Mold Awareness

Total Page:16

File Type:pdf, Size:1020Kb

Mold Awareness Mold Awareness ICWUC Center for Worker Health and Safety Education 329 Race St. Cincinnati, Ohio 45202 513-621-8882 (office) 513-621-8247 (fax) [email protected] http://www.hsed.icwuc.org Established and Administered by: International Chemical Workers Union Council In Cooperation with: International Association of Machinists and Aerospace Workers United Food and Commercial Workers Union Coalition of Black Trade Unionists American Federation of Teachers American Federation of Government Employees United American Nurses University of Cincinnati, Department of Environmental Health Greater Cincinnati Occupational Health Center This material has been funded in whole or in part with Federal Funds from the National Institute for Environmental Health Sciences under Grant 5 U45 ES6162-14. Individuals undertaking such projects under government sponsorship are encouraged to express freely their professional judgment. Therefore, these materials do not necessarily reflect the views or policy of the U.S. Department of Health and Human Services nor does mention of trade names, commercial products or organizations simply endorsement of U.S. Government. Worker Education and Training Branch National Institute of Environmental Health Sciences P.O. Box 12233 Mail Drop EC-25 Research Triangle Park, NC 27709-2233 Copyright by International Chemical Workers Union 2005 Table of Content Tab 1: Water Damage Tab 2: OSHA Quick Card (mold) Map of US (mold) OSHA Standards on Mold Bible on Mold Mycology – The study of fungi The Fascination Fungi Kingdom Forms of Moisture Dirty Sock Syndrome (Ultraviolet Lights) Dirty Sock Syndrome (NC) What cause Dirty Sock How a Mold Reproduces Oregon OSHA Fact Sheet (mold) Florida Fact Sheet FEMA (MOLD) Tab 2: CDC (mold) FEMA (mold & mildew and flood damage) What you need to know about mold USDA (food and mold) Power Point slides on Mold Small Group Activity (what is mold) Tab 3: Health Effects of Mold Asthma and Allergy Health Effects Health Effects of Mold Fact Sheet (health effects) Mold Exposures during Pregnancy Diagnostic Checklist Farmers Lung Power Point (health effects) Small Group Activity (health effects) Glossary Tab 4: Assessment and Monitoring Check list AFT Check list Walkthrough inspection Building Maintenance Teachers Classroom Ventilation Checklist Building Assessment Disaster Site Guide Mold Testing Sampling Overview Moisture Meter Lazar Wireless Water Alarm Power Point Tap 5: PPE & APR’s Tap 6: Remediation Levels of Protection Guidelines for Remediation FEMA (mold a growing threat) FEMA (mold and mildew) Mold Remediation Wheel SOP Reporting and Cleaning Mold Web Sites Power Point slides Tab 1 Table 1 presents strategies to respond to water damage within 24-48 hours. These guidelines are designed to help avoid the need for remediation of mold growth by taking quick action before growth starts. If mold growth is found on the materials listed in Table 1, refer to Table 2 for guidance on remediation. Depending on the size of the area involved and resources available, professional assistance may be needed to dry an area quickly and thoroughly. Table 1: Water Damage - Cleanup and Mold Prevention Guidelines for Response to Clean Water Damage within 24-48 Hours to Prevent Mold Growth* † Water-Damaged Material Actions • • For non-valuable items, discard books and Books and papers papers. • • Photocopy valuable/important items, discard originals. • · Freeze (in frost-free freezer or meat locker) or freeze-dry. § Carpet and backing - dry within 24-48 hours • • Remove water with water extraction vacuum. • • Reduce ambient humidity levels with dehumidifier. • · Accelerate drying process with fans. Ceiling tiles • · Discard and replace. Cellulose insulation • · Discard and replace. Concrete or cinder block surfaces • • Remove water with water extraction vacuum. • · Accelerate drying process with dehumidifiers, fans, and/or heaters. Fiberglass insulation • · Discard and replace. § Hard surface, porous flooring (Linoleum, • • Vacuum or damp wipe with water and mild ceramic tile, vinyl) detergent and allow to dry; scrub if necessary. • · Check to make sure underflooring is dry; dry underflooring if necessary. Non-porous, hard surfaces • · Vacuum or damp wipe with water