Advanced Anchoring and Mooring Study

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Anchoring and Mooring Study Advanced Anchoring and Mooring Study Prepared for: November 30, 2009 Oregon Wave Energy Trust (OWET) is a nonprofit public-private partnership funded by the Oregon Innovation Council. Its mission is to support the responsible development of wave energy and ensure Oregon doesn’t lose its competitive advantage or the economic development potential of this emerging industry. OWET focuses on a collaborative model for getting wave energy projects in the water. Our work includes stakeholder education and outreach, policy development, environmental and applied research and market development. For more information about Oregon Wave Energy Trust, please visit www.oregonwave.org. Table of Contents Contents 1.0 INTRODUCTION................................................................................................................... 1 1.1 Purpose................................................................................................................................. 1 1.2 Background ......................................................................................................................... 2 1.3 Project Objectives ............................................................................................................... 3 1.4 Organization of Report....................................................................................................... 4 2.0 WAVE ENERGY TECHNOLOGIES .................................................................................. 5 2.1 Operating Principles ........................................................................................................... 5 2.2 WEC Devices ....................................................................................................................... 7 2.2.1 Point Absorber ............................................................................................................... 7 2.2.2 Attenuators ..................................................................................................................... 8 2.2.3 Terminator...................................................................................................................... 9 3.0 MOORINGS .......................................................................................................................... 12 3.1 Introduction ....................................................................................................................... 12 3.2 Anchors .............................................................................................................................. 14 3.2.1 Introduction .................................................................................................................. 14 3.2.2 Scope ............................................................................................................................ 14 3.2.3 Selection of Anchor Type ............................................................................................ 15 3.2.4 Anchor Selection Criteria ............................................................................................ 19 3.2.5 Site Investigation ......................................................................................................... 21 3.2.6 Anchor Products........................................................................................................... 23 3.3 Buoys .................................................................................................................................. 46 3.4 Mooring Lines and Connecting Hardware ..................................................................... 48 3.4.1 Chain ............................................................................................................................ 48 3.4.2 Wire Rope .................................................................................................................... 50 3.4.3 Synthetic Rope ............................................................................................................. 51 3.5 Sources of Mooring Hardware ........................................................................................ 55 3.6 Mooring Configurations ................................................................................................... 57 3.6.1 Introduction .................................................................................................................. 57 3.6.2 Guidelines and Standards ............................................................................................. 58 3.6.3 Mooring Analysis and Design Risk ............................................................................. 59 3.6.4 Mooring Configurations............................................................................................... 61 3.6.5 Mooring Line Characteristics ...................................................................................... 65 3.6.6 Anchor Characteristics ................................................................................................. 66 ii 4.0 OREGON COAST CHARACTERISTICS ........................................................................ 68 4.1 Introduction ....................................................................................................................... 68 4.2 FERC Sites ......................................................................................................................... 68 4.3 Wave Climate / Storm Wave Analysis ............................................................................ 69 4.4 Winds and Storm Information ........................................................................................ 76 4.5 Ocean Currents ................................................................................................................. 80 4.6 Threats from Wrecks and Obstructions ......................................................................... 81 4.6.1 Northern FERC permitted sites .................................................................................... 82 4.6.2 Southern FERC Permitted Sites ................................................................................... 84 4.7 Buoy Locations near FERC Sites .................................................................................... 85 4.8 Marine Protected Areas – Marine Sanctuaries .............................................................. 89 4.9 Bathymetry and Sediment Maps ..................................................................................... 90 4.10 Geology............................................................................................................................. 96 4.11 Geophysical, Hydrographic, Metocean, Geological, and Geotechnical Data Sources of the Oregon Coast. ............................................................................................................... 97 4.11.1 Oregon Bathymetry .................................................................................................... 99 4.11.2 Marine Geology: ........................................................................................................ 99 4.11.3 Seismicity:................................................................................................................ 100 4.11.4 Geophysical: ............................................................................................................ 100 4.11.5 Geotechnical: ........................................................................................................... 100 4.11.6 Oregon Coast Geohazards: ...................................................................................... 100 4.11.7 Metocean: ................................................................................................................. 100 4.11.8 General Information: ................................................................................................ 100 5.0 INSTALLATION ASSETS AND CONSIDERATIONS ................................................. 102 5.1 Introduction ..................................................................................................................... 102 5.2 Installation Assets ........................................................................................................... 102 5.2.1 Tugs............................................................................................................................ 102 5.2.2 Barges ........................................................................................................................ 103 5.2.3 Floating Cranes .......................................................................................................... 106 5.3 Installation Planning ....................................................................................................... 108 5.3.1 Cost factors ................................................................................................................ 108 5.3.2 Vessel Cost................................................................................................................. 111 5.3.3 Oregon ports............................................................................................................... 113 5.3.4 OWET Study by Advanced Research Corporation ................................................... 113 6.0 ADDITIONAL R&D RECOMMENDATIONS .............................................................. 115 APPENDIX A ANCHOR DESIGN PROCEDURES ..........................................................
