Peculiar Broad Absorption Line Quasars Found in DPOSS

Total Page:16

File Type:pdf, Size:1020Kb

Peculiar Broad Absorption Line Quasars Found in DPOSS Accepted by the Astronomical Journal Peculiar Broad Absorption Line Quasars found in DPOSS1 Robert J. Brunner1 Palomar Observatory, California Institute of Technology, Pasadena, CA 91125 [email protected] Patrick B. Hall Pontificia Universidad Cat´olica de Chile, Departamento de Astronom´ıa y Astrof´ısica, Facultad de F´ısica, Casilla 306, Santiago 22, Chile, and Princeton University Observatory, Princeton, NJ 08544-1001 S. George Djorgovski, R.R. Gal2, A.A. Mahabal, P.A.A. Lopes, R.R. de Carvalho3, S.C. Odewahn4, S. Castro5, D. Thompson Palomar Observatory, California Institute of Technology, Pasadena, CA 91125 F. Chaffee W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 J. Darling6, and V. Desai7 Palomar Observatory, California Institute of Technology, Pasadena, CA 91125 ABSTRACT arXiv:astro-ph/0304166v1 9 Apr 2003 With the recent release of large (i.e., & hundred million objects), well-calibrated photometric surveys, such as DPOSS, 2MASS, and SDSS, spectroscopic identification of important targets is no longer a simple issue. In order to enhance the returns from a 1Current address: Department of Astronomy, University of Illinois, Urbana, IL, 61801 2Current address: Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 3Current address: Observatorio Nacional, CNPq, Rio de Janeiro, Brasil 4Current address: Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287 5Current address: Infrared Processing and Analysis Center, 770 S. Wilson Ave, Pasadena, CA, 91125 6Current address: Department of Astronomy, Cornell University, Ithaca, NY 14853 7Current address: Department of Astronomy, University of Washington, Seattle, WA 98195 – 2 – spectroscopic survey, candidate sources are often preferentially selected to be of interest, such as brown dwarfs or high redshift quasars. This approach, while useful for targeted projects, risks missing new or unusual species. We have, as a result, taken the alternative path of spectroscopically identifying interesting sources with the sole criterion being that they are in low density areas of the g − r and r − i color-space defined by the DPOSS survey. In this paper, we present three peculiar broad absorption line quasars that were discovered during this spectroscopic survey, demonstrating the efficacy of this approach. PSS J0052+2405 is an Iron LoBAL quasar at a redshift z = 2.4512 ± 0.0001 with very broad absorption from many species. PSS J0141+3334 is a reddened LoBAL quasar at z = 3.005±0.005 with no obvious emission lines. PSS J1537+1227 is a Iron LoBAL at a redshift of z = 1.212±0.007 with strong narrow Mg ii and Fe ii emission. Follow-up high resolution spectroscopy of these three quasars promises to improve our understanding of BAL quasars. The sensitivity of particular parameter spaces, in this case a two- color space, to the redshift of these three sources is dramatic, raising questions about traditional techniques of defining quasar populations for statistical analysis. Subject headings: quasars: absorption lines, quasars: surveys, quasars: general, quasars: emission lines 1. Introduction Quasars have been studied for forty years now (e.g., Sandage 1965), but our understanding of them is still sketchy in many ways. The currently accepted paradigm is that quasars derive their luminosity from accretion onto supermassive black holes (see, e.g., Small & Blandford 1992). However, the detailed structure of the central engine is a mystery: we do not know exactly how matter accretes onto the black hole, though an accretion disk seems likely; we do not know why some quasars have strong jets (or how they are formed); and we do not know exactly how broad absorption line (BAL) outflows fit into the overall quasar model, even though the mass loss rates in such outflows could be comparable to the overall accretion rates (e.g., Scoville & Norman 1995). BAL quasars show absorption from gas with blueshifted outflow velocities of typically 0.1c (for a good overview of BAL quasars see Weymann 1995). Most known BAL quasars are HiBALs, with absorption only from high-ionization species like C iv, but about 15% are LoBALs, which also show absorption from low-ionization species like Mg ii. The rare Iron LoBALs, or FeLoBALs, also show absorption from excited fine-structure levels or excited atomic terms of Fe ii or Fe iii. 1Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. – 3 – Recent spectroscopic surveys for quasars, such as the two degree field survey (2DFQRS; Boyle et al. 1999) and the Sloan Digital Sky Survey (SDSS; Schneider et al. 2002), have dramatically increased the number of spectroscopically confirmed quasars. As a direct result, the number of known BALs, and in particular, LoBALs and FeLoBALs, has increased as well, enabling