and mild (Plastics, metals) detergent and allow to dry; scrub if necessary. Upholstered furniture • • Remove water with water extraction vacuum. • • Accelerate drying process with dehumidifiers, fans, and/or heaters. • · May be difficult to completely dry within 48 hours. If the piece is valuable, you may wish to consult a restoration/water damage professional who specializes in furniture. Wallboard • • May be dried in place if there is no obvious (Drywall and gypsum board) swelling and the seams are intact. If not, remove, discard, and replace. • · Ventilate the wall cavity, if possible. Window drapes • · Follow laundering or cleaning instructions recommended by the manufacturer. Wood surfaces • • Remove moisture immediately and use dehumidifiers, gentle heat, and fans for drying. (Use caution when applying heat to hardwood floors.) • • Treated or finished wood surfaces may be cleaned with mild detergent and clean water and allowed to dry. • · Wet paneling should be pried away from wall for drying. *If mold growth has occurred or materials have been wet for more than 48 hours, consult Table 2 guidelines. Even if materials are dried within 48 hours, mold growth may have occurred. Items may be tested by professionals if there is doubt. Note that mold growth will not always occur after 48 hours; this is only a guideline. Please note that Tables 1 and 2 contain general guidelines. Their purpose is to provide basic information for remediation managers to first assess the extent of the damage and then to determine whether the remediation should be managed by in-house personnel or outside professionals. The remediation manager can then use the guidelines to help design a remediation plan or to assess a plan submitted by outside professionals. †If a particular item(s) has high monetary or sentimental value, you may wish to consult a restoration/water damage specialist. §The subfloor under the carpet or other flooring material must also be cleaned and dried. See the appropriate section of this table for recommended actions depending on the composition of the subfloor. Source: USEPA, Mold Remediation in Schools and Commercial Buildings. Table 2: Guidelines for Remediating Building Materials * with Mold Growth Caused by Clean Water † Material or Furnishing Affected Cleanup Methods 2 SMALL - Total Surface Area Affected Less Than 10 square feet (ft ) Books and papers 3 Carpet and backing 1, 3 Concrete or cinder block 1, 3 Hard surface, porous flooring (linoleum, ceramic tile, vinyl) 1, 2, 3 Non-porous, hard surfaces (plastics, metals) 1, 2, 3 Upholstered furniture & drapes 1, 3 Wallboard (drywall and gypsum board) 3 Wood surfaces 1, 2, 3 MEDIUM - Total Surface Area Affected Between 10 and 100 ft2 Books and papers 3 Carpet and backing 1,3,4 Concrete or cinder block 1,3 Hard surface, porous flooring (linoleum, ceramic tile, vinyl) 1,2,3 Non-porous, hard surfaces (plastics, metals) 1,2,3 Upholstered furniture & drapes 1,3,4 Wallboard (drywall and gypsum board) 3,4 Wood surfaces 1,2,3 LARGE - Total Surface Area Affected Greater Than 100 ft2 or Potential for Increased Occupant or Remediator Exposure During Remediation Estimated to be Significant Books and papers 3 Carpet and backing 1,3,4 Concrete or cinder block 1,3 Hard surface, porous flooring (linoleum, ceramic tile, vinyl) 1,2,3,4 Non-porous, hard surfaces (plastics, metals) 1,2,3 Upholstered furniture & drapes 1,3,4 Wallboard (drywall and gypsum board) 3,4 Wood surfaces 1,2,3,4 Table 2, continued *Consult Table 1 if materials have been wet for less than 48 hours, and mold growth is not apparent. These guidelines are for damage caused by clean water. An experienced professional should be consulted if you and/or your remediators do not have expertise in remediating contaminated water situations. Tab 2 QUICKTM CARD Mold Molds are microscopic organisms found everywhere in the environment, indoors and outdoors. When present in large quantities, molds have the potential to cause adverse health effects. Health Effects of Mold Exposure • Sneezing • Cough and congestion • Runny nose • Aggravation of asthma • Eye irritation • Dermatitis (skin rash) People at Greatest Risk of Health Effects • Individuals with allergies, asthma, sinusitis, or other lung diseases. • Individuals with a weakened immune system (e.g., HIV