Non-Invasive Alternatives to the Wada Test in the Presurgical Evaluation of Language and Memory Functions in Epilepsy Patients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Complications of Hemispherectomy: Report of a Case Relieved by Surgery
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.33.3.372 on 1 June 1970. Downloaded from J. Neurol. Neurosurg. Psychiat., 1970, 33, 372-375 Late complications of hemispherectomy: report of a case relieved by surgery NINAN T. MATHEW, JACOB ABRAHAM, AND JACOB CHANDY From the Department of Neurological Sciences, Christian Medical College Hospital, Vellore, S. India SUM M A RY A case of Sturge-Weber disease treated with left hemispherectomy presented, 11 years later, with complications related to delayed intracranial haemorrhage. A loculation syndrome of the right lateral ventricle was detected and it was corrected by a ventriculoatrial shunt operation. The side of the hemispherectomy was evacuated of all the chronic products of haemorrhage, including the subdural membrane. The patient was relieved of her symptoms. It is considered that compli- cations related to delayed haemorrhage after hemispherectomy are remediable. Immediate and delayed complications occur after 10 July 1969, with persistent headache, vomiting, and hemispherectomy. Early complications include ob- increasing drowsiness of three weeks' duration. She was structive hydrocephalus and herniations of the born with a Sturge-Weber syndrome and had had a leftProtected by copyright. remaining hemisphere (Cabieses, Jeri, and Landa, hemispherectomy performed in another country 11 years before. She was free from seizures and major behavioural 1957; Laine, Pruvot, and Osson, 1964). A syndrome problems and was attending a school for backward of delayed intracranial haemorrhage was reported by children till November 1968, when she developed severe Oppenheimer and Griffith (1966). The essential constant headache, vomiting, and drowsiness. She was features of the syndrome are (I) an infantile hemi- admitted elsewhere in early December 1968, where plegia treated by hemispherectomy; (2) a trouble- browniish yellow fluid with a protein content of 1,150 mg/ free period lasting for some years; (3) a period of 100 nil. -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Neuropsychologia 48 (2010) 1683–1688 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Cerebral lateralization of vigilance: A function of task difficulty a, b b c William S. Helton ∗, Joel S. Warm , Lloyd D. Tripp , Gerald Matthews , Raja Parasuraman e, Peter A. Hancock d a Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand b Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, USA c Department of Psychology, University of Cincinnati, OH, USA d Department of Psychology, University of Central Florida, Orlando, FL, USA e Department of Psychology, George Mason University, VA, USA article info a b s t r a c t Article history: Functional near infrared spectroscopy (fNIRS) measures of cerebral oxygenation levels were collected Received 6 July 2009 from participants performing difficult and easy versions of a 12 min vigilance task and for controls who Received in revised form 10 February 2010 merely watched the displays without a work imperative. -
A Novel Diagnostic Tool for Concussion
Neurosurg Focus 33 (6):E9, 2012 Magnetoencephalographic virtual recording: a novel diagnostic tool for concussion MATTHEW TORMENTI, M.D.,1 DONALD KRIEGER, PH.D.,1 AVA M. PUCCIO, R.N., PH.D.,1 MALCOLM R. MCNEIL, PH.D.,2 WALTER SCHNEIDER, PH.D.,3 AND DAVID O. OKONKWO, M.D., PH.D.1 Departments of 1Neurological Surgery, 2Communication Science and Disorders, and 3Psychology, University of Pittsburgh, Pennsylvania Object. Heightened recognition of the prevalence and significance of head injury in sports and in combat veter- ans has brought increased attention to the physiological and behavioral consequences of concussion. Current clinical practice is in part dependent on patient self-report as the basis for medical decisions and treatment. Magnetoen- cephalography (MEG) shows promise in the assessment of the pathophysiological derangements in concussion. The authors have developed a novel MEG-based neuroimaging strategy to provide objective, noninvasive, diagnostic information in neurological disorders. In the current study the authors demonstrate a novel task protocol and then assess MEG virtual recordings obtained during task performance as a diagnostic tool for concussion. Methods. Ten individuals (5 control volunteers and 5 patients with a history of concussion) were enrolled in this pilot study. All participants underwent an MEG evaluation during performance of a language/spatial task. Each individual produced 960 responses to 320 sentence stimuli; 0.3 sec of MEG data from each word presentation and each response were analyzed: the data from each participant were classified using a rule constructed from the data obtained from the other 9 participants. Results. Analysis of response times showed significant differences (p < 10-4) between concussed and normal groups, demonstrating the sensitivity of the task. -