the iden- tification of peculiar quasars, whose BAL outflows show properties never before seen. Due to their peculiar nature, detailed studies of these quasars often provide important insight into the physical characteristics of BAL outflows, and quasar models in general. Before high-resolution spectroscopy can be employed on these systems, however, these peculiar quasars must be found. Due to their rare nature, identifying candidates of such objects requires large photometric surveys, such as the FIRST radio survey (Becker et al. 1997), the SDSS (York et al. 2000), and the Digitized Palomar Observatory Sky Survey (DPOSS; Djorgovski et al. 2001). From the catalogs that are generated from these surveys, different selection criteria have been employed to pick suitable candidates for spectroscopic follow-up. In this paper we present three peculiar BAL quasars that were discovered during a spectroscopic follow-up of color-space outliers from the DPOSS survey. We outline the observations used in § 2, analyze the spectra in § 3, discuss some implications of these objects in § 4, and summarize our conclusions in § 5. 2. Observations The quasars presented in this paper were initially targeted due to their location in the g − r and r − i color space as quantified by the Digitized Palomar Observatory Sky Survey. The DPOSS survey is detailed extensively elsewhere (Djorgovski et al. 2001, and references therein). In order to clarify the selection of these three sources, however, the rest of this section provides a brief overview of DPOSS. DPOSS is based on the POSS-II photographic survey (Reid et al. 1991), which covers the Northern sky (δ > −3◦). The POSS-II plates were obtained at the 48-inch Oschin Scmidt telescope at Palomar in three bands: blue-green, IIIa-J + GC395, red, IIIa-F + RG610, and near-IR, IV-N + RG9. The plates were obtained following a strategy based on 897 fields, where each field is approximately 6.5◦ on a side (i.e., the size of an individual plate) while the individual field centers are spaced 5◦ apart. As a result, nearly half of the total survey area is covered by more than one plate, improving the overall calibration. The photographic plates were digitized using a modified PDS scanner at STScI (Lasker et al. 1996) producing a digital image that is 23,040 pixels square, with 1′′ pixels. Each image file is approximately one Gigabyte in size, and the total survey is nearly three Terabytes. The digital image files for all scans δ > 15◦ were processed using the SKICAT software (Weir et al. 1995), producing a catalog of approximately 60 parameters for each object. Object classification was performed using a subset of these parameters as described in Odewahn et al. (2003). – 4 – The photographic catalog data was calibrated using CCD calibration data in the g, r, and i filters (Gal et al. 2003). A second correction was applied to the catalog to correct for plate vignetting (Mahabal et al. 2003). Finally, extinction corrections were applied using the Schlegel, Finkbeiner, & Davis (1998) prescription. The typical limiting magnitudes for the calibrated catalog data are m m m gJ ∼ 20.5 , rF ∼ 20.7 , and iN ∼ 20.3 . The three sources presented in this paper are shown in Figure 1, along with random stellar sources with similar magnitudes to the quasars presented herein. In addition, the coordinates, magnitudes and measured redshifts for these sources are provided in Table 1. 2.1. Optical Spectroscopy Discovery spectra of all three objects were obtained at the Palomar Observatory 200-inch Hale telescope, using the Double Spectrograph (DBSP) instrument (Oke & Gunn 1982). All observations used a 2′′ wide, long slit, and in all cases the slit PA was close to the parallactic. Exposures of standard stars from Oke & Gunn (1983) were used to remove the instrument response function and provide at least a rough flux calibration, and exposures of arc lamps were used to derive the wavelength solutions. All data were processed using standard techniques. Observations of PSS J0052+2405 were made on 02 and 04 September 1997 UT, in non- photometric conditions. A set of exposures with integration times of 200, 400, and 1200 s were obtained. We used a 300 l/mm grating on the blue side of the DBSP, giving a dispersion of 2.17 A/pixel˚ and a FWHM resolution of 11 A,˚ covering the wavelength range from ∼ 3360 A˚ to 6860 A.˚ On the red side we used a 316 l/mm grating giving a dispersion of 3.06 A/pixel˚ and a resolution of 11 A,˚ covering the wavelength range ∼ 6760 A˚ to 9290 A.˚ A dichroic with a split wavelength near 6800 A˚ was used. Observations of PSS J0141+3334 were obtained on 10 November 1999 UT, in good conditions; exposure times were 120 and 800 s. We used gratings with 600 l/mm (blue) and 158 l/mm (red), covering the wavelength ranges ∼ 3400 to 5200 A˚ (blue), and ∼ 5120 to 10100 A˚ (red), and a 5200 A˚ dichroic.
