Internal Validity: a Must in Research Designs

Total Page:16

File Type:pdf, Size:1020Kb

Internal Validity: a Must in Research Designs Vol. 10(2), pp. 111-118, 23 January, 2015 DOI: 10.5897/ERR2014.1835 Article Number: 01AA00749743 ISSN 1990-3839 Educational Research and Reviews Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/ERR Full Length Research Paper Internal validity: A must in research designs Cahit Kaya Department of Psychological Counseling and Guidence, University of Wisconsin- Madison, United State. Received 2 May, 2014; Accepted 31 December, 2014 In experimental research, internal validity refers to what extent researchers can conclude that changes in the dependent variable (that is, outcome) are caused by manipulations to the independent variable. This causal inference permits researchers to meaningfully interpret research results. This article discusses internal validity threats in social and educational research using examples from the contemporary literature, and research designs in terms of their ability to control internal validity threats. An Eric and psychINFO search was performed to the current review of internal validity. The review indicated that appropriate research designs that control possible extraneous variables are needed to be able to meaningfully interpret research results in education and social sciences. Although, pretest- posttest experimental-control group design controls most of the internal validity threats, the most appropriate research design would vary based on the research questions or goals. Key words: Internal validity, education, confounding variables, research design. INTRODUCTION One of the fundamental purposes of educational research concept of conservation at follow-up stage for students is to determine possible relationships between variables. exposed to the popular television exemplars. However, Experimental designs provide the best possible there might be many other factors that can possibly mechanism to determine whether there is a causal influence the learning outcomes of the students. As a relationship between independent and dependent result, the researchers may not have strong confidence in variables by applying an intervention to one group of reporting that the research results were precise. research participants (that is, experimental group) while The extent researchers can conclude that changes in withholding it from another group (that is, control group). the dependent variable (that is, outcome) are caused by Subsequently, performances of the both groups on an manipulations in the independent variable is called outcome variable are compared to determine the possible internal validity. Cook and Campbell (1979) described effect of the intervention (Cook and Rumrill, 2005). internal validity as a phenomenon with which researchers For example, Swiderski and Amadio (2013) examined infer that relationships between independent and the effectiveness of popular television clips as exemplars dependent variables are not random but casual. In other of Piagetian concepts compared to verbal descriptions of words, interval validity of a study is a process to make the same exemplars with a sample of college students. sure changes in the dependent variable are due to the They concluded that an advantage in learning the independent variable, not other confounding variables. E-mail: [email protected]. Authors agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Kaya 112 Internal validity is the sine qua non and conducting participants` and studies` characteristics; changes in experiments with a strong internal validity is, therefore, public policy (for example, changes in public school ideal (Campbell and Stanley, 1966). policies) and weather conditions (for example, improving In order to establish strong internal validity, researchers mood because people are outside more) could also have need to, as much as possible, minimize confounding history effect (Cook and Rumill, 2005). To exemplify variables which are undesirable variables that influence history threat, a student with emotional disturbance might the relationship between independent and dependent start displaying more socially appropriate behaviors after variables (Cook and Rumrill, 2005). Confounding an intervention program, however the student`s variables might vary from one study to another depending appropriate behaviors might not solely be due to the upon experimental conditions. Examples of confounding intervention but also as a result of the students` parents variables include but not limited to changes in the history teaching the student appropriate behaviors during the of participants, familiarity with experimenter and study intervention. conditions etc. One prevailing way to control confounding variables is employing research designs that provide strong internal validity and are compatible with research Maturation conditions (Campbell and Stanley, 1966). Although it is relatively easier to establish internal It refers to processes that changes in respondents` validity in hard sciences, due to the complexity of human actions are simply due to the passage of time (not due to behaviors, it requires much more effort to do that in social a specific event) in addition to the effect of the and educational sciences. Social scientists cannot readily experimental variable. Changes in respondent`s actions claim that treatment is the only cause of change in might be as functions of biological or psychological behavior. In order to have a strong internal validity and changes that occur to participants, including growing provide more accurate results, unlike in hard sciences, older, growing hungrier, growing more tired and the like. social scientists need to override