Quantum Information and Computation, Vol. 0, No. 0 (2003) 000–000 c Rinton Press Optimizing the Number of Gates in Quantum Search Srinivasan Arunachalama QuSoft, CWI, Amsterdam, the Netherlands
[email protected] Ronald de Wolf b QuSoft, CWI and University of Amsterdam, the Netherlands
[email protected] Received (October 18, 2016) Revised (February 1, 2017) p p In its usual form, Grover’s quantum search algorithm uses O( N) queries and O( N log N) other elementary gates to find a solutionp in an N-bit database. Grover in 2002 showed how to reduce the number of other gates to O( N log log N) for the special case where the database has a unique solution,p without significantly increasing the number of queries. We show how to reduce this further to O( N log(r) N) gates for every constant r, and sufficiently large N. This means that, on average, the circuits between two queries barely touch more than a constant number of the log N qubits on which the algorithm acts. For a very large N thatp is a power of 2, we can choosep r such that the π ? algorithm uses essentially the minimal number 4 N of queries, and only O( N log(log N)) other gates. Keywords: Quantum computing, Quantum search, Gate complexity. Communicated by: to be filled by the Editorial 1 Introduction One of the main successes of quantum algorithms so far is Grover’s database search algorithm [1, 2]. Here a database of size N is modeled as a binary string x 2 f0; 1gN , whose bits are indexed by i 2 f0;:::;N − 1g.A solution is an index i such that xi = 1.