Epilepsy the Term Epilepsy Describes Brain Disorders That Involve Repeated Seizures
Epilepsy The term epilepsy describes brain disorders that involve repeated seizures. Seizures are sudden, uncontrollable waves of electrical activity in the brain that cause involuntary movement, a change in attention, or loss of consciousness. They may involve the entire brain or take place in one part of the brain. Your doctor may use a physical exam, electroencephalogram (EEG), head CT, head MRI or lumbar puncture to diagnose you. Treatment depends on what is causing your seizures. What is epilepsy? The term epilepsy describes brain disorders that involve repeated seizures also called convulsions. A seizure is a sudden, uncontrollable wave of electrical activity in the brain that can affect a person's behavior for a short period of time. For example, there can be involuntary movement, a change in attention, or loss of consciousness. The word epilepsy or seizure does not imply that there is a cause for it. Doctors perform many tests to find the cause for your seizures (such as brain injury, brain bleed, tumor among a few). However, in many cases, the cause of epilepsy cannot be found. A seizure may happen just once, a few or many times over a long period. Symptoms may vary between patients and depend on the type of seizure. They often relate to the normal function of the affected part of the brain. Epilepsy is not contagious. There are two major types of seizures: generalized, in which the entire brain is involved, and focal, in which abnormal activity occurs in one part of the brain. Generalized: seizures involve the entire brain Focal: abnormal activity takes place in just one part of the brain. -
Non-Invasive Functional-Brain-Imaging with a Novel Magnetoencephalography System
Non-Invasive Functional-Brain-Imaging with a Novel Magnetoencephalography System Amir Borna, Member, IEEE, Tony R. Carter, Anthony P. Colombo, Yuan-Yu Jau, Jim McKay, Michael Weisend, Samu Taulu, Julia M. Stephen, and Peter D. D. Schwindt systems benefit from mature technology and analysis methods, Abstract—A non-invasive functional-brain-imaging system they face two limiting factors: 1) fixed sensor positions, and 2) based on optically-pumped-magnetometers (OPM) is presented. high maintenance cost. SQUID sensors operate at ~ 4 K and The OPM-based magnetoencephalography (MEG) system liquid helium is used to achieve cryogenic temperature. Regular features 20 OPM channels conforming to the subject’s scalp. Due to proximity (12 mm) of the OPM channels to the brain, it is costly maintenance is required to fill the helium reservoir and anticipated that this MEG system offers an enhanced spatial calibrate the SQUID-based MEG system, although recent resolution as it can capture finer spatial features compared to advancements in helium recycling [18] is reducing maintenance traditional MEG systems employing superconducting quantum costs. The main limitation of SQUID-based MEG system, interference device (SQUID). We have conducted two MEG which also stems from the use of cryogens, is fixed sensor experiments on three subjects: somatosensory evoked magnetic position. Due to use of liquid helium a thick Dewar is required field (SEF) and auditory evoked magnetic field (AEF) using our OPM-based MEG system and a commercial SQUID-based MEG to isolate the sensors from the room temperature, hence the system. We have cross validated the robustness of our system by fixed position of sensors inside the rigid helmet. -
Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere
brain sciences Article Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere Dorit Kliemann 1,2,3,*, Ralph Adolphs 4,5, Lynn K. Paul 4, J. Michael Tyszka 4 and Daniel Tranel 1,3,6 1 Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; [email protected] 2 Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA 3 Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA 4 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] (R.A.); [email protected] (L.K.P.); [email protected] (J.M.T.) 5 Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA 6 Department of Neurology, University of Iowa, Iowa City, IA 52242, USA * Correspondence: [email protected] Abstract: Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres (e.g., left and right temporo-parietal junction). Yet the necessary roles of these networks, and the broader roles of the left and right cerebral hemispheres in socioemotional functioning, remains debated. Here, we investigated these questions in four rare adults whose right (three cases) or left (one case) cerebral hemisphere had been surgically removed (to a large extent) to treat epilepsy. We studied four closely matched healthy comparison participants, and also compared the patient findings to data from a previously published larger healthy comparison sample (n = 33). -