other possible Maturation could be a problem especially in longitudinal explanations of changes in behavior, such as studies where the impact of an intervention is measured developmental variations in participants, and changes in over a long period of time (Onwuegbuize, 2003). To environmental conditions (Cook and Shadish, 1994). exemplify it, a teacher who teaches a class at the end of The study examines internal validity threats observed in the day might not obtain educational improvements as social and educational research illustrated by examples much as other teachers and assume that his/her teaching from contemporary literature. The study also discuss key method is not affective, however, the reason he/she does features of research designs that help to control internal not obtain better educational outcomes might be that the validity threats, and thereby enable researchers to students feel exhausted at the end of the day. interpret research results meaningfully. Testing effect REVIEW It indicates the influence of taking tests one after another. Threats to internal validity It is also called practice effect. With repeated test taking, test takers will obtain better outcomes, not because of Campbell and Stanley (1966) in their classical book of interventions but because they will become more familiar experimental and quasi-experimental designs pointed out with test questions and formats. Although using different eight different classes of extraneous variables. They tests might reduce the possibility of getting higher results, indicated if not controlled, those extraneous variables some improvements might occur anyway due to might have the confounding effect on the dependent participants` increasing familiarity with testing procedure variable. Those threats are explained in the following. (Rogers and Holloway, 1990). For example, if a teacher wants to measure the progress of a student with learning disability and give similar standardized test over and History over, then the student might pick up the correct answer and have high scores as a result of his/her familiarity with History threat refers to any events that happened the tests. between first and second measurement that influence outcome variable in addition to experimental variable. Instrumentation Those events can be anything that affects the results. Although most of those events might closely be related to It refers to having drifts in the calibration of a 113 Educ. Res. Rev. measurement tool, changes in scorers and observers that participants from high achieved schools are more may impact results of the measurements. Instrument motivated to learn than the other school students. effect is most commonly seen when different instruments Experimental mortality are used in pretests and posttests or a measurement tool is administrated by different researchers. In such It refers to the loss of participants in different rates in situations, changes in outcomes might be attributed to experimental and control groups. The loss can be due to inconsistencies in instrumentation (Campbell and death or drop out from studies. A high mortality rate can Stanley, 1966). To exemplify instrumentation threat, cause selection biases if mortality rates are differentiated some teachers tend to give higher scores on exams than within experimental and control groups. Results of other teachers. If an exam is graded by two teachers, the studies will be confounded if mortality has a specific students` results on exams are prone to be influenced by relationships with particular characteristics of either the teachers` tendencies in scoring. experimental or control group participants (Cook and Rumrill, 2005). For example, if a researcher wants to investigate effects of a class intervention on students` Statistical regression academic
Recommended publications
  • Internal Validity Is About Causal Interpretability
    Internal Validity is about Causal Interpretability Before we can discuss Internal Validity, we have to discuss different types of Internal Validity variables and review causal RH:s and the evidence needed to support them… Every behavior/measure used in a research study is either a ... Constant -- all the participants in the study have the same value on that behavior/measure or a ... • Measured & Manipulated Variables & Constants Variable -- when at least some of the participants in the study • Causes, Effects, Controls & Confounds have different values on that behavior/measure • Components of Internal Validity • “Creating” initial equivalence and every behavior/measure is either … • “Maintaining” ongoing equivalence Measured -- the value of that behavior/measure is obtained by • Interrelationships between Internal Validity & External Validity observation or self-report of the participant (often called “subject constant/variable”) or it is … Manipulated -- the value of that behavior/measure is controlled, delivered, determined, etc., by the researcher (often called “procedural constant/variable”) So, every behavior/measure in any study is one of four types…. constant variable measured measured (subject) measured (subject) constant variable manipulated manipulated manipulated (procedural) constant (procedural) variable Identify each of the following (as one of the four above, duh!)… • Participants reported practicing between 3 and 10 times • All participants were given the same set of words to memorize • Each participant reported they were a Psyc major • Each participant was given either the “homicide” or the “self- defense” vignette to read From before... Circle the manipulated/causal & underline measured/effect variable in each • Causal RH: -- differences in the amount or kind of one behavior cause/produce/create/change/etc.