Recommended publications
  • Redalyc.Búsqueda General Con La Cámara Mosaico CCD Del
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Ferrín, I.; Leal, C.; Hernandez, J. Búsqueda general con la cámara mosaico CCD del telescopio Schmidt de 1m del Observatorio Nacional de Venezuela Revista Mexicana de Física, vol. 52, núm. 3, mayo, 2006, pp. 9-11 Sociedad Mexicana de Física A.C. Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=57020393003 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ASTROFISICA´ REVISTA MEXICANA DE FISICA´ S 52 (3) 9–11 MAYO 2006 Busqueda´ general con la camara´ mosaico CCD del telescopio Schmidt de 1m del Observatorio Nacional de Venezuela I. Ferr´ın y C. Leal Facultad de Ciencias, Departamento de F´ısica, Centro de Astrof´ısica Teorica,´ Universidad de Los Andes Merida,´ Venezuela J. Hernandez Centro de investigaciones de astronom´ıa, CIDA, Merida,´ Venezuela Recibido el 25 de noviembre de 2003; aceptado el 12 de octubre de 2004 En el presente trabajo se muestran los resultados del programa de busqueda´ y seguimiento de diversos objetos astronomicos:´ estrellas variables, supernovas y objetos en movimiento dentro del Sistema Solar. Para ello estamos utilizando el telescopio Schmidt de 1m de diametro´ del Observatorio Nacional de Venezuela, el cual tiene acoplado una camara´ mosaico CCD de 67 Megap´ıxeles, en un arreglo de 4 £ 4 CCDs, cada uno de 2048 £ 2048 p´ıxeles.
    [Show full text]
  • Artificial Intelligence at the Jet Propulsion Laboratory
    AI Magazine Volume 18 Number 1 (1997) (© AAAI) Articles Making an Impact Artificial Intelligence at the Jet Propulsion Laboratory Steve Chien, Dennis DeCoste, Richard Doyle, and Paul Stolorz ■ The National Aeronautics and Space Administra- described here is in the context of the remote- tion (NASA) is being challenged to perform more agent autonomy technology experiment that frequent and intensive space-exploration mis- will fly on the New Millennium Deep Space sions at greatly reduced cost. Nowhere is this One Mission in 1998 (a collaborative effort challenge more acute than among robotic plane- involving JPL and NASA Ames). Many of the tary exploration missions that the Jet Propulsion AI technologists who work at NASA expected Laboratory (JPL) conducts for NASA. This article describes recent and ongoing work on spacecraft to have the opportunity to build an intelli- autonomy and ground systems that builds on a gent spacecraft at some point in their careers; legacy of existing success at JPL applying AI tech- we are surprised and delighted that it has niques to challenging computational problems in come this early. planning and scheduling, real-time monitoring By the year 2000, we expect to demonstrate and control, scientific data analysis, and design NASA spacecraft possessing on-board automat- automation. ed goal-level closed-loop control in the plan- ning and scheduling of activities to achieve mission goals, maneuvering and pointing to execute these activities, and detecting and I research and technology development resolving of faults to continue the mission reached critical mass at the Jet Propul- without requiring ground support. At this Asion Laboratory (JPL) about five years point, mission accomplishment can begin to ago.
