SNOW BUCKWHEAT Handbook)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Captive Rearing of Lange's Metalmark Butterfly, 2010–2011
Captive Rearing of Lange’s Metalmark Butterfly, 2010–2011 Jana J. Johnson,1,2 Jane Jones,2 Melanie Baudour,2 Michelle Wagner,2 Dara Flannery, 2 Diane Werner,2 Chad Holden,2 Katie Virun,2 Tyler Wilson,2 Jessica Delijani,2 Jasmine Delijani,2 Brittany Newton,2 D. Gundell,2 Bhummi Thummar,2 Courtney Blakey,2 Kara Walsh,2 Quincy Sweeney,2 Tami Ware,2 Allysa Adams,2 Cory Taylor,2 and Travis Longcore1 1 The Urban Wildlands Group 2 The Butterfly Project, Moorpark College December 19, 2011 Final Report to National Fish and Wildlife Foundation Lange’s Metalmark Butterfly Captive Breeding/Rearing Project # 2010-0512-001 The Urban Wildlands Group P.O. Box 24020 Los Angeles, California 90024-0020 Table of Contents Introduction ................................................................................................................................... 1! Captive Rearing Methods .............................................................................................................. 3! Collection of Wild Females ....................................................................................................... 3! Adult Feeding ............................................................................................................................ 5! Butterfly Containment ............................................................................................................... 9! Morgue .................................................................................................................................... 10! Eggs ........................................................................................................................................ -
Speciation, Hybridization, and Conservation Quanderies: What Are We Protecting Anyway? J
_______________________________________________________________________________________News of The Lepidopterists’ Society Volume 58, Number 4 Conservation Matters: Contributions from the Conservation Committee Speciation, hybridization, and conservation quanderies: what are we protecting anyway? J. R. Dupuis1 and Felix A. H. Sperling2 1Dept. of Plant and Environmental Protection Sciences, Univ. of Hawai’i at Mãnoa, Honolulu, Hawai’i 96822 2Dept. of Biological Sciences, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2E9 [email protected] There are few scientific disciplines more prone to social purpose of protecting rare animals or plants. Since then, quandaries than conservation biology. Its multidisci- extensive conservation efforts have taken place to stabi- plinary and synthetic nature lends itself to conflicts among lize populations of Lange’s metalmark, including the es- science, money, laws, and social values, which are encap- tablishment of a captive breeding program, planting of E. sulated in questions like what should you do with limited n. psychicola, hand-clearing/herbiciding invasive plants, funding but seemingly endless needs? In insect conserva- and experimental grazing. Despite these efforts, popula- tion, these quandaries often have an added layer of taxo- tion numbers are still precariously low, with competition nomic uncertainty. When a unique population is discov- from invasive weeds and wildfires proving to be formidable ered in some remnant patch of wildland, the first question opponents. is usually is this a different species/subspecies? A ‘yes’ can open the floodgates to discussions of endemism, legal pro- While Lange’s metalmark has a wing pattern that is dis- tection, and conservation prioritization. What may have tinct from most of the A. mormo species complex, it has lit- started as a weekend collecting trip, and the excitement tle to distinguish it genetically. -
Wildflower Talk