    [Show full text]
  • Comorbidity Scores
    Bias Introduction of issue and background papers Sebastian Schneeweiss, MD, ScD Professor of Medicine and Epidemiology Division of Pharmacoepidemiology and Pharmacoeconomics, Dept of Medicine, Brigham & Women’s Hospital/ Harvard Medical School 1 Potential conflicts of interest PI, Brigham & Women’s Hospital DEcIDE Center for Comparative Effectiveness Research (AHRQ) PI, DEcIDE Methods Center (AHRQ) Co-Chair, Methods Core of the Mini Sentinel System (FDA) Member, national PCORI Methods Committee No paid consulting or speaker fees from pharmaceutical manufacturers Consulting in past year: . WHISCON LLC, Booz&Co, Aetion Investigator-initiated research grants to the Brigham from Pfizer, Novartis, Boehringer-Ingelheim Multiple grants from NIH 2 Objective of Comparative Effectiveness Research Efficacy Effectiveness* (Can it work?) (Does it work in routine care?) Placebo Most RCTs comparison for drug (or usual care) approval Active Goal of comparison (head-to-head) CER Effectiveness = Efficacy X Adherence X Subgroup effects (+/-) RCT Reality of routine care 3 * Cochrane A. Nuffield Provincial Trust, 1972 CER Baseline Non- randomization randomized Primary Secondary Primary Secondary data data data data 4 Challenges of observational research Measurement /surveillance-related biases . Informative missingness/ misclassification Selection-related biases . Confounding . Informative treatment changes/discontinuations Time-related biases . Immortal time bias . Temporality . Effect window (Multiple comparisons) 5 Informative missingness:
    [Show full text]
  • Experimental Design
    UNIVERSITY OF BERGEN Experimental design Sebastian Jentschke UNIVERSITY OF BERGEN Agenda • experiments and causal inference • validity • internal validity • statistical conclusion validity • construct validity • external validity • tradeoffs and priorities PAGE 2 Experiments and causal inference UNIVERSITY OF BERGEN Some definitions a hypothesis often concerns a cause- effect-relationship PAGE 4 UNIVERSITY OF BERGEN Scientific revolution • discovery of America → french revolution: renaissance and enlightenment – Copernicus, Galilei, Newton • empiricism: use observation to correct errors in theory • scientific experimentation: taking a deliberate action [manipulation, vary something] followed by systematic observation of what occured afterwards [effect] controlling extraneous influences that might limit or bias observation: random assignment, control groups • mathematization, institutionalization PAGE 5 UNIVERSITY OF BERGEN Causal relationships Definitions and some philosophy: • causal relationships are recognized intuitively by most people in their daily lives • Locke: „A cause is which makes any other thing, either simple idea, substance or mode, begin to be; and an effect is that, which had its beginning from some other thing“ (1975, p. 325) • Stuart Mill: A causal relationship exists if (a) the cause preceded the effect, (b) the cause was related to the effect, (c) we can find no plausible alternative explanantion for the effect other than the cause. Experiments: (a) manipulate the presumed cause, (b) assess whether variation in the
    [Show full text]
  • Understanding Replication of Experiments in Software Engineering: a Classification Omar S
    Understanding replication of experiments in software engineering: A classification Omar S. Gómez a, , Natalia Juristo b,c, Sira Vegas b a Facultad de Matemáticas, Universidad Autónoma de Yucatán, 97119 Mérida, Yucatán, Mexico Facultad de Informática, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain c Department of Information Processing Science, University of Oulu, Oulu, Finland abstract Context: Replication plays an important role in experimental disciplines. There are still many uncertain-ties about how to proceed with replications of SE experiments. Should replicators reuse the baseline experiment materials? How much liaison should there be among the original and replicating experiment-ers, if any? What elements of the experimental configuration can be changed for the experiment to be considered a replication rather than a new experiment? Objective: To improve our understanding of SE experiment replication, in this work we propose a classi-fication which is intend to provide experimenters with guidance about what types of replication they can perform. Method: The research approach followed is structured according to the following activities: (1) a litera-ture review of experiment replication in SE and in other disciplines, (2) identification of typical elements that compose an experimental configuration, (3) identification of different replications purposes and (4) development of a classification of experiment replications for SE. Results: We propose a classification of replications which provides experimenters in SE with guidance about what changes can they make in a replication and, based on these, what verification purposes such a replication can serve. The proposed classification helped to accommodate opposing views within a broader framework, it is capable of accounting for less similar replications to more similar ones regarding the baseline experiment.
