Alkoxylated Fatty Esters and Derivatives from Natural

Total Page:16

File Type:pdf, Size:1020Kb

Alkoxylated Fatty Esters and Derivatives from Natural (19) TZZ ¥¥ZZ_T (11) EP 2 633 008 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 211/00 (2006.01) 20.03.2019 Bulletin 2019/12 (86) International application number: (21) Application number: 11838497.3 PCT/US2011/057595 (22) Date of filing: 25.10.2011 (87) International publication number: WO 2012/061092 (10.05.2012 Gazette 2012/19) (54) ALKOXYLATED FATTY ESTERS AND DERIVATIVES FROM NATURAL OIL METATHESIS ALKOXYLIERTE FETTESTER UND DERIVATE AUS EINER ERDÖLMETATHESE ESTERS GRAS ALCOXYLÉS ET DÉRIVÉS À PARTIR DE LA MÉTATHÈSE D’HUILES NATURELLES (84) Designated Contracting States: • HOLLAND, Brian AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Deerfield GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO IL 60015 (US) PL PT RO RS SE SI SK SM TR • MALEC, Andrew, D. Chicago (30) Priority: 25.10.2010 US 406556 P IL 60657 (US) 25.10.2010 US 406570 P • MASTERS, Ronald, A. 25.10.2010 US 406547 P Glenview IL 60025 (US) (43) Date of publication of application: • MURPHY, Dennis, S. 04.09.2013 Bulletin 2013/36 Libertyville IL 60048 (US) (73) Proprietor: Stepan Company •SKELTON,Patti Northfield, Illinois 60093 (US) Winder GA 30680 (US) (72) Inventors: • SOOK, Brian • ALLEN, Dave, R. Lawrenceville Chicago GA 30045 (US) IL 60610 (US) • WIESTER, Michael •ALONSO,Marcos Chicago Chicago IL 60625 (US) IL 60645-4922 (US) • WOLFE, Patrick, Shane • BERNHARDT, Randal, J. Palatine Antioch IL 60074 (US) IL 60002 (US) • BROWN, Aaron (74) Representative: Müller, Christian Stefan Gerd Chicago ZSP Patentanwälte PartG mbB IL 60645 (US) Hansastraße 32 • BUCHEK, Kelly 80686 München (DE) Hoffman Estates IL 60169 (US) (56) References cited: • GANGULY-MINK, Sangeeta EP-A1- 2 446 743 WO-A2-2012/061103 Chicago DE-A1- 19 755 559 US-A- 6 103 770 IL 60646 (US) US-A1- 2007 118 916 US-A1- 2007 187 301 US-A1- 2009 031 614 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 633 008 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 633 008 B1 • DATABASECA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; COHEN, L. ET AL: "Identification of the products from the sulfonation of an oleic acid methyl ester", XP002736898, retrieved from STN Database accession no. 2008:1091468 & COHEN, L. ET AL: "Identification of the products from the sulfonation of an oleic acid methyl ester", TENSIDE,SURFACTANTS, DETERGENTS ,45(4), 178-181 CODEN: TSDEES; ISSN: 0932-3414, 2008, DOI: 10.3139/113.100373 10.3139/113.100373 2 EP 2 633 008 B1 Description FIELD OF THE INVENTION 5 [0001] The invention relates to alkoxylated fatty esters and derivatives thereof that originate from renewable resources, particularly natural oils and their metathesis products. BACKGROUND OF THE INVENTION 10 [0002] Alkoxylated fatty esters are normally manufactured by inserting of one or more alkylene oxide units, usually ethylene oxide (EO), between the oxygen and CH3 portions of a methoxy group of a methyl ester using mixed oxide catalysts, typically magnesium-containing oxides (see, e.g., U.S. Pat. Nos. 5,817,844, 6,184,400, and 6,504,061). They can also be made by esterifying fatty acids (or transesterifying fatty esters of lower alcohols) with alkoxylated alcohols. In yet another method, the alkoxylated fatty esters can be made by alkoxylating fatty acids with alkylene oxides, followed 15 by etherification of the terminal hydroxyl group. [0003] The performance characteristics of alkoxylated fatty esters will depend on the nature of the starting fatty methyl ester or fatty acid and the proportion, kind, and distribution of oxyalkylene groups. Alkoxylated fatty esters are valuable as nonionic surfactants and as additives for a wide variety of end-use applications, including, for example agricultural uses (see U.S. Pat. No. 6,068,849 and U.S. Pat. Appl. Publ. Nos. 2007/0032382 and 2008/0175930), hard surface 20 cleaners (U.S. Pat. No. 7,270,131 and 5,386,045), laundry detergent boosters (U.S. Pat. No. 7,098,175), and other detergent applications (U.S. Pat. Nos. 6,303,564, 6,395,694, and 5,753,606). [0004] The fatty acids or esters used to make alkoxylated fatty esters and derivatives thereof are usually made by hydrolysis or transesterification of triglycerides, which are typically animal or vegetable fats. Consequently, the fatty portion of the acid or ester will typically have 6-22 carbons with a mixture of saturated and internally unsaturated chains. 