Wildflower Talk These are a series of short articles written by Kristen Currin of Humble Roots Native Plant Nursery in Mosier, Oregon, featuring plants from around the Columbia Gorge. Each of these articles appeared in an issue of the Wasco County Soil and Water Conservation District’s newsletter, GROUNDWORK. I hope you enjoy them. All photos are courtesy of Kristen Currin. Please ask permission before using. www.humblerootsnursery.com Nothing in this document is to be construed as medical advice. A licensed herbalist should be consulted for proper identification and preparation before eating those plants designated as edible. Humble Roots Nursery nor the Conservation District are liable for improper consumption of plants listed in this document. INDEX Arnica, Heart-Leaf Glacier Lily Phlox, Cushion Bachelor Buttons Goldenrod Pineapple Weed Balsamroot Grass Widow Prairie Stars Bitterroot Indian Hemp Rabbitbrush (sp) Buckwheat, Arrowleaf Juniper Rabbitbrush, Gray Buckwheat, Snow Larkspur, Upland Rose, Wild California Poppy Kinnickinick Saxifrage Cattail Mariposa Lily Serviceberry Ceanothus Milkweed, Showy Shooting Star, Poet’s Chocolate Lily Miner’s Lettuce Sumac, Smooth Columbia Coreopsis Mugwort, Western Wapato Currant, Golden Native Shrubs Washington Lily Dutchman’s Breeches Nettle, Stinging Western Bunchberry Desert Parsley, Columbia Oceanspray Yellow Bee Plant Desert Parsley, Gray’s Oregon Grape Yellow Bells Elderberry, Blue Pearly Everlasting Yellow Star Thistle Gairdners Yampah Phantom Orchid 1 TOP Page Heart-leaf Arnica Arnica cordifolia Look for arnica's yellow flowers in spring. Arnica is an important native medicinal plant used topically to soothe sore muscles and sprains. A woodland plant and a good choice for the shady xeric garden. Bachelor Buttons, Cornflower Centaurea cyanus Many may think this beautiful blue flower is a native plant due to the fact that it dominates many of our meadows and is commonly sold in wildflower seed mixes. -
Spatial Distribution of Coast and Dune Buckwheat (Eriogonum Latifolium & E
California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses 2004 Spatial distribution of coast and dune buckwheat (Eriogonum latifolium & E. parvifolium) in a restoration site on the Fort Ord dunes of California Heather Wallingford California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes Recommended Citation Wallingford, Heather, "Spatial distribution of coast and dune buckwheat (Eriogonum latifolium & E. parvifolium) in a restoration site on the Fort Ord dunes of California" (2004). Capstone Projects and Master's Theses. 60. https://digitalcommons.csumb.edu/caps_thes/60 This Capstone Project is brought to you for free and open access by Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. Unless otherwise indicated, this project was conducted as practicum not subject to IRB review but conducted in keeping with applicable regulatory guidance for training purposes. For more information, please contact [email protected]. Spring 2004 Capstone Heather Wallingford Spatial Distribution of Coast and Dune Buckwheat (Eriogonum latifolium & E. parvifolium) in a Restoration Site on the Fort Ord Dunes of California A Capstone Project Presented to the Faculty of Earth Systems Science and Policy in the College of Science, Media Arts, and Technology at California State University, Monterey Bay in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science by Heather Wallingford May 5, 2004 1 Spring 2004 Capstone Heather Wallingford Abstract Coast and dune buckwheat (Eriogonum parvifolium & E. latifolium) are native plants to the Fort Ord sand dunes which are essential for the survivorship of the federally- endangered Smith’s blue butterfly (Euphilotes enoptes smithi). -
Proceedings: Wildland Shrub and Arid Land Restoration Symposium
Restoration, Revegetation, and the Importance of Genetic and Evolutionary Perspectives Yan B. Linhart Abstract—Sound biological principles must provide the frame- 4. If you wish to restore locale A, do not collect seeds or work of revegetation projects. Propagules of native species must plants at A, grow them in a very different environment at be used, and these propagules must represent genetic material locale B (50 km away across the Continental Divide), and from sites that match the area to be revegetated as closely as pos- return the progeny, after 4 generations to locale A. Locale sible. Such matching can be best achieved by using materials B may be so different in both physical and biotic features from nearby plants growing in nature or propagated in nearby that it will create specific selective pressures that alter the nurseries. The closeness of matching will depend on the type of original gene pools from locale A. site to be revegetated. Within National Parks, whose mandate is 5. Restoration methods are often species-specific, because to maintain the ecological and genetic integrity of the biota, plants different species have different life histories. These life his- or their progeny must come from nearby sites. At other locations, tories must be taken into consideration when planning the matching may not need to be so conservative. The primary reason work. For example restoration with annual species, rhi- for this cautious approach is that plant genomes show very precise zomatous grasses, shrubs and coniferous trees all require adaptations to local conditions. Introduction of non-local materials somewhat different approaches. -