Recommended publications
  • Chinese Mooring and Buoy Observations in the Open-Ocean
    Chinese mooring and buoy observations in the open-ocean Chujin Liang Second Institute of Oceanography, SOA May 28, 2013 Seoul Main oceanographic institutions of China First Institute of Oceanography Qingdao State Oceanic Administration Second Institute of Oceanography Hangzhou /SOA Third Institute of Oceanography Xiamen Polar Institute of China ShanghaiFirst Institute of Oceanography, FIO Institute of Oceanography Qingdao Chinese Academy of Science /CAS South China Sea Institute of Oceanography GuangzhouSecond Institute of Oceanography, SIO China Ocean University, Xiamen University Qingdao/Third Institute of Oceanography,Ministry of Education TIO Xiamen Tongji University, East China Normal university, Shanghai/ Tsinghua University, Peiking University, etc. Beijing Second Institute of Oceanography State Oceanic Administration State Oceanic Administration, SOA First Institute of Oceanography, FIO Second Institute of Oceanography, SIO Third Institute of Oceanography, TIO Second Institute of Oceanography State Oceanic Administration FIO is operating 2 buoy stations and 1 mooring at 2 sites Long-term buoy station in eastern Indian Ocean operated by FIO FIO-AMFR 中国 海洋一所 FIO Progress Report 1. Surface buoy at (100E, 8S) • In place since 30 May 2010 • Daily data will be posted on PMEL and FIO website soon • Data includes the meteorological parameters: wind speed and direction, air temperature, relative humidity, air pressure, shortwave radiation, long wave radiation, unfortunately precipitation missed due to damage in the deployment • Data includes
    [Show full text]
  • Gravity-Based Foundations in the Offshore Wind Sector
    Journal of Marine Science and Engineering Review Gravity-Based Foundations in the Offshore Wind Sector M. Dolores Esteban *, José-Santos López-Gutiérrez and Vicente Negro Research Group on Marine, Coastal and Port Environment and other Sensitive Areas, Universidad Politécnica de Madrid, E28040 Madrid, Spain; [email protected] (J.-S.L.-G.); [email protected] (V.N.) * Correspondence: [email protected] Received: 27 December 2018; Accepted: 24 January 2019; Published: 12 March 2019 Abstract: In recent years, the offshore wind industry has seen an important boost that is expected to continue in the coming years. In order for the offshore wind industry to achieve adequate development, it is essential to solve some existing uncertainties, some of which relate to foundations. These foundations are important for this type of project. As foundations represent approximately 35% of the total cost of an offshore wind project, it is essential that they receive special attention. There are different types of foundations that are used in the offshore wind industry. The most common types are steel monopiles, gravity-based structures (GBS), tripods, and jackets. However, there are some other types, such as suction caissons, tripiles, etc. For high water depths, the alternative to the previously mentioned foundations is the use of floating supports. Some offshore wind installations currently in operation have GBS-type foundations (also known as GBF: Gravity-based foundation). Although this typology has not been widely used until now, there is research that has highlighted its advantages over other types of foundation for both small and large water depth sites. There are no doubts over the importance of GBS.