25 Depending on source, the fatty acid or ester often has a preponderance of C16 to C22 component. For instance, meth- anolysis of soybean oil provides the saturated methyl esters of palmitic (C 16) and stearic (C 18) acids and the unsaturated methyl esters of oleic (C 18 mono-unsaturated), linoleic (C 18 di-unsaturated), and α-linolenic (C18 tri-unsaturated) acids. The unsaturation in these acids has either exclusively or predominantly cis-configuration. [0005] Recent improvements in metathesis catalysts (see J.C. Mol, Green Chem. 4 (2002) 5) provide an opportunity 30 to generate reduced chain length, monounsaturated feedstocks, which are valuable for making detergents and sur- factants, from C 16 to C 22-rich natural oils such as soybean oil or palm oil. Soybean oil and palm oil can be more economical than, for example, coconut oil, which is a traditional starting material for making detergents. As Professor Mol explains, metathesis relies on conversion of olefins into new products by rupture and reformation of carbon-carbon double bonds mediated by transition metal carbene complexes. Self-metathesis of an unsaturated fatty ester can provide an equilibrium 35 mixture of starting material, an internally unsaturated hydrocarbon, and an unsaturated diester. For instance, methyl oleate (methyl cis-9-octadecenoate) is partially converted to 9-octadecene and dimethyl 9-octadecene-1,18-dioate, with both products consisting predominantly of the trans-isomer. Metathesis effectively isomerizes the cis-double bond of methyl oleate to give an equilibrium mixture of cis- and trans-isomers in both the "unconverted" starting material and the metathesis products, with the trans-isomers predominating. 40 [0006] Cross-metathesis of unsaturated fatty esters with olefins generates new olefins and new unsaturated esters that can have reduced chain length and that may be difficult to make otherwise. For instance, cross-metathesis of methyl oleate and 3-hexene provides 3-dodecene and methyl 9-dodecenoate (see also U.S. Pat. No. 4,545,941). Terminal olefins are particularly desirable synthetic targets, and Elevance Renewable Sciences, Inc. recently described an im- proved way to prepare them by cross-metathesis of an internal olefin and anα -olefin in the presence of a ruthenium 45 alkylidene catalyst (see U.S. Pat. Appl. Publ. No. 2010/0145086). A variety of cross-metathesis reactions involving an α-olefin and an unsaturated fatty ester (as the internal olefin source) are described. Thus, for example, reaction of soybean oil with propylene followed by hydrolysis gives, among other things, 1-decene, 2-undecenes, 9-decenoic acid, and 9-undecenoic acid. Despite the availability (from cross-metathesis of natural oils and olefins) of unsaturated fatty esters having reduced chain length and/or predominantly trans-configuration of the unsaturation, alkoxylated fatty esters 50 and their derivatives made from these feedstocks appear to be unknown. Moreover, alkoxylated fatty esters and their derivatives have not been made from the C18 unsaturated diesters that can be made readily by self-metathesis of a natural oil. [0007] In sum, traditional sources of fatty acids and esters used for making alkoxylated fatty esters and their derivatives generally have predominantly (or exclusively) cis-isomers and lack relatively short-chain (e.g., C 10 or C12) unsaturated 55 fatty portions. Metathesis chemistry provides an opportunity to generate precursors having shorter chains and mostly trans-isomers, which could impart improved performance when the precursors are converted to downstream composi- tions (e.g., in surfactants). New C18 difunctional alkoxylated fatty esters and derivatives are also potentially available from oil or C 10 unsaturated acid or ester self-metathesis. In addition to an expanded variety of precursors, the unsaturation 3 EP 2 633 008 B1 present in the precursors allows for further functionalization, e.g., by sulfonation or sulfitation. SUMMARY OF THE INVENTION 5 [0008] The invention relates to an alkoxylated fatty ester. In a first aspect, the present invention provides an alkoxylated fatty ester having the formula: 2 1 R -CO-O-(AO)n-R 10 1 2 3 1 wherein: R is C 1-C4 alkyl; AO is C 2-C4 oxyalkylene; R is R -CH=CH-(CH2)7- or R (AO)n-O-CO-(CH2)7-CH=CH-(CH2)7-; 3 R is hydrogen or C1-C7 alkyl; and n, which is the average number of oxyalkylene units, has a value within the range of 1 to 100; and 3 9 wherein when R is C1-C7 alkyl, the fatty ester has at least 1 mole % of trans-Δ unsaturation. [0009] The alkoxylatedfatty estermay comprise the reactionproduct ofa metathesis-derived C 10-C17 monounsaturated 15 acid, octadecene-1,18-dioic acid, or their ester derivatives with one or more alkylene oxides in the presence of an insertion catalyst to give an alkoxylated fatty ester. In one variant, the metathesis-derived 10C-C17 monounsaturated acid, octadecene-1,18-dioic acid, or its ester derivative is reacted with a glycol ether or a glycol ether alkoxylate, optional ly in the presence of an esterification or transesterification catalyst, to give an alkoxylated fatty ester.