    [Show full text]
  • Discovery of Remarkable Opposition Surges on Pluto and Charon
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1723.pdf Discovery of Remarkable Opposition Surges on Pluto and Charon. B. J. Buratti1, M. D. Hicks1, E. Kramer1, J. Bauer2. 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; bon- [email protected]; 2University of Maryland Department of Astronomy, College Park, MD 20742 Introduction: The July 2015 encounter of the New Observations: Our full request of four nights was Horizons spacecraft with Pluto brought a large Kuiper assigned to this project in 2018 and observations in Belt Object into sharp focus for the first time [1]. Pluto JHK wavelengths (1.2, 1.6 and 2.2 µm) were obtained is a dynamic body with the first-ever active glaciers on all nights. One night was slightly cirussy, and fur- observed outside the Earth, possible clouds, snow, sea- ther data analysis beyond the usual pipeline processing sonal volatile transport, and at least two types of the [2] is required to fully reduce this data. Luckily, this dark, elusive material that is ubiquitous in the outer night was the least critical, being slightly smaller in Solar System and that may be tied to the origin of life solar phase angle than our fourth night, which was ob- on Earth. But as spectacular as this flyby was, it repre- tained at our maximum phase angle. sented an instant in time, leaving out the long temporal baseline that is required to capture, understand, and Table 1-2018 JHK data obtained at opposition model the seasonal events and the types of geologic Time (civil) Solar phase angle (°) Longitude (°) processes that were observed on Pluto – and that hap- July 11 0.008 35 pen on 100-year time scales, at least.
    [Show full text]
  • Site Preservation at Palomar Observatory Robert J
    SITE PRESERVATION AT PALOMAR OBSERVATORY ROBERT J. BRUCATO Palomar Observatory, California Institute of Technology, Pasadena, CA 91125 ABSTRACT Palomar Mountain was selected as the site of the 200-inch Hale Telescope in 1934. Since then, and especially over the past decade, the population growth of southern California has had a growing adverse impact on the observatory's environment. In 1981, a very active program was initiated to work with the local governmental agencies to prevent further deterioration of the conditions as the area continues to become increasingly urbanized. The character and scope of the program are described in the paper, as well as more general observations relating to the site preservations process. INTRODUCTION The Palomar Observatory, like many of the major optical observatories in the world, is faced with the prospect of increased man-made interference. The most obvious form of this interference is sky glow, or light pollution, from artificial lighting, but the effects of air pollution, aircraft operations and radio frequency interference are also important. To meet these threats, Gerry Neugebauer (the Director of Palomar Observatory) and I have had to expend a greater fraction of our resources to protect our facilities. The aim of this paper is to describe the situation at Palomar and to share our experience. To be sure, the different local conditions make the situation at each observatory a unique case, but there certainly are elements of this issue that are common to all. HISTORICAL BACKGROUND Palomar Mountain is located in the northern part of San Diego County, about 70 km (about 45 miles) from the city of San Diego and about 160 km (about 100 miles) from the Los Angeles basin to the west-northwest.
