On Uniform Limit Theorem and Completion of Probabilistic Metric Space
Int. Journal of Math. Analysis, Vol. 8, 2014, no. 10, 455 - 461 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4120 On Uniform Limit Theorem and Completion of Probabilistic Metric Space Abderrahim Mbarki National school of Applied Sciences P.O. Box 669, Oujda University, Morocco MATSI Laboratory Abedelmalek Ouahab Department of Mathematics Oujda university, 60000 Oujda Morocco MATSI Laboratory Rachid Naciri MATSI Laboratory Oujda university, 60000 Oujda Morocco Copyright c 2014 Abderrahim Mbarki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribu- tion, and reproduction in any medium, provided the original work is properly cited. Abstract A necessary and sufficient condition for a probabilistic metric space to be complete is given and the uniform limit theorem [2] is generalized to probabilistic metric space. Mathematics Subject Classification: 54A40, 54E50, 54D65 Keywords: Uniform Limit Theorem, Completion of PM space 1 Introduction and Preliminaries Our terminology and notation for probabilistic metric spaces conform of that B. Schweizer and A. Sklar [3, 4]. A nonnegative real function f defined on 456 A. Mbarki, A Ouahab and R. Naciri R+ ∪ {∞} is called a distance distribution function (briefly, a d.d.f.) if it is nondecreasing, left continuous on (0, ∞). with f(0) = 0 and f(∞) = 1. The set of all d.d.f’s will be denoted by Δ+; and the set of all f in Δ+ for which + + lims→∞ f(s)=1byD .Fora ∈ [0, ∞), the element a ∈ D is defined as 0ifx ≤ a εa(x)= 1ifx>a and 0, 0 ≤ x<∞, ε∞(x)= 1,x= ∞.
[Show full text]