    [Show full text]
  • Introduction to Difference in Differences (DID) Analysis
    Introduction to Difference in Differences (DID) Analysis Hsueh-Sheng Wu CFDR Workshop Series June 15, 2020 1 Outline of Presentation • What is Difference-in-Differences (DID) analysis • Threats to internal and external validity • Compare and contrast three different research designs • Graphic presentation of the DID analysis • Link between regression and DID • Stata -diff- module • Sample Stata codes • Conclusions 2 What Is Difference-in-Differences Analysis • Difference-in-Differences (DID) analysis is a statistic technique that analyzes data from a nonequivalence control group design and makes a casual inference about an independent variable (e.g., an event, treatment, or policy) on an outcome variable • A non-equivalence control group design establishes the temporal order of the independent variable and the dependent variable, so it establishes which variable is the cause and which one is the effect • A non-equivalence control group design does not randomly assign respondents to the treatment or control group, so treatment and control groups may not be equivalent in their characteristics and reactions to the treatment • DID is commonly used to evaluate the outcome of policies or natural events (such as Covid-19) 3 Internal and External Validity • When designing an experiment, researchers need to consider how extraneous variables may threaten the internal validity and external validity of an experiment • Internal validity refers to the extent to which an experiment can establish the causal relation between the independent variable and
    [Show full text]
  • Experimental Design and Data Analysis in Computer Simulation
    Journal of Modern Applied Statistical Methods Volume 16 | Issue 2 Article 2 12-1-2017 Experimental Design and Data Analysis in Computer Simulation Studies in the Behavioral Sciences Michael Harwell University of Minnesota - Twin Cities, [email protected] Nidhi Kohli University of Minnesota - Twin Cities Yadira Peralta University of Minnesota - Twin Cities Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Harwell, M., Kohli, N., & Peralta, Y. (2017). Experimental Design and Data Analysis in Computer Simulation Studies in the Behavioral Sciences. Journal of Modern Applied Statistical Methods, 16(2), 3-28. doi: 10.22237/jmasm/1509494520 This Invited Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Journal of Modern Applied Statistical Methods Copyright © 2017 JMASM, Inc. November 2017, Vol. 16, No. 2, 3-28. ISSN 1538 − 9472 doi: 10.22237/jmasm/1509494520 Experimental Design and Data Analysis in Computer Simulation Studies in the Behavioral Sciences Michael Harwell Nidhi Kohli Yadira Peralta University of Minnesota, University of Minnesota, University of Minnesota, Twin Cities Twin Cities Twin Cities Minneapolis, MN Minneapolis, MN Minneapolis, MN Treating computer simulation studies as statistical sampling experiments subject to established principles of experimental design and data analysis should further enhance their ability to inform statistical practice and a program of statistical research. Latin hypercube designs to enhance generalizability and meta-analytic methods to analyze simulation results are presented.
    [Show full text]
  • Single-Case Designs Technical Documentation
    What Works Clearinghouse SINGLE‐CASE DESIGN TECHNICAL DOCUMENTATION Developed for the What Works Clearinghouse by the following panel: Kratochwill, T. R. Hitchcock, J. Horner, R. H. Levin, J. R. Odom, S. L. Rindskopf, D. M Shadish, W. R. June 2010 Recommended citation: Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M & Shadish, W. R. (2010). Single-case designs technical documentation. Retrieved from What Works Clearinghouse website: http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf. 1 SINGLE-CASE DESIGNS TECHNICAL DOCUMENTATION In an effort to expand the pool of scientific evidence available for review, the What Works Clearinghouse (WWC) assembled a panel of national experts in single-case design (SCD) and analysis to draft SCD Standards. In this paper, the panel provides an overview of SCDs, specifies the types of questions that SCDs are designed to answer, and discusses the internal validity of SCDs. The panel then proposes SCD Standards to be implemented by the WWC. The Standards are bifurcated into Design and Evidence Standards (see Figure 1). The Design Standards evaluate the internal validity of the design. Reviewers assign the categories of Meets Standards, Meets Standards with Reservations and Does not Meet Standards to each study based on the Design Standards. Reviewers trained in visual analysis will then apply the Evidence Standards to studies that meet standards (with or without reservations), resulting in the categorization of each outcome variable as demonstrating Strong Evidence, Moderate Evidence, or No Evidence. A. OVERVIEW OF SINGLE-CASE DESIGNS SCDs are adaptations of interrupted time-series designs and can provide a rigorous experimental evaluation of intervention effects (Horner & Spaulding, in press; Kazdin, 1982, in press; Kratochwill, 1978; Kratochwill & Levin, 1992; Shadish, Cook, & Campbell, 2002).