TAXONOMY Plant Family Species Scientific Name GENERAL
Plant Propagation Protocol for Eriogonum niveum ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/ERNI2.pdf Spring 2014 North America Distribution Washington State Distribution Source: USDA PLANTS Database TAXONOMY Plant Family Scientific Name Polygonaceae Common Name Buckwheat Family Species Scientific Name Scientific Name Eriogonum niveum Douglas ex Benth. Varieties Eriogonum niveum Douglas ex. Benth. var. dichotomum (Douglas ex Benth.) M.E. Jones Eriogonum niveum Douglas ex. Benth. var. decumbens (Benth.) Torr. & A. Gray Sub-species Eriogonum niveum Douglas ex. Benth. ssp. decumbens (Benth.) S. Stokes Cultivar Common Synonym(s) Eriogonum strictum Benth. var. lachnostegium Common Name(s) Snow buckwheat, canyon heather 6 Species Code (as per USDA Plants ERNI2 database) GENERAL INFORMATION Geographical range Found mainly on the grassy plains east of the Cascade Range in southern British Columbia, west-central Idaho, northeastern Oregon, and eastern Washington.1 See maps above for distribution in North America and Washington state. Ecological distribution Found in sand to gravelly flats, slopes, bluffs, and rocky, often volcanic outcrops, mixed grassland and sagebrush communities and conifer woodlands.1 Climate and elevation range Elevation: 150-1500 m 2 Cold Hardiness Zone: 5a-7a 6 Mean Annual Precipitation: 150 – 460 mm 2 Soil: Well-drained sands to clay 2 Local habitat and abundance Common in big sage (Artemissia tridentate), antelope bitterbrush (Purshia tridentate), and open Ponderosa pine (Pinus ponderosa) areas. It also occurs in the canyon grasslands of the Snake and Columbia River systems.2 Found primarily in full sun but will grow in partial shade such as open Ponderosa pine hillsides.6 Tolerates extremely droughty soils and is a common occupant of dry, rocky southern exposures.6 Plant strategy type / successional Colonizer 2 stage Very successful pioneer species6 Plant characteristics Rarity: Locally Common 3 Dense perennial subshrub with erect leaves. -
El Segundo Blue Butterfly and Dune Buckwheat
K E E R S Marina C A del Rey N a O L L A n B t El Segundo Blue Butterfly a M H o I n and the Dune Buckwheat S i LAX c T The El Segundo blue butterfly (Euphilotes battoides allyni) a Playa O del Rey depends on the dune buckwheat (Eriogonum parvifolium) B R for its entire life cycle. Adult a I y butterflies feed on the dune El Segundo C buckwheat’s nectar and lay eggs on the flowerheads. The S A caterpillars eat the flowerheads, Manhattan N form pupae in the soil, and then Dune buckwheat (Eriogonum parvifolium) Beach D they wait for the next summer to emerge as butterflies. An individual butterfly Hermosa can spend its entire life within a few yards of a single plant. D Beach El Segundo blue butterfly (Euphilotes battoides allyni); photo by Jess Morton Urban development reduced the local distribution of dune buckwheat to three U Adult King N Butterfly isolated areas: the dunes west of LAX, Chevron’s El Segundo refinery property, Beach Bluffs Egg Harbor and the bluffs northwest of Palos Restoration Project E Verdes Estates. A dramatic decline in S he Beach Bluffs Restoration Project Larva the El Segundo blue butterfly Tbegan in 2001 when a group of local Redondo residents, nonprofit groups, and population following the loss of government agencies united to implement Beach a common vision of restoring the native vegetation of the bluffs along the southern suitable habitat led to its listing as a portion of Santa Monica Bay, between Pupa Ballona Creek and the Palos Verdes Spends winter federally endangered species. -
Apodemia Mormo ) Oviposition Behaviour in Canada