The First-Night Effect Suppresses the Strength of Slow-Wave
Vision Research 99 (2014) 154–161 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres The first-night effect suppresses the strength of slow-wave activity originating in the visual areas during sleep ⇑ Masako Tamaki, Ji Won Bang, Takeo Watanabe, Yuka Sasaki Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Box 1821, 190 Thayer Street, Providence, RI 02912, USA article info abstract Article history: Our visual system is plastic and adaptive in response to the stimuli and environments we experience. Received 2 June 2013 Although visual adaptation and plasticity have been extensively studied while participants are awake, lit- Received in revised form 29 October 2013 tle is known about what happens while they are asleep. It has been documented that sleep structure as Available online 7 November 2013 measured by sleep stages using polysomnography is altered specifically in the first sleep session due to exposure to a new sleep environment, known as the first-night effect (FNE). However, the impact of the Keywords: FNE on spontaneous oscillations in the visual system is poorly understood. How does the FNE affect the Sleep visual system during sleep? To address this question, the present study examined whether the FNE mod- First-night effect ifies the strength of slow-wave activity (SWA, 1–4 Hz)—the dominant spontaneous brain oscillation in Slow-wave activity Adaptation slow-wave sleep—in the visual areas. We measured the strength of SWA originating in the visual areas Plasticity during the first and the second sleep sessions. Magnetoencephalography, polysomnography, and mag- netic resonance imaging were used to localize the source of SWA to the visual areas. -
Mapping Language Dominance Through the Lens of the Wada Test
NEUROSURGICAL FOCUS Neurosurg Focus 47 (3):E5, 2019 Mapping language dominance through the lens of the Wada test Bornali Kundu, MD, PhD, John D. Rolston, MD, PhD, and Ramesh Grandhi, MD Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah The sodium amytal test, or Wada test, named after Juhn Wada, has remained a pillar of presurgical planning and is used to identify the laterality of the dominant language and memory areas in the brain. What is perhaps less well known is that the original intent of the test was to abort seizure activity from an affected hemisphere and also to protect that hemi- sphere from the effects of electroconvulsive treatment. Some 80 years after Paul Broca described the frontal operculum as an essential area of expressive language and well before the age of MRI, Wada used the test to determine language dominance. The test was later adopted to study hemispheric memory dominance but was met with less consistent suc- cess because of the vascular anatomy of the mesial temporal structures. With the advent of functional MRI, the use of the Wada test has narrowed to application in select patients. The concept of selectively inhibiting part of the brain to de- termine its function, however, remains crucial to understanding brain function. In this review, the authors discuss the rise and fall of the Wada test, an important historical example of the innovation of clinicians in neuroscience. https://thejns.org/doi/abs/10.3171/2019.6.FOCUS19346 KEYWORDS Wada test; language dominance; laterality; memory; epilepsy The removal of a tumor at the cost of the patient’s speech is mined by family history or could be “acquired” second- scarcely an accomplishment on which to congratulate oneself. -
Anesthesia for Anatomical Hemispherectomy, 217 Antiepileptic
Index Note: Page numbers followed by f and t indicate fi gures and tables, respectively. A Anesthesia Academic skills assessment, in neuropsychological assess- for anatomical hemispherectomy, 217 ment, 105 antiepileptic drugs and, 114 Acid-base status, perioperative management of, 114 for awake craniotomy, 116 Adaptive function assessment, in neuropsychological for corpus callosotomy, 116 assessment, 106 for hemispherectomy, 116–117, 217 After-discharges, 31 induction of, 114 Age of patient maintenance of, 115 and adaptive plasticity, 15–16 for posterior quadrantic surgery, 197–198 and cerebral blood fl ow, 113 Sturge-Weber syndrome and, 113 at lesion occurrence, and EEG fi ndings, 16 in surgery for subhemispheric epilepsy, 197–198 and pediatric epilepsy surgery, 3 tuberous sclerosis and, 113 and physiological diff erences, 113 for vagus nerve stimulation, 116 and seizure semiology, 41 Angioma(s) at surgery, and outcomes, 19 cutaneous, in Sturge-Weber syndrome, 206 Airway facial, 206 intraoperative management of, 114–115 Angular gyrus, electrical stimulation of, 48 preoperative evaluation, 113 Anterior lobe lobectomy (ATL) Alien limb phenomenon, stimulation-induced, 49 left (L-ATL), and language function, 76 [11C]Alphamethyl-L-tryptophan (AMT), as PET radiotracer, and memory function, 77–78 83–84, 86 Anteromesial temporal lobectomy (AMTL), 136–146 in extratemporal lobe epilepsy, 86–87, 175 complications of, 144–145 in postsurgical evaluation, 90 craniotomy in, 138, 139f in temporal lobe epilepsy, 86 historical perspective on, 136–137 in tuberous -