    [Show full text]
  • Suction Caisson Track Record 2019
    Suction Caisson Track Record 2019 Expertise, Seabed and Below. cathiegroup.com Pushing Boundaries, Delivering Solutions cathie-associates.com Client Project Name Description Date Region Sector Genesis Oil and Gas Detailed design and seismic assessment of suction caissons for a manifold Consultants Ltd Design experience & fishing protection structure. 2019 Middle East Oil & Gas Third party driveability analysis for CP and assessment of suction-assisted Northern Total E&P Third-party review penetration of CAN-ductor (composite CP and suction can). 2018-2019 Europe Oil & Gas FPSO mooring anchor concept selection (driven or suction pile), FEED- stage sizing and installation analysis of selected concept (suction caisson), including inverse catenary assessment and effect of seismic loading/ SBM Offshore Design experience liquefaction. 2018-2019 Oceania Oil & Gas R&D and development of Development of philosophy and design standard doucments for design methods/ geotechnical anchor systems, which will be part of SBM Corporate Northern SBM Offshore guidelines Specifications, Geotechnical discipline. 2018-2019 Europe Oil & Gas R&D and development of design methods/guide- Update seismic design guidelines to address specific Technip queries Northern Technip U.K. lines (including design of caisson foundations). 2018-2019 Europe Oil & Gas Mc Dermott Inc Foundation design review Design review of skirted mudmat and bucket foundations . 2018 Mediterranean Oil & Gas Holding capacity analysis accounting f.or chain trenching for different ExxonMobil Third-party review configurations. 2018 Africa Oil & Gas Suction Caisson Track Record 2019 Client Project Name Description Date Region Sector Geotechnical design review of 2 Universal Foundation monobucket designs for Deutsche Bucht site in Germany. The review covers document review Northern Offshore Van Oord Third-party review and independent installation and in-service design calculations.
    [Show full text]
  • The Best Custom Boat Lines
    The Best Custom Boat Lines www.DenverRope.com MARINE MOORING AND TOWING BEXCO is a European manufacturer of synthetic ropes with a factory in Hamme, Belgium and a new load-out quayside facility in Antwerp. BEXCO offers a full range of synthetic rope solutions for towing and mooring applications in the toughest of marine environments. Designed by skilled engineers and produced by craftsmen with decades of experience, our ropes are from the highest quality. BEXCO prides itself on its personal service and advise to customers. Our sales team and engineers understand your business as no other. Joining forces with our customers, project by project, we design, engineer and manufacture made-to-measure, synthetic rope solutions that are reliable, customer. BEXCO’s personal service and care extends itself until after the initial delivery of the rope. BEXCO offers ‘on demand’ maintenance solutions based on anticipated demand by strategic harbors across the world so customers can count on the timely availability of quality ropes for their vessels. BEXCO HIGHLIGHTS European manufacturer of fiber rope solutions designed by skilled engineers Solution-based approach combined with approachable, personal service BEXCO understands your marine business. Our rope.Your solution! PRODUCT OVERVIEW Approx. Melting Abrasion UV Temperature Chemical Strand Material Cover/jacket Specic Density point in °C resistance resistance resistance resistance dry & wet conditions Atlas® 6 nylon – 1,14 215 excellent excellent 80°C max continuous reasonable (1) can be stowed
    [Show full text]
  • MBARI's Buoy Based Seafloor Observatory Design (PDF)
    MBARI’s Buoy Based Seafloor Observatory Design Mark Chaffey, Larry Bird, Jon Mike Kelley, Lance McBride, Tom O’Reilly, Walter Paul*, Erickson, John Graybeal, Andy Ed Mellinger, Tim Meese, Mike Risi, and Wayne Hamilton, Kent Headley, Radochonski Monterey Bay Aquarium Research Institute * Dept. of Applied Ocean Physics and Engineering 7700 Sandholdt Road Woods Hole Oceanographic Institution Moss Landing CA 95039 Woods Hole, MA 02543 Abstract - There has been considerable discussion and planning in the oceanographic community toward the installation of long-term seafloor sites for scientific observation in the deep ocean. The Monterey Bay Aquarium Research Institute (MBARI) has designed a portable mooring system for deep ocean deployment that provides data and power