    [Show full text]
  • Internal Validity Page 1
    Internal Validity page 1 Internal Validity If a study has internal validity, then you can be confident that the dependent variable was caused by the independent variable and not some other variable. Thus, a study with high internal validity permits conclusions of cause and effect. The major threat to internal validity is a confounding variable: a variable other than the independent variable that 1) often co-varies with the independent variable and 2) may be an alternative cause of the dependent variable. For example, if you want to investigate whether smoking cigarettes causes cancer, you will need to somehow control for other possible causes of cancer that tend to vary with smoking. Each of these other possible causes is a potential confounding variable. If people who smoke more also tend to experience greater stress, and stress is known to contribute to cancer, then stress could be a confounding variable. Not every variable that tends to co-vary with the independent variable is an equally plausible confounding variable. People who smoke may also strike more matches, but if striking matches is not plausibly linked to cancer in any way, then it is generally not worth considering as a serious threat to internal validity. Random assignment. The most common procedure to reduce the risk of confounding variables (and thus increase internal validity) is random assignment of participants to levels of the independent variable. This means that each participant in a study has an equal probability of being assigned to any of the levels of the independent variable. For the smoking study, random assignment would require some participants to be randomly assigned to smoke more than others.
    [Show full text]
  • Experimental and Quasi-Experimental Designs for Research
    CHAPTER 5 Experimental and Quasi-Experimental Designs for Research l DONALD T. CAMPBELL Northwestern University JULIAN C. STANLEY Johns Hopkins University In this chapter we shall examine the validity (1960), Ferguson (1959), Johnson (1949), of 16 experimental designs against 12 com­ Johnson and Jackson (1959), Lindquist mon threats to valid inference. By experi­ (1953), McNemar (1962), and Winer ment we refer to that portion of research in (1962). (Also see Stanley, 19S7b.) which variables are manipulated and their effects upon other variables observed. It is well to distinguish the particular role of this PROBLEM AND chapter. It is not a chapter on experimental BACKGROUND design in the Fisher (1925, 1935) tradition, in which an experimenter having complete McCall as a Model mastery can schedule treatments and meas~ In 1923, W. A. McCall published a book urements for optimal statistical efficiency, entitled How to Experiment in Education. with complexity of design emerging only The present chapter aspires to achieve an up­ from that goal of efficiency. Insofar as the to-date representation of the interests and designs discussed in the present chapter be­ considerations of that book, and for this rea­ come complex, it is because of the intransi­ son will begin with an appreciation of it. gency of the environment: because, that is, In his preface McCall said: "There afe ex­ of the experimenter's lack of complete con­ cellent books and courses of instruction deal­ trol. While contact is made with the Fisher ing with the statistical manipulation of ex; tradition at several points, the exposition of perimental data, but there is little help to be that tradition is appropriately left to full­ found on the methods of securing adequate length presentations, such as the books by and proper data to which to apply statis­ Brownlee (1960), Cox (1958), Edwards tical procedure." This sentence remains true enough today to serve as the leitmotif of 1 The preparation of this chapter bas been supported this presentation also.
    [Show full text]
  • Validity 1 VALIDITY of QUANTITATIVE RESEARCH Recall
    Validity 1 VALIDITY OF QUANTITATIVE RESEARCH Recall “the basic aim of science is to explain natural phenomena. Such explanations are called theories” (Kerlinger, 1986, p. 8). Theories have varying degrees of truth. Validity is the best approximation to the truth or falsity of propositions (Cook & Campbell, 1979). Validity is at best approximate or tentative “since one can never know what is true. At best, one can know what has not yet been ruled out as false” (Cook & Campbell, 1979, p. 37). And, as we have seen in examining the logic of hypothesis testing, statistical power, and the validity of outcome measures, we don’t really prove that something is false. In other words, we never really prove a null hypothesis; we only fail to reject it. “Experimental results never ‘confirm’ or ‘prove’ a theory -- rather the successful theory is tested and escapes being disconfirmed” (Campbell & Stanley, 1963, p. 35). In other words, we fail to reject the null hypothesis. “Varying degrees of ‘confirmation’ are conferred upon a theory through the number of plausible rival hypotheses available to account for the data. The fewer such plausible rival hypotheses remaining, the greater the degree of ‘confirmation’” (Campbell & Stanley, 1963, p. 36). Thus, research is a field of varying degrees of certainty. [Analogy: Monet’s garden.] And, “continuous, multiple experimentation is more typical of science than once-and-for- all definitive experiments” (Campbell & Stanley, 1963, p. 3). [Analogy: Brush strokes in the painting.] Threats to validity are plausible rival hypotheses (i.e., other ways of explaining the results rather than the author(s) hypothesis).