34 THE CANADIAN FIELD -N ATURALIST Vol. 126 First Observations of Mormon Metalmark ( Apodemia mormo ) Oviposition Behaviour in Canada ASHLEY ANNE WICK 1, 4 , JOHANE JANELLE 2, SHELLEY PRUSS 3, and NADIR ERBILGIN 1 1Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3 Canada ; email: [email protected] 2Box 218, Val Marie, Saskatchewan S0N 2T0 Canada 3Parks Canada Agency, Western and Northern Service Centre, Calgary, Alberta T2P 3M3 Canada 4Corresponding author Wick, Ashley Anne, Johane Janelle, Shelley Pruss, and Nadir Erbilgin. 2012. First observations of Mormon Metalmark (Apodemia mormo ) oviposition behaviour in Canada. Canadian Field-Naturalist 126(1): 3 4–37. We present new information on oviposition behaviour in the Mormon Metalmark, Apodemia mormo Felder and Felder, 1859 , documented in Grasslands National Park of Canada, Saskatchewan, in August 2011. The Mormon Metalmark is found through - out the U.S. southwest; little is known about its life history in the northern populations found in Canada. We provide photo - graphic documentation of the butterfly laying single eggs directly on soil or rocks. These observations differ from those recorded in the southern part of its range, where it lays eggs in groups of 2–4 on various locations of the host plant, Branched Umbrella- Plant, Eriogonum pauciflorum Pursh. This is the first published account of oviposition behaviour of this species in Canada in the most northern part of its range. Key Words: Mormon Metalmark, Apodemia mormo, Grasslands National Park of Canada, Saskatchewan, Lepidoptera, ovipo - sition, eggs. The Mormon Metalmark, Apodemia mormo Felder Recent work on the population genetics of the Mor - and Felder, 1859, is a butterfly of the primarily neo - mon Metalmark in the northern part of its range has tropical family Riodinidae. -
Recovery Strategy for the Mormon Metalmark (Apodemia Mormo), Southern Mountain Population in British Columbia
British Columbia Recovery Strategy Series Recovery Strategy for the Mormon Metalmark (Apodemia mormo), Southern Mountain Population in British Columbia Prepared by the Southern Interior Invertebrates Recovery Team February 2008 DRAFT About the British Columbia Recovery Strategy Series This series presents the recovery strategies that are prepared as advice to the Province of British Columbia on the general strategic approach required to recover species at risk. The Province prepares recovery strategies to meet our commitments to recover species at risk under the Accord for the Protection of Species at Risk in Canada, and the Canada – British Columbia Agreement on Species at Risk. What is recovery? Species at risk recovery is the process by which the decline of an endangered, threatened, or extirpated species is arrested or reversed, and threats are removed or reduced to improve the li kelihood of a species’ persistence in the wild. What is a recovery strategy? A recovery strategy represents the best available scientific knowledge on what is required to achieve recovery of a species or ecosystem. A recovery strategy outlines what is and what is not known about a species or ecosystem; it also identifies threats to the species or ecosystem, and what should be done to mitigate those threats. Recovery strategies set recovery goals and objectives, and recommend approaches to recover the species or ecosystem. Recovery strategies are usually prepared by a recovery team with members from agencies responsible for the management of the species or ecosystem, experts from other agencies, universities, conservation groups, aboriginal groups, and stakeholder groups as appropriate. What’s next? In most cases, one or more action plan(s) will be developed to define and guide implementation of the recovery strategy. -
Draft Hanford Injury Assessment Plan Appendices
Public Review Draft Hanford Natural Resource Injury Assessment Plan APPENDIX A | THE FOUR HANFORD NPL SITES On November 3, 1989, Hanford was added to the NPL as four separate sites: the 100 Area, 200 Area, 300 Area, and 1100 Area (see Exhibits B-1 through B-4, below).78 In order to coordinate response actions, each of these sites was further subdivided into operable units (OUs), based on geographic area or common waste sources. A total of 1,200 waste management units have been identified throughout the Hanford Site and are grouped among the four NPL sites (DOE 2006a). Cleanup efforts for the remaining Hanford Site contamination are organized into three major components: the River Corridor (including the 100 and 300 Areas), the Central Plateau (primarily the 200 Area), and tank waste. Cleanup