Magnetoencephalography: Clinical and Research Practices
brain sciences Review Magnetoencephalography: Clinical and Research Practices Jennifer R. Stapleton-Kotloski 1,2,*, Robert J. Kotloski 3,4 ID , Gautam Popli 1 and Dwayne W. Godwin 1,5 1 Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; [email protected] (G.P.); [email protected] (D.W.G.) 2 Research and Education, W. G. “Bill” Hefner Salisbury VAMC, Salisbury, NC 28144, USA 3 Department of Neurology, William S Middleton Veterans Memorial Hospital, Madison, WI 53705, USA; [email protected] 4 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA 5 Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA * Correspondence: [email protected]; Tel.: +1-336-716-5243 Received: 28 June 2018; Accepted: 11 August 2018; Published: 17 August 2018 Abstract: Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of whole brain neurophysiological activity, with a theoretical spatial range down to submillimeter voxels, and in both humans and nonhuman primates. -
Regional Cerebral Perfusion and Amytal Distribution During the Wada Test
Regional Cerebral Perfusion and Amytal Distribution During the Wada Test Rajith de Silva, Roderick Duncan, James Patterson, Ruth Gillham and Donald Hadley Departments of Neurology, Neuroradiology and Neuropsychology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland some studies have indicated that cerebral hypoperfusion The distribution of sodium amytal and its effect on regional induced by amytal does not usually involve the mesial cerebral perfusion during the intracarotid amytal (Wada) test temporal cortex (3). What then is the mode of action of the were investigated using high-resolution hexamethyl propyl- test? We have hypothesized that the test works either by eneamine oxime (HMPAO) SPECT coregistered with the pa tient's MRI dataset. Methods: Twenty patients underwent SPECT producing partial inactivation of mesial temporal structures or by inactivating mesial temporal structures indirectly (i.e., after intravenous HMPAO injection, and 5 patients had both intravenous and intracarotid injections in a double injection- by diaschisis). acquisition protocol. Results: All patients had hypoperfusion in To test these hypotheses, it is necessary to have clear and the territories of the anterior and middle cerebral arteries. Basal precise images of perfusion in the mesial temporal cortex. ganglia perfusion was preserved in 20 of 25 patients. Hypoperfu (Jeffery et al. [4] pointed out the difficulty of doing this with sion of the entire mesial temporal cortex was seen in 9 of 25 conventional slicing). It is also necessary to have measures patients. Partial hypoperfusion of the whole mesial cortex or both of the distribution of structures to which amytal is hypoperfusion of part of the mesial cortex was seen in 14 of 25 delivered and of the distribution of structures rendered patients. -
View Full Page
13894 • The Journal of Neuroscience, August 21, 2013 • 33(34):13894–13902 Behavioral/Cognitive Enhanced Spontaneous Oscillations in the Supplementary Motor Area Are Associated with Sleep-Dependent Offline Learning of Finger-Tapping Motor-Sequence Task Masako Tamaki,1 Tsung-Ren Huang,2 Yuko Yotsumoto,2 Matti Ha¨ma¨la¨inen,3 Fa-Hsuan Lin,4 Jose´E.Na´n˜ez Sr,5 Takeo Watanabe,1 and Yuka Sasaki1 1Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912, 2Department of Psychology, Boston University, Boston, Massachusetts 02215, 3Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, 4Institute of Biomedical Engineering, National Taiwan University, Taipei, 100 Taiwan, and 5School of Social and Behavioral Sciences, Arizona State University, Phoenix, Arizona 85004 Sleep is beneficial for various types of learning and memory, including a finger-tapping motor-sequence task. However, methodological issues hinder clarification of the crucial cortical regions for sleep-dependent consolidation in motor-sequence learning. Here, to inves- tigate the core cortical region for sleep-dependent consolidation of finger-tapping motor-sequence learning, while human subjects were asleep, we measured spontaneous cortical oscillations by magnetoencephalography together with polysomnography, and source- localized the origins of oscillations using individual anatomical brain information from MRI. First, we confirmed that performance of the task at a retest session after sleep significantly increased compared with performance at the training session before sleep. Second, spontaneous ␦ and fast- oscillations significantly increased in the supplementary motor area (SMA) during post-training compared with pretraining sleep, showing significant and high correlation with the performance increase. Third, the increased spontaneous oscillations in the SMA correlated with performance improvement were specific to slow-wave sleep.