patients). How to Recognize Mold • Sight – Usually appear as colored woolly mats. • Smell – Often produce a foul, musty, earthy smell. Preventing Mold Growth • Remove excess moisture with a wet-dry vacuum and dry out the building as quickly as possible. • Use fans to assist in the drying process. • Clean wet materials and surfaces with detergent and water. • Discard all water damaged materials. • Discard all porous materials that have been wet for more than 48 hours. General Mold Cleanup Tips • Identify and correct moisture problem. • Make sure working area is well ventilated. • Discard mold damaged materials in plastic bags. • Clean wet items and surfaces with detergent and water. • Disinfect cleaned surfaces with 1/4 to 11/2 cup house- hold bleach in 1 gallon of water. CAUTION: Do not mix bleach with other cleaning products that con- tain ammonia. • Use respiratory protection. A N-95 respirator is rec- ommended. • Use hand and eye protection. For more complete information: Occupational Safety and Health
Recommended publications
  • Reference Guide
    Indoor Air Quality Tools for Schools REFERENCE GUIDE Indoor Air Quality (IAQ) U.S. Environmental Protection Agency Indoor Environments Division, 6609J 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 564-9370 www.epa.gov/iaq American Federation of Teachers 555 New Jersey Avenue, NW Washington, DC 20001 (202) 879-4400 www.aft.org Association of School Business Officials 11401 North Shore Drive Reston, VA 22090 (703) 478-0405 www.asbointl.org National Education Association 1201 16th Steet, NW Washington, DC 20036-3290 (202) 833-4000 www.nea.org National Parent Teachers Association 330 North Wabash Avenue, Suite 2100 Chicago, IL 60611-3690 (312) 670-6782 www.pta.org American Lung Association 1740 Broadway New York, NY 10019 (212) 315-8700 www.lungusa.org EPA 402/K-07/008 I January 2009 I www.epa.gov/iaq/schools Introduction � U nderstanding the importance of good basic measurement equipment, hiring indoor air quality (IAQ) in schools is the professional assistance, and codes and backbone of developing an effective IAQ regulations. There are numerous resources program. Poor IAQ can lead to a large available to schools through EPA and other variety of health problems and potentially organizations, many of which are listed in affect comfort, concentration, and staff/ Appendix L. Use the information in this student performance. In recognition of Guide to create the best possible learning tight school budgets, this guidance is environment for students and maintain a designed to present practical and often comfortable, healthy building for school low-cost actions you can take to identify occupants. and address existing or potential air quality Refer to A Framework for School problems.
    [Show full text]
  • Mold & Moisture
    mold & moisture Keeping your home free from mold and moisture problems Indoor Air Unit Mold in Our Homes Table of Contents Mold in Our Homes 1 Mold is a type of fungus. Mold spores are found in Mold and Your Health 3 both the indoor and outdoor air, but they will only grow if they find the right conditions. Mold requires Home Investigation 5 three simple elements to grow: Moisture in Your Home 7 1. Moderate temperatures Mold Testing 9 2. Nutrients (food) Mold Removal 11 3. Moisture Clean-Up Steps 13 Mold can start to grow on interior building surfaces Resources 17 and furnishings if there is too much moisture. Eventually, the mold will damage the materials Renters 18 it is growing on and may cause health effects to occupants. In this guide, you will learn: ● How indoor mold can affect oury health, ● How to control moisture and find mold inside your home, and ● How to remove mold. This information will help you protect your family’s health and one of your largest investments: your home. 1 2 Mold and Your Health Health effects from mold exposure can vary greatly “All indoor mold growth should be from person to person. Common symptoms can include coughing, runny nose, wheezing and sore removed promptly, regardless of the throat. People with asthma or allergies may notice type of mold present.” their symptoms worsen. All molds are a potential health Some people may have more hazard severe reactions Many molds are capable of producing substances ● Children that can be harmful to your health.