connections to both seafloor and ocean surface instruments. The surface mooring collects solar and wind energy for powering instruments and transmits data to shore-side researchers using a satellite communications modem. A specialty anchor cable connects the surface mooring to a network of benthic instrumentation, providing the required data and power transfer. Design details and results of laboratory and field testing of the completed portions of the observatory system are described. I. INTRODUCTION Fig. 1 Buoy and seafloor network. MBARI has undertaken a major effort to develop the technology and techniques for building deep ocean of reliability, fault tolerance, and remote diagnostic seafloor observatories under the in-house Monterey capability. Ocean Observing System (MOOS) program. A key The overall functional and design requirements of the component of the overall observatory technology effort is MOOS mooring have previously been described in detail a moored surface buoy connected to the seafloor using [1] and can be summarized as a portable system, an anchor cable that incorporates mechanical strength configurable to a wide range of experiments, providing elements, copper conductors for power transfer, and episodic event response using on-board processing, and optical elements for communications.
    [Show full text]
  • The Official Magazine of The
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Smith, L.M., J.A. Barth, D.S. Kelley, A. Plueddemann, I. Rodero, G.A. Ulses, M.F. Vardaro, and R. Weller. 2018. The Ocean Observatories Initiative. Oceanography 31(1):16–35, https://doi.org/10.5670/oceanog.2018.105. DOI https://doi.org/10.5670/oceanog.2018.105 COPYRIGHT This article has been published in Oceanography, Volume 31, Number 1, a quarterly journal of The Oceanography Society. Copyright 2018 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON THE OCEAN OBSERVATORIES INITIATIVE The Ocean Observatories Initiative By Leslie M. Smith, John A. Barth, Deborah S. Kelley, Al Plueddemann, Ivan Rodero, Greg A. Ulses, Michael F. Vardaro, and Robert Weller ABSTRACT. The Ocean Observatories Initiative (OOI) is an integrated suite of instrumentation used in the OOI. The instrumented platforms and discrete instruments that measure physical, chemical, third section outlines data flow from geological, and biological properties from the seafloor to the sea surface. The OOI ocean platforms and instrumentation to provides data to address large-scale scientific challenges such as coastal ocean dynamics, users and discusses quality control pro- climate and ecosystem health, the global carbon cycle, and linkages among seafloor cedures.
    [Show full text]
  • Suction Caissons: Model Tests PI’S: R.E
    1 Comprehensive Status Report: November 18, 2004 OTRC Project Title: Suction Caissons & Vertically Loaded Anchors MMS Project 362 TO 16169 Project Subtitle: Suction Caissons: Model Tests PI’s: R.E. Olson, Alan Rauch, & Robert B. Gilbert MMS COTR: A. Konczvald This report provides a comprehensive summary the research completed in all prior Phases of this project (September 1999 – August 2004), and describes research being done in the present Phase (September 2004 – August 2005) to complete this project. Note that this report addresses one of four related research areas on this project. The other three areas are reported separately under the subtitles – Suction Caissons: Seafloor Characterization for Deepwater Foundations, Suction Caissons: Finite Element Modeling, and Suction Caissons & Vertically Loaded Anchors: Design Analysis Methods. Suction Caissons: Model Tests Roy E. Olson and Robert B. Gilbert BRIEF HISTORY OF OFFSHORE STRUCTURES The intent of this introductory section is to provide a brief history of evolution that led to use of suction caissons. It is not intended to deal with offshore structures in general, nor with structures not part of the evolution of suction caissons. Further, views here are those of the authors and may not represent the convoluted manner in which developments typically occur. The early offshore oil production structures were steel frames (Fig. 1), called jackets, which were fixed to the seafloor using open-end steel pipe piles that were driven through the jacket legs and then welded to the jacket. When oil was discovered in the North Sea, the subsoil was generally stiff enough that shallow foundations could be used. This allowed the design to change to gravity platforms (Fig.