    [Show full text]
  • The Sitian Project
    An Acad Bras Cienc (2021) 93(Suppl. 1): e20200628 DOI 10.1590/0001-3765202120200628 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal PHYSICAL SCIENCES The SiTian Project JIFENG LIU, ROBERTO SORIA, XUE-FENG WU, HONG WU & ZHAOHUI SHANG Abstract: SiTian is an ambitious ground-based all-sky optical monitoring project, developed by the Chinese Academy of Sciences. The concept is an integrated network of dozens of 1-m-class telescopes deployed partly in China and partly at various other sites around the world. The main science goals are the detection, identification and monitoring of optical transients (such as gravitational wave events, fast radio bursts, supernovae) on the largely unknown timescales of less than 1 day; SiTian will also provide a treasure trove of data for studies of AGN, quasars, variable stars, planets, asteroids, and microlensing events. To achieve those goals, SiTian will scan at least 10,000 square deg of sky every 30 min, down to a detection limit of V ≈ 21 mag. The scans will produce simultaneous light-curves in 3 optical bands. In addition, SiTian will include at least three 4-m telescopes specifically allocated for follow-up spectroscopy of the most interesting targets. We plan to complete the installation of 72 telescopes by 2030 and start full scientific operations in 2032. Key words: surveys, telescopes, transients, relativistic processes. INTRODUCTION a 6.7-m filled aperture) with a 9.6 square deg field of view (Ivezić et al.
    [Show full text]
  • The Big Eye Vol 2 No 1
    Friends of Palomar Observatory P.O. Box 200 Palomar Mountain, CA 92060-0200 The Big Eye The Newsletter of the Friends of Palomar Observatory Vol. 2, No. 1 Solar System Now Palomar’s Astronomical Has Eight Planets Bandwidth The International Astronomical Union (IAU) recently downgraded the status of Pluto to that of a “dwarf plan- For the past three years, astronomers at the et,” a designation that will also be applied to the spheri- California Institute of Technology’s Palomar Obser- cal body discovered last year by California Institute of vatory in Southern California have been using the Technology planetary scientist Mike Brown and his col- High Performance Wireless Research and Education leagues. The decision means that only the rocky worlds Network (HPWREN) as the data transfer cyberin- of the inner solar system and the gas giants of the outer frastructure to further our understanding of the uni- system will hereafter be designated as planets. verse. Recent applications include the study of some The ruling effectively settles a year-long controversy of the most cataclysmic explosions in the universe, about whether the spherical body announced last year and the hunt for extrasolar planets, and the discovery informally named “Xena” would rise to planetary status. of our solar system’s tenth planet. The data for all Somewhat larger than Pluto, the body has been informally this research is transferred via HPWREN from the known as Xena since the formal announcement of its remote mountain observatory to college campuses discovery on July 29, 2005, by Brown and his co-discov- hundreds of miles away.
    [Show full text]
  • Galileo Reveals Best-Yet Europa Close-Ups Stone Projects A
    II Stone projects a prom1s1ng• • future for Lab By MARK WHALEN Vol. 28, No. 5 March 6, 1998 JPL's future has never been stronger and its Pasadena, California variety of challenges never broader, JPL Director Dr. Edward Stone told Laboratory staff last week in his annual State of the Laboratory address. The Laboratory's transition from an organi­ zation focused on one large, innovative mission Galileo reveals best-yet Europa close-ups a decade to one that delivers several smaller, innovative missions every year "has not been easy, and it won't be in the future," Stone acknowledged. "But if it were easy, we would­ n't be asked to do it. We are asked to do these things because they are hard. That's the reason the nation, and NASA, need a place like JPL. ''That's what attracts and keeps most of us here," he added. "Most of us can work elsewhere, and perhaps earn P49631 more doing so. What keeps us New images taken by JPL's The Conamara Chaos region on Europa, here is the chal­ with cliffs along the edges of high-standing Galileo spacecraft during its clos­ lenge and the ice plates, is shown in the above photo. For est-ever flyby of Jupiter's moon scale, the height of the cliffs and size of the opportunity to do what no one has done before­ Europa were unveiled March 2. indentations are comparable to the famous to search for life elsewhere." Europa holds great fascination cliff face of South Dakota's Mount To help achieve success in its series of pro­ for scientists because of the Rushmore.