    [Show full text]
  • Hvac System Covid Procedures
    HVAC SYSTEM COVID PROCEDURES August 17, 2020 Prepared by: Johnson Roberts Associates 15 Properzi Way Somerville, MA 02143 Prepared for: City of Cambridge Executive Summary The HVAC COVID procedures are a compilation of Industry Standards and CDC recommendations. However, it should be noted that good PPE (personal protective equipment), social distancing, hand washing/hygiene, and surface cleaning and disinfection strategies should be performed with HVAC system measures, as studies have shown that diseases are easily transmitted via direct person to person contact, contact from inanimate objects (e.g. room furniture, door and door knob surfaces) and through hand to mucous membrane (e.g. those in nose, mouth and eyes) contact than through aerosol transmission via a building’s HVAC system. Prior to re-occupying buildings, it is recommended that existing building HVAC systems are evaluated to ensure the HVAC system is in proper working order and to determine if the existing system or its associated control operation can be modified as part of a HVAC system mitigation strategy. Any identified deficiencies should be repaired and corrected, and if the building HVAC system is a good candidate for modifications those measures should be implemented. In general HVAC system mitigation strategies should include the following recommendations: 1. Increase Outdoor Air. The OA increase must be within Unit's capacity in order to provide adequate heating or cooling so Thermal Comfort is not negatively impacted. Also use caution when increasing OA in polluted areas (e.g. High Traffic/City areas) and during times of high pollen counts. 2. Disable Demand Control Ventilation where present.
    [Show full text]
  • Indoor Moulds, Sick Building Syndrome and Building Related Illness
    fungal biology reviews 24 (2010) 106e113 journal homepage: www.elsevier.com/locate/fbr Review Indoor moulds, Sick Building Syndrome and building related illness Brian CROOKa,*, Nancy C. BURTONb aHealth and Safety Laboratory, Harpur Hill, Buxton SK17 9JN, UK bCenters for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA article info abstract Article history: Humans are constantly exposed to fungi, or moulds, usually without suffering harm to Received 3 February 2010 health. However, in some instances inhalation of sufficient numbers of mould spores Received in revised form can trigger symptoms of asthma, rhinitis or bronchitis. Respiratory ill health associated 20 May 2010 with the built environment is often referred to either as Sick Building Syndrome [SBS] Accepted 24 May 2010 (i.e. building related symptoms) or building related illness. For many, the difference between SBS and building related illness is unclear and the two overlap. This review Keywords: examines the differences between the two and describes in more detail the role of moulds Building related illness in building related illness. Using as examples the after-effects of flooding in the UK in Building remediation 2007, and Hurricane Katrina in USA in 2005, methods used to investigate exposure to Indoor air indoor mould contamination are described, together with strategies for remediating Mould mould contaminated buildings. Sick Building Syndrome Crown Copyright ª 2010 Published by Elsevier Ltd on behalf of The British Mycological Society. All rights reserved. 1. Introduction handling or waste disposal can result in massive exposure leading to occupational asthma (Poulsen et al., 1995; Eduard Fungi, or moulds, are ubiquitous in the environment; there- et al., 2004; Heederik and Sigsgaard, 2005).
    [Show full text]
  • Resolving the Mortierellaceae Phylogeny Through Synthesis of Multi-Gene Phylogenetics and Phylogenomics
    Lawrence Berkeley National Laboratory Recent Work Title Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Permalink https://escholarship.org/uc/item/25k8j699 Journal Fungal diversity, 104(1) ISSN 1560-2745 Authors Vandepol, Natalie Liber, Julian Desirò, Alessandro et al. Publication Date 2020-09-16 DOI 10.1007/s13225-020-00455-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Fungal Diversity https://doi.org/10.1007/s13225-020-00455-5 Resolving the Mortierellaceae phylogeny through synthesis of multi‑gene phylogenetics and phylogenomics Natalie Vandepol1 · Julian Liber2 · Alessandro Desirò3 · Hyunsoo Na4 · Megan Kennedy4 · Kerrie Barry4 · Igor V. Grigoriev4 · Andrew N. Miller5 · Kerry O’Donnell6 · Jason E. Stajich7 · Gregory Bonito1,3 Received: 17 February 2020 / Accepted: 25 July 2020 © MUSHROOM RESEARCH FOUNDATION 2020 Abstract Early eforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conficting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarifed, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierel- laceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequenc- ing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic genera resulted in 13 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-efective means of generating a high-confdence phylogeny.