of the Site is a particularly large and complex effort, dependent on many dozens of individual decision steps, stakeholder coordination, sustained funding, and the ability to address complex technical challenges. Full remediation of the NPL sites is expected to extend over the next 40 to 50 years; however, timelines are difficult to determine, due to the factors discussed above (DOE 2012). Additional summary information describing the four Hanford NPL sites and the current status of remediation efforts is provided below. More detailed information can be found at http://www.hanford.gov/. AREA 100 AREA DESCRIPTIONS The 100 Area contains the remnants of Hanford’s nine nuclear reactors, spread over six reactor sites (B/C, K, N, D, H, and F). The footprint covers about 26 sq. mi. -
Specimen Records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895
Catalog: Oregon State Arthropod Collection 2019 Vol 3(2) Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895 Jon H. Shepard Paul C. Hammond Christopher J. Marshall Oregon State Arthropod Collection, Department of Integrative Biology, Oregon State University, Corvallis OR 97331 Cite this work, including the attached dataset, as: Shepard, J. S, P. C. Hammond, C. J. Marshall. 2019. Specimen records for North American Lepidoptera (Insecta) in the Oregon State Arthropod Collection. Lycaenidae Leach, 1815 and Riodinidae Grote, 1895. Catalog: Oregon State Arthropod Collection 3(2). (beta version). http://dx.doi.org/10.5399/osu/cat_osac.3.2.4594 Introduction These records were generated using funds from the LepNet project (Seltmann) - a national effort to create digital records for North American Lepidoptera. The dataset published herein contains the label data for all North American specimens of Lycaenidae and Riodinidae residing at the Oregon State Arthropod Collection as of March 2019. A beta version of these data records will be made available on the OSAC server (http://osac.oregonstate.edu/IPT) at the time of this publication. The beta version will be replaced in the near future with an official release (version 1.0), which will be archived as a supplemental file to this paper. Methods Basic digitization protocols and metadata standards can be found in (Shepard et al. 2018). Identifications were confirmed by Jon Shepard and Paul Hammond prior to digitization. Nomenclature follows that of (Pelham 2008). Results The holdings in these two families are extensive. Combined, they make up 25,743 specimens (24,598 Lycanidae and 1145 Riodinidae). -
A GUIDE to HEDGEROWS: Plantings That Enhance Biodiversity, Sustainability and Functionality
OREGON STATE UNIVERSITY EXTENSION SERVICE Photo: Justin Smith, © Oregon State University An aerial photo taken above Forest Grove shows hedgerows bordering the urban growth boundary and used as buffers between fields. A GUIDE TO HEDGEROWS: Plantings That Enhance Biodiversity, Sustainability and Functionality P. Monnette and J. Hobbs fences “hagas” or hedges, from the word “hawthorn.” As the birds settled in the hawthorns and dropped seeds, e see them at the edges of farm fields or along more plants sprung up. Today, many farms in England roads: long rows of trees, shrubs, flowers and are surrounded by ancient hedgerows that shelter Wgrasses known as hedgerows. They are living beneficial organisms and conserve soil and water. fences with the ability to grow food, shelter wildlife, save Hedgerow plantings were uncommon in the early water, manage weeds and look beautiful all year round. United States. In the 1930s, the U.S. Department of Hedgerows are sometimes called shelter belts, Agriculture’s Shelterbelt Program briefly supported windbreaks or conservation buffers. These layers of plant planting trees for windbreaks to prevent soil erosion in the life enhance the beauty, productivity and biodiversity of Midwest. Today, as interest surges in sustainable farming a landscape. methods, more people are turning to this age-old practice. Hedgerows originated in medieval Europe and are enjoying a modern resurgence. People in England Pamela Monnette, agriculture outreach program coordinator, Lincoln planted hawthorn cuttings and allowed them to grow County, Oregon State University Extension; Jude Hobbs, executive to about 6 feet. They were bent and trained to fill gaps director, Agro-Ecology Northwest and Cascadia Permaculture, and in the trees, yielding a living fence.