    [Show full text]
  • An Introduction to Randomization*
    An Introduction to Randomization* TAF – CEGA Impact Evaluation Workshop Day 1 * http://ocw.mit.edu (J-PAL Impact Evaluation Workshop materials) Outline Background What is randomized evaluation? Advantages and limitations of experiments Conclusions An example: The “Vote 2002” campaign Arceneaux, Gerber and Green (2006) Intervention: get-out-the-vote phone calls to increase voter turnout in Iowa and Michigan, 2002 midterm elections Treatment group = 60,000 individuals (35,000 actually reached by phone) Control group = >2,000,000 individuals Main outcome: turnout (did the individual vote?) Effect sizes using experimental v. non-experimental methods How to measure impact? What would have happened in the absence of the intervention program? { Since the counterfactual is not observable, key goal of all impact evaluation methods is to construct of “mimic” the counterfactual Constructing the counterfactual Counterfactual is often constructed by selecting a group not affected by the program Randomized: { Use random assignment of the program to create a control group which mimics the counterfactual. Non-randomized: { Argue that a certain excluded group mimics the counterfactual. Validity A tool to assess credibility of a study Internal validity { Relates to ability to draw causal inference, i.e. can we attribute our impact estimates to the program and not to something else External validity { Relates to ability to generalize to other settings of interest, i.e. can we generalize our impact estimates from this program to other populations,
    [Show full text]
  • Policy Evaluation, Randomized Controlled Trials, and External Validity – a Systematic Review
    RUHR ECONOMIC PAPERS Jörg Peters Jörg Langbein Gareth Roberts Policy Evaluation, Randomized Controlled Trials, and External Validity – A Systematic Review #589 Imprint Ruhr Economic Papers Published by Ruhr-Universität Bochum (RUB), Department of Economics Universitätsstr. 150, 44801 Bochum, Germany Technische Universität Dortmund, Department of Economic and Social Sciences Vogelpothsweg 87, 44227 Dortmund, Germany Universität Duisburg-Essen, Department of Economics Universitätsstr. 12, 45117 Essen, Germany Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI) Hohenzollernstr. 1-3, 45128 Essen, Germany Editors Prof. Dr. Thomas K. Bauer RUB, Department of Economics, Empirical Economics Phone: +49 (0) 234/3 22 83 41, e-mail: [email protected] Prof. Dr. Wolfgang Leininger Technische Universität Dortmund, Department of Economic and Social Sciences Economics – Microeconomics Phone: +49 (0) 231/7 55-3297, e-mail: [email protected] Prof. Dr. Volker Clausen University of Duisburg-Essen, Department of Economics International Economics Phone: +49 (0) 201/1 83-3655, e-mail: [email protected] Prof. Dr. Roland Döhrn, Prof. Dr. Manuel Frondel, Prof. Dr. Jochen Kluve RWI, Phone: +49 (0) 201/81 49-213, e-mail: [email protected] Editorial Office Sabine Weiler RWI, Phone: +49 (0) 201/81 49-213, e-mail: [email protected] Ruhr Economic Papers #589 Responsible Editor: Manuel Frondel All rights reserved. Bochum, Dortmund, Duisburg, Essen, Germany, 2015 ISSN 1864-4872 (online) – ISBN 978-3-86788-684-0 The working papers published in the Series constitute work in progress circulated to stimulate discussion and critical comments. Views expressed represent exclusively the authors’ own opinions and do not necessarily reflect those of the editors.
    [Show full text]