Recommended publications
  • Cationic Oligomerization of Ethylene Oxide
    Polymer Journal, Vol. 15, No. 12, pp 883-889 (1983) Cationic Oligomerization of Ethylene Oxide Shiro KOBAYASHI, Takatoshi KOBAYASHI, and Takeo SAEGUSA Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan (Received July 29, 1983) ABSTRACT: The oligomerization of ethylene oxide (EO) was investigated with several cationic catalysts to find a method for producing cyclic oligomers (crown ethers). The reactions were monitored by NMR spectroscopy (1 H and 19F) and gas chromatography. The composition of oligomers was found to change during the reactions, and the production of 1,4-dioxane increased at the later stage of the reactions. This indicates that the composition of oligomers is kinetically controlled. The formation of higher cyclic oligomers was favored by the addition of tetrahydro­ pyran or 1,4-dioxane to the system catalyzed by an oxonium salt; the maximum yield of cyclic tetramer was 16.8%. The effect of alkali metal salts was also examined. A template effect was observed to increase the amount of cyclic oligomer production. KEY WORDS Cationic Oligomerization I Ethylene Oxide I Cyclic Oligomers I Crown Ether I Kinetically Controlled Reaction I Additive Effects of Metal Salts I Template Effect I An extensive study was recently carried out on EXPERIMENTAL the cationic. polymerization of heterocyclic mono­ mers which, it was found, may lead to polymers Materials containing significant amounts of linear and cyclic All reagents were distilled under nitrogen. A oligomers.1 The most thoroughly studied monomer commercial sample of EO was distilled twice. was ethylene oxide (EO). Eastham et a!. observed Tetrahydropyran (THP) and DON were dried with that the cationic polymerization of EO resulted in sodium metal and distilled.
    [Show full text]
  • US2278550.Pdf
    April 7, 1942. D. J. OER E. A. 2,278,550 PREPARATION OF ALKALI METAL ALKOXIDES Filed June 21, 1939 REACTION ------ REGENERATION OFMX FROM M-represents an alkali metal N-represents a number from 2 to 3 R-represents an alkyl group X-represents the anion of a weak acid Donald D. Lee Donald J. Loder NVENTOR BY 232 az - ATTORNEY Patented Apr. 7, 1942 2,278,550 UNITED STATES PATENT OFFICE 2,278,550 PREPARATION OF ALKALI METAL ALKOXDES Donald J. Loder and Donald D. Lee, Wilmington, Del, assignors to E. I. du Pont de Nemours & Company, Wilmington, Del., a corporation of Delaware Application June 21, 1939, Serial No. 280,308 16 Claims. (CI. 260-632) The invention relates to improvements in the and R is an alkyl, or aralkyl radical which may be manufacture of metal alkoxides and more particu Saturated, unsaturated, substituted or unsub larly to the preparation of alkali metal alkoxides stituted. by the interaction of alcohols with alkali metal In Reactions 1 and 2, an alkali metal salt of a salts of weak acids. weak acid is digested with an alcohol at an ap Alkali metal alkoxides have been prepared by propriate temperature, the digestion being Con. direct reaction of the alkali metal as such with tinued until equilibrium has been substantially an alcohol. or by action of an alkali metal hy reached. The equilibrium mixture is filtered for. droxide. upon an alcohol. The higher cost of the the separation of any undissolved (MX or M3X) first of these methods has limited somewhat the O salt and the resulting solution (or filtrate) is industrial use of the alkoxide thus prepared and found to contain an alkali metal alkoxide, or much effort has been expended in endeavors to aralkoxide, (MOR) hereinafter called 'al make the second more commercially practicable.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Meisenheimer complexes: some structural, equilibrium and kinetic studies Khan, Hassan Akhtar How to cite: Khan, Hassan Akhtar (1973) Meisenheimer complexes: some structural, equilibrium and kinetic studies, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8740/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk MEISENHEIMER COMPLEXES: SOME STRUCTURAL, EQUILIBRIUM AND KINETIC STUDIES by HASSAN AKHTAR KHAN M.Sc. (Pakistan) A thesis submitted for the degree of Doctor of Philosophy in the University of Durham. JUNE 1973 Chemistry Department 1 6 JUL 1973 SEOriON ACKNOWLEDGEMENTS It is with gratitude that I thank my supervisor, Dr. M.R. Crampton, for his inspiration, generous help and encouragement throughput the course of this work. I would also like to thank the many staff members and technical staff of the department for their co-operation.