    [Show full text]
  • Pluto and Its Cohorts, Which Is Not Ger Passing by and Falling in Love So Much When Compared to the with Her
    INTERNATIONAL SPACE SCIENCE INSTITUTE SPATIUM Published by the Association Pro ISSI No. 33, March 2014 141348_Spatium_33_(001_016).indd 1 19.03.14 13:47 Editorial A sunny spring day. A green On 20 March 2013, Dr. Hermann meadow on the gentle slopes of Boehnhardt reported on the pre- Impressum Mount Etna and a handsome sent state of our knowledge of woman gathering flowers. A stran- Pluto and its cohorts, which is not ger passing by and falling in love so much when compared to the with her. planets in our cosmic neighbour- hood, yet impressively much in SPATIUM Next time, when she is picking view of their modest size and their Published by the flowers again, the foreigner returns gargantuan distance. In fact, ob- Association Pro ISSI on four black horses. Now, he, serving dwarf planet Pluto poses Pluto, the Roman god of the un- similar challenges to watching an derworld, carries off Proserpina to astronaut’s face on the Moon. marry her and live together in the shadowland. The heartbroken We thank Dr. Boehnhardt for his Association Pro ISSI mother Ceres insists on her return; kind permission to publishing Hallerstrasse 6, CH-3012 Bern she compromises with Pluto allow- herewith a summary of his fasci- Phone +41 (0)31 631 48 96 ing Proserpina to living under the nating talk for our Pro ISSI see light of the Sun during six months association. www.issibern.ch/pro-issi.html of a year, called summer from now for the whole Spatium series on, when the flowers bloom on the Hansjörg Schlaepfer slopes of Mount Etna, while hav- Brissago, March 2014 President ing to stay in the twilight of the Prof.
    [Show full text]
  • Trans-Neptunian Space and the Post-Pluto Paradigm
    Trans-Neptunian Space and the Post-Pluto Paradigm Alex H. Parker Department of Space Studies Southwest Research Institute Boulder, CO 80302 The Pluto system is an archetype for the multitude of icy dwarf planets and accompanying satellite systems that populate the vast volume of the solar system beyond Neptune. New Horizons’ exploration of Pluto and its five moons gave us a glimpse into the range of properties that their kin may host. Furthermore, the surfaces of Pluto and Charon record eons of bombardment by small trans-Neptunian objects, and by treating them as witness plates we can infer a few key properties of the trans-Neptunian population at sizes far below current direct-detection limits. This chapter summarizes what we have learned from the Pluto system about the origins and properties of the trans-Neptunian populations, the processes that have acted upon those members over the age of the solar system, and the processes likely to remain active today. Included in this summary is an inference of the properties of the size distribution of small trans-Neptunian objects and estimates on the fraction of binary systems present at small sizes. Further, this chapter compares the extant properties of the satellites of trans-Neptunian dwarf planets and their implications for the processes of satellite formation and the early evolution of planetesimals in the outer solar system. Finally, this chapter concludes with a discussion of near-term theoretical, observational, and laboratory efforts that can further ground our understanding of the Pluto system and how its properties can guide future exploration of trans-Neptunian space.
    [Show full text]
  • Betelgeuse and the Crab Nebula
    The monthly newsletter of the Temecula Valley Astronomers Feb 2020 Events: General Meeting : Monday, February 3rd, 2020 at the Ronald H. Roberts Temecula Library, Room B, 30600 Pauba Rd, at 7:00 PM. On the agenda this month is “What’s Up” by Sam Pitts, “Mission Briefing” by Clark Williams then followed by a presentation topic : “A History of Palomar Observatory” by Curtis Oort Cloud in Perspective. Credit NASA / JPL- Croulet. Refreshments by Chuck Caltech Dyson. Please consider helping out at one of the many Star Parties coming up over the next few months. For General information: the latest schedule, check the Subscription to the TVA is included in the annual $25 Calendar on the web page. membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-0101 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Sam