Concerns about mold exposure CRS: Chronic rhinosinusitis and its effects are so common that all health care providers, HP: Hypersensitivity pneumonitis particularly allergists and immunologists, are frequently faced MVOC: Volatile organic compound made by mold with issues regarding these real and asserted mold-related VOC: Volatile organic compound illnesses. The purpose of this position paper is to provide a state-of-the-art review of the role that molds are known to play in human disease, including asthma, allergic rhinitis, allergic bronchopulmonary aspergillosis, sinusitis, and hypersensitivity occupational respiratory pneumonitis. In addition, other purported mold-related pathology and are typically without specificity for the Environmental and illnesses and the data that currently exist to support them are involved fungus–fungal product purported to cause the carefully reviewed, as are the currently available approaches illness. disorders for the evaluation of both patients and the environment. In this position paper we will review the state of the (J Allergy Clin Immunol 2006;117:326-33.) science of mold-related diseases and provide interpre- Key words: Mold, fungi, hypersensitivity, allergy, asthma tation as to what is and what is not supported by scientific evidence. -
The Influence of Carcass Microlocation on the Speed of Postmortem Changes and Carcass Decomposition [1]
Kafkas Univ Vet Fak Derg KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI 24 (5): 655-662, 2018 JOURNAL HOME-PAGE: http://vetdergi.kafkas.edu.tr Research Article DOI: 10.9775/kvfd.2018.19670 ONLINE SUBMISSION: http://submit.vetdergikafkas.org The Influence of Carcass Microlocation on the Speed of Postmortem Changes and Carcass Decomposition [1] Zdravko TOMIĆ 1 Nenad STOJANAC 1 Marko R. CINCOVIĆ 1 Nikolina NOVAKOV 1 Zorana KOVAČEVIĆ 1 Ognjen STEVANČEVIĆ 1 Jelena ALEKSIĆ 2 [1] This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project No. TR31034 1 Faculty of Agriculture, Department of Veterinary Medicine, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, SERBIA 2 Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, SERBIA Article Code: KVFD-2018-19670 Received: 08.03.2018 Accepted: 20.06.2018 Published Online: 20.06.2018 How to Cite This Article Tomić Z, Stojanac N, Cincović MR, Novakov N, Kovačević Z, Stevančević O, Aleksić J: The influence of carcass microlocation on the speed of postmortem changes and carcass decomposition. Kafkas Univ Vet Fak Derg, 24 (5): 655-662, 2018. DOI: 10.9775/kvfd.2018.19670 Abstract Determining the post-mortem interval (PMI) is often a very demanding and delicate job which requires a good knowledge of postmortem changes. In this study, 20 domestic pig carcasses (Sus scrofa) whose death occurred within 8 h before the start of the study were simultaneously laid at the same geographical location, but in different environments (on the ground surface - S; buried in the ground - G; placed in a crate and buried in the ground - C; submerged in water - W; and hanging in the air - A).