    [Show full text]
  • MOLD and MILDEW – an OVERVIEW/MARINE UPHOLSTERY Mold and Mildew Problems in the Marine Or Exterior Likely Element to Control Is Moisture
    performance products PERFORMANCE PRODUCTS DIVISION MOLD AND MILDEW – AN OVERVIEW/MARINE UPHOLSTERY Mold and mildew problems in the marine or exterior likely element to control is moisture. Keep a surface upholstery, wallcovering, paint, tarpaulin, swimming dry and the ambient air dry, and you can break the pool and shower curtain markets, to name a few, link in the Mildew Square. In actuality, this is very have been well documented over the last 25 years. difficult. Marine upholstery may be dry when one sits The objective of this overview is to review the causes on it, but it is constantly exposed to rain, splashes and and cures of these unsightly and odoriferous wet bathing suits. problems and suggest actions to reduce their impact on the quality of goods as perceived by the Spores consumers. Food THE CAUSE – MICROORGANISMS The two principal causes of offensive odors and Water unsightly stains and growths are bacteria and fungi, Warmth commonly called microorganisms. Bacteria are simple, single-celled organisms. Fungi, referred to as mold and mildew, are significantly more complex. A A COMPLEX PROBLEM – AN EXAMPLE subset of fungal organisms is a type that produces One can observe an unsightly stain, dirt, or mildew colored byproducts as part of its digestive process. growth on the surface of a marine seat and ask the These byproducts are recognized as stains and are question, “How did it get there?” Dirt carried by the typically pink, yellow, purple or black. All wind or sudden shower will carry the spores or seeds, microorganisms require a source of energy; carbon inoculating the surface.
    [Show full text]
  • Title Melon Aroma-Producing Yeast Isolated from Coastal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Melon aroma-producing yeast isolated from coastal marine Title sediment in Maizuru Bay, Japan Sutani, Akitoshi; Ueno, Masahiro; Nakagawa, Satoshi; Author(s) Sawayama, Shigeki Citation Fisheries Science (2015), 81(5): 929-936 Issue Date 2015-09 URL http://hdl.handle.net/2433/202563 The final publication is available at Springer via http://dx.doi.org/10.1007/s12562-015-0912-5.; The full-text file will be made open to the public on 28 July 2016 in Right accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University 1 FISHERIES SCIENCE ORIGINAL ARTICLE 2 Topic: Environment 3 Running head: Marine fungus isolation 4 5 Melon aroma-producing yeast isolated from coastal marine sediment in Maizuru Bay, 6 Japan 7 8 Akitoshi Sutani1 · Masahiro Ueno2 · Satoshi Nakagawa1· Shigeki Sawayama1 9 10 11 12 __________________________________________________ 13 (Mail) Shigeki Sawayama 14 [email protected] 15 16 1 Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, 17 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 18 2 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto 19 University, Kyoto 625-0086, Japan 1 20 Abstract Researches on marine fungi and fungi isolated from marine environments are not 21 active compared with those on terrestrial fungi. The aim of this study was isolation of novel 22 and industrially applicable fungi derived from marine environments.
    [Show full text]
  • Controlling Mold and Moisture Household Mold Guidance for Local Health Professionals
    Controlling Mold and Moisture Household Mold Guidance for Local Health Professionals Wisconsin Department of Health Services Indoor Air and Radon Program Division of Public Health | Bureau of Environmental and Occupational Health dhs.wisconsin.gov/mold | [email protected] | P-02069 (04/2021) 1 Introduction Controlling Mold and Moisture Toolkit Background Indoor mold is a challenge experienced by families, homeowners, renters, and landlords everywhere. Local public health professionals are often an initial source for responding to questions and concerns when mold appears inside someone’s home. Although each situation is unique, there is one consistent message: the solution to mold control is moisture control. This toolkit is designed to assist local public health professionals respond to questions about mold. The toolkit is centered around five key messages for responding to mold situations. These five messages, along with the additional resources included, will provide a solid foundationfor responding to mold situations. Table of Contents Responding to Mold Concerns ..…………………………………………………………………………………………….. 3 Finding the Moisture Source .………………………………………………………………………………………...……. 5 Cleaning Indoor Mold ………………………………………………….……………….………………………………………. 7 Indoor Mold and Health …………………………………………….………………….……………………………………… 8 Tenant and Landlord Information ……………………………………………………………………………………….. 10 Hiring a Mold Contractor ………………………………………………………………………………………………….…. 11 Frequently Asked Questions …………………………………………………………………………………………..…… 12 Appendices …………………………………………………………………………………………………..………………….….