    [Show full text]
  • (Mooring – Tide Gauge) Is ~22 Mm
    Updated Results from the In Situ Calibration Site in Bass Strait, Australia Christopher Watson1 , Neil White2,, John Church2 Reed Burgette1, Paul Tregoning 3, Richard Coleman 4 1 University of Tasmania ([email protected]) 2 Centre for Australian Weather and Climate Research, A partnership between CSIRO and the Australian Bureau of Meteorology 3 The Australian National University 4 The Institute of Marine and Antarctic Studies, UTAS OSTM/Jason-2 OST Science Team Meeting Updated Data Stream Presentation 1 San Diego OSTST Meeting October 2011 Impossible d'afficher l'image. Votre ordinateur manque peut-être de mémoire pour ouvrir l'image ou l'image est endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau le fichier. Si le x rouge est toujours affiché, vous devrez peut-être supprimer l'image avant de la réinsérer. Methods Recap Bass Strait • Primary site is located on Pass 088 in Bass Strait. Contributing bias estimates to the SWT/OSTST since the launch of T/P . • Secondary site along track in Storm Bay Storm Bay 2 Methods Recap • We adopt a purely geometric technique for determination of absolute bias. • The method is centred around the use of GPS buoys to define the datum ofhihf high preci si on ocean moori ngs. • Outside of available mooring data, all available mooring SSH data are used to correct tide gauge SSH to the comparison point. 3 Instrumentation (Bass Strait): Tide Gauge and CGPS • Tide gauge part of the Australian baseline array, located in Burnie. • Vertical velocity not significantly different from zero. • CGPS time series shows a quasi-annual periodic signal (amplitude ~3-4 mm).
    [Show full text]
  • Finite Element Analysis of Suction Bucket Foundations in Sand Subjected to Cyclic Loading
    Finite Element Analysis of Suction Bucket Foundations in Sand Subjected to Cyclic Loading Ingerid Elisabeth Rolstad Jahren Civil and Environmental Engineering Submission date: June 2018 Supervisor: Hans Petter Jostad, IBM Norwegian University of Science and Technology Department of Civil and Environmental Engineering i Preface This is a master thesis written in the spring of 2018 as the final part of my M.Sc. degree in Civil and Environmental Engineering at the Norwegian University of Science and Technology (NTNU) in Trondheim. The thesis is a part of the master’s programme in Geotechnical Engi- neering at the department of Civil and Environmental Engineering. The thesis has been carried out in a cooperation with the Norwegian Geotechnical Institute (NGI), which also proposed the thesis. Trondheim, 2018-06-10 Ingerid Rolstad Jahren iii Acknowledgement I would like to express my gratitude to my academic supervisor Adjunct Prof. Hans Petter Jostad, NGI, who provided great insight and expertise throughout the thesis work. His interest and enthusiasm for the topic in addition to great knowledge is truly inspiring. I also thank members of the staff at the Geotechnical Division at NTNU for kindly sharing their wisdom during my years as a student at NTNU. Finally, thank you to all my fellow students for valuable discussions and support. I.R.J. v Abstract A suction bucket or suction caisson is a foundation concept for supporting offshore installa- tions. The practical experience related to this concept is mainly based on applications in the oil and gas industry. Observations show significant difference in response for wind turbines compared to more traditional installations offshore.