Pitts <[email protected]> Cosmic Comments Past President: John Garrett <[email protected]> by President Mark Baker Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Baker <[email protected]> Club Librarian: Vacant compiled by Clark Williams Facebook: Tim Deardorff <[email protected]> Darkness Star Party Coordinator and Outreach: Deborah Baker by Mark DiVecchio <[email protected]> Betelgeuse and the Crab Nebula: Stellar Death and Rebirth Address renewals or other correspondence to: Temecula Valley Astronomers by David Prosper PO Box 1292 Murrieta, CA 92564 Send newsletter submissions to Mark DiVecchio th <[email protected]> by the 20 of the month
    [Show full text]
  • Rotational Brightness Variations in Trans-Neptunian Object 50000
    A&A 409, L13–L16 (2003) Astronomy DOI: 10.1051/0004-6361:20031253 & c ESO 2003 Astrophysics Editor Rotational brightness variations in Trans-Neptunian the Object 50000 Quaoar to J. L. Ortiz1, P. J. Guti´errez1,2, A. Sota1, V. Casanova1, and V. R. Teixeira3 1 Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apt 3004, 18080 Granada, Spain Letter 2 Laboratoire d’Astrophysique de Marseille, Traverse du Siphon, BP 8, 13376 Marseille Cedex 12, France 3 Centre for Astronomy and Astrophysics of the University of Lisbon / Lisbon Astronomical Observatory, Tapada da Ajuda, 1349-018 Lisbon, Portugal Received 14 July 2003 / Accepted 14 August 2003 Abstract. Time–resolved broad–band CCD photometry of Trans-Neptunian Object 50000 Quaoar carried out using the 1.5 m telescope at Sierra Nevada Observatory is presented. The lightcurve reveals short–term variability due to rotation of the body. The periodogram analysis shows a peak at 8.8394 ± 0.0002 h with a confidence level above 99.9%. The lightcurve seems to be double–peaked, and therefore the rotation period would be 17.6788 ± 0.0004 h. The amplitude of the oscillation is 0.133 ± 0.028 mag. Under the assumption that the rotational variation is induced by an irregular shape, the minimum axial ratio of Quaoar would then be 1.133 ± 0.028. Key words. minor planets, asteroids – Kuiper Belt 1. Introduction or internal structure, as has been done for other large TNOs (e.g. Jewitt & Sheppard 2002; Sheppard & Jewitt 2002; Ortiz 50000 Quaoar (2002 LM60) was discovered on June 4th, et al. 2003, etc.) 2002 from the Palomar Observatory 48-inch Oschin telescope With the goal of determining the spin period of Quaoar as (Williams et al.
    [Show full text]
  • Farisa Y. Morales
    F A R I S A Y. M O R A L E S 4800 Oak Grove Drive, MS 169-214 • Pasadena, CA 91109 [email protected] • W: (818) 354-1940 RESEARCH INTERESTS § Debris Disk Incidence and Characterization: To assess the frequency of planetary system formation by investigating circumstellar planetary debris disks of dust, characterized by infrared excesses over photospheric levels, and by studying their spectral energy distributions (SEDs) to investigate their dust spatial distribution, chemical composition, and evolution. § Debris Disk Modeling: To advance our understanding of disk architecture and grain properties, by modeling the SEDs of circumstellar dust around main sequence stars using spectroscopic and photometric data. § High-Contrast Imaging: To search for dust-shepherding exoplanets using the Adaptive Optics systems at Keck II Observatory in HI, and Palomar Observatory in CA. EDUCATION Ph.D. in Physics, 2011, University of Southern California (USC) M.S. in Physics, 2005, California State University, Northridge (CSUN) B.S. in Astrophysics, 2003, University of California, Los Angeles (UCLA) A.A. with emphasis in Mathematics, 1999, Los Angeles Mission Collage (LAMC) EMPLOYMENT HISTORY May 2000–present NASA’s Jet Propulsion Laboratory (JPL) Pasadena, CA § Program Manager, Astronomy & Heliophysics Research and Analysis Office (712), under the Astronomy and Physics Directorate's Formulation Office (7000), and Research Scientist III – Sci. Div. (32), Astrophysics and Space Sciences (326); April 2020–present § Research Scientist III – Science Division (32); April 2006–April 2020 § APX – Spitzer Science Office Staff, Science Division (32); Jan. 2002–March 2006 § APT – Technical Support, Instruments Division, Div. (38); March 2001–Dec. 2001 § Summer Undergraduate Research Fellow (SURF) – Telecom.
    [Show full text]