    [Show full text]
  • Remember Capacity & Consumption When
    HVAC/R and BAS trade news | Volume IV / 2018 kele.com | [email protected] | 888.826.9047 REMEMBER CAPACITY & CONSUMPTION WHEN SELECTING AN ELECTRONIC TO PNEUMATIC TRANSDUCER Also featured in this volume: • Kele Introduces Product Matching Solution • Is Your BAS Ready for the Cold? • Powering Multiple Devices from a Common Transformer Kele Insights | Volume IV / 2018 kele.com | 877.826.9047 | [email protected] Volume IV: Table of Contents pg 02 // Kele Introduces Product Matching Solution pg 03 // Is Your BAS Ready for the Cold? pg 05 // Remember Capacity & Consumption When Selecting an Electronic to Pneumatic Transducer pg 07 // Back to Basics: Don’t Let a Mismatched Signal Delay Profitability! pg 08 // Powering Multiple Devices from a Common Transformer pg 11 // The Best Choice for UL924 RIB® Relays pg 14 // Honoring Our Vets: A Different Type of Kele Service P74 Series – Differential Pressure Switch The Johnson Controls Model P74 Differential Pressure Switch measures the difference in pressure exerted upon its two sensing elements in the building automation application. It operates an SPDT switch at the differential pressure set point. With these differential pres- sure switches, the set point may be adjusted without removing the cover and is visible on a calibrated scale. SHOP NOW 01 Kele Insights | Volume IV / 2018 kele.com | 877.826.9047 | [email protected] KELE INTRODUCES PRODUCT MATCHING SOLUTION Initiative enhances customer user experience and buying process Need to quickly find a product accessory? What about an alternative to a tariffed part? A new feature on kele.com makes this process simple and intuitive. Customers can now view and select accessories, related products, and direct or functional alternatives on the same page/screen as the original product they intend to buy.
    [Show full text]
  • Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites
    ORIGINAL RESEARCH published: 18 October 2017 doi: 10.3389/fmicb.2017.01997 Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites Grant T. Kirker 1*, Amy B. Bishell 1, Michelle A. Jusino 2, Jonathan M. Palmer 2, William J. Hickey 3 and Daniel L. Lindner 2 1 FPL, United States Department of Agriculture-Forest Service (USDA-FS), Durability and Wood Protection, Madison, WI, United States, 2 NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States, 3 Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly Edited by: Florence Abram, between the two sites and that long-term exposure to different preservative chemistries National University of Ireland Galway, is correlated with different species composition of soil fungi. However, chemical analyses Ireland using ICP-OES found levels of select residual preservative actives (copper, chromium and Reviewed by: Seung Gu Shin, arsenic) to be similar to naturally occurring levels in unexposed areas.
    [Show full text]
  • Caveats of Fungal Barcoding: a Case Study in Trametes S.Lat
    Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations Authors: Lücking, Robert, Truong, Ba Vuong, Huong, Dang Thi Thu, Le, Ngoc Han, Nguyen, Quoc Dat, et al. Source: Willdenowia, 50(3) : 383-403 Published By: Botanic Garden and Botanical Museum Berlin (BGBM) URL: https://doi.org/10.3372/wi.50.50302 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Willdenowia on 10 Feb 2021 Terms of Use: https://bioone.org/terms-of-use Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin ROBERT LÜCKING1*, BA VUONG TRUONG2, DANG THI THU HUONG3, NGOC HAN LE3, QUOC DAT NGUYEN4, VAN DAT NGUYEN5, ECKHARD VON RAAB-STRAUBE1, SARAH BOLLENDORFF1, KIM GOVERS1 & VANESSA DI VINCENZO1 Caveats of fungal barcoding: a case study in Trametes s.lat.
    [Show full text]
  • S41467-021-25308-W.Pdf
    ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St.
    [Show full text]