    [Show full text]
  • 2021 Connecticut Boater's Guide Rules and Resources
    2021 Connecticut Boater's Guide Rules and Resources In The Spotlight Updated Launch & Pumpout Directories CONNECTICUT DEPARTMENT OF ENERGY & ENVIRONMENTAL PROTECTION HTTPS://PORTAL.CT.GOV/DEEP/BOATING/BOATING-AND-PADDLING YOUR FULL SERVICE YACHTING DESTINATION No Bridges, Direct Access New State of the Art Concrete Floating Fuel Dock Offering Diesel/Gas to Long Island Sound Docks for Vessels up to 250’ www.bridgeportharbormarina.com | 203-330-8787 BRIDGEPORT BOATWORKS 200 Ton Full Service Boatyard: Travel Lift Repair, Refit, Refurbish www.bridgeportboatworks.com | 860-536-9651 BOCA OYSTER BAR Stunning Water Views Professional Lunch & New England Fare 2 Courses - $14 www.bocaoysterbar.com | 203-612-4848 NOW OPEN 10 E Main Street - 1st Floor • Bridgeport CT 06608 [email protected] • 203-330-8787 • VHF CH 09 2 2021 Connecticut BOATERS GUIDE We Take Nervous Out of Breakdowns $159* for Unlimited Towing...JOIN TODAY! With an Unlimited Towing Membership, breakdowns, running out GET THE APP IT’S THE of fuel and soft ungroundings don’t have to be so stressful. For a FASTEST WAY TO GET A TOW year of worry-free boating, make TowBoatU.S. your backup plan. BoatUS.com/Towing or800-395-2628 *One year Saltwater Membership pricing. Details of services provided can be found online at BoatUS.com/Agree. TowBoatU.S. is not a rescue service. In an emergency situation, you must contact the Coast Guard or a government agency immediately. 2021 Connecticut BOATER’S GUIDE 2021 Connecticut A digest of boating laws and regulations Boater's Guide Department of Energy & Environmental Protection Rules and Resources State of Connecticut Boating Division Ned Lamont, Governor Peter B.
    [Show full text]
  • Renewables Investor Event
    Renewables Investor Event 29 September 2020 1 © Subsea 7 - 2020 Subsea 7 Renewables Forward looking statements This announcement may contain ‘forward-looking statements’ (within the meaning of the safe harbour provisions of the U.S. Private Securities Litigation Reform Act of 1995). These statements relate to our current expectations, beliefs, intentions, assumptions or strategies regarding the future and are subject to known and unknown risks that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements may be identified by the use of words such as ‘anticipate’, ‘believe’, ‘estimate’, ‘expect’, ‘future’, ‘goal’, ‘intend’, ‘likely’ ‘may’, ‘plan’, ‘project’, ‘seek’, ‘should’, ‘strategy’ ‘will’, and similar expressions. The principal risks which could affect future operations of the Group are described in the ‘Risk Management’ section of the Group’s Annual Report and Consolidated Financial Statements for the year ended 31 December 2019. Factors that may cause actual and future results and trends to differ materially from our forward-looking statements include (but are not limited to): (i) our ability to deliver fixed price projects in accordance with client expectations and within the parameters of our bids, and to avoid cost overruns; (ii) our ability to collect receivables, negotiate variation orders and collect the related revenue; (iii) our ability to recover costs on significant projects; (iv) capital expenditure by oil and gas companies,
    [Show full text]
  • Updated Guidelines for Seadatanet ODV Production
    EMODnet Thematic Lot n° 4 - Chemistry EMODnet Phase III Updated guidelines for SeaDataNet ODV production M. Lipizer, M. Vinci, A. Giorgetti, L. Buga, M. Fichault, J. Gatti, S. Iona, M. Larsen, R. Schlitzer, D. Schaap, M. Wenzer, E. Molina Date: 12/04/2018 EMODnet Thematic Lot n° 4 - Chemistry Updated guidelines for SDN ODV production Index EMODnet Phase III............................................................................................................................1 Updated guidelines for SeaDataNet ODV producton......................................................................1 Updated guidelines for SeaDataNet ODV producton..........................................................................1 Introducton......................................................................................................................................1 SeaDataNet ODV import format.......................................................................................................1 How to check your SeaDataNet ODV fle format?............................................................................6 Vocabulary........................................................................................................................................7 How to choose the correct P01?......................................................................................................8 Flagging of Data Below Detecton Limits and Data Below Limit of Quantfcatoni.......................13 Guidelines for SeaDataNet ODV producton for sediment
    [Show full text]