    [Show full text]
  • A Publication of Reliable Methods for the Preparation of Organic Compounds
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • EICG-Hot Spots: EICG Appendix C
    INFORMAL REVIEW DRAFT [Note: The pre-existing regulation text is set forth below in normal type. The original proposed amendments are shown in underline to indicate additions and strikeout to indicate deletions. Additional proposed modifications are shown in double-underline to indicate additions and double-strikeout to indicate deletions. The square brackets “[ ]” are used to indicate minor adjustments to text (e.g., page numbers and adoption dates) that will be updated upon adoption of the proposed amendments.] APPENDIX C FACILITY GUIDELINE INDEX (FACILITY "LOOK-UP" TABLE) INFORMAL REVIEW DRAFT This Page Intentionally Left Blank INFORMAL REVIEW DRAFT APPENDIX C - I RESPONSIBILITIES OF ALL FACILITIES INFORMAL REVIEW DRAFT NOTES FOR APPENDIX CFACILITY GUIDELINE INDEX APPENDIX C-I RESPONSIBILITIES OF ALL FACILITIES NOTHING IN THIS APPENDIX SHALL BE CONSTRUED AS REQUIRING THAT SOURCE TESTING BE CONDUCTED FOR SUBSTANCES SET FORTH IN THIS APPENDIX. FURTHER, IN CASES WHERE A SUBSTANCE SET FORTH HEREIN IS NOT PRESENT AT A PARTICULAR FACILITY, THE FACILITY OPERATOR SHALL NOT ATTEMPT TO QUANTIFY THE EMISSIONS OF SUCH SUBSTANCE, BUT SHALL PROVIDE ADEQUATE DOCUMENTATION TO DEMONSTRATE TO THE DISTRICT THAT THE POSSIBLE PRESENCE OF THE SUBSTANCE AT THE FACILITY HAS BEEN ADDRESSED AND THAT THERE ARE NO EMISSIONS OF THE SUBSTANCE FOR SPECIFIED REASONS. Substances emitted by a particular device or process may not be limited to those listed in this Facility Guideline Index. THIS APPENDIX IS NOT AN EXHAUSTIVE LIST. ALL FACILITIES ARE RESPONSIBLE FOR IDENTIFYING AND ACCOUNTING FOR ANY LISTED SUBSTANCE USED, MANUFACTURED, FORMULATED, OR RELEASED. This Facility Guideline Index is arranged in alphabetical order. The first part of the index, Appendix C-I, lists devices common to many industries and the second part of the index, Appendix C-II, lists industry types.
    [Show full text]
  • SODIUM METHOXIDE, 30% in Methanol
    AKS761.5 - SODIUM METHOXIDE, 30% in methanol SODIUM METHOXIDE, 30% in methanol Safety Data Sheet AKS761.5 Date of issue: 10/26/2016 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : SODIUM METHOXIDE, 30% in methanol Product code : AKS761.5 Product form : Mixture Physical state : Liquid Formula : CH3NaO Synonyms : SODIUM METHYLATE METHANOL, SODIUM SALT Chemical family : METAL ALCOHOLATE 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids Category 3 H226 Acute toxicity (oral) Category 3 H301 Acute toxicity (dermal) Category 3 H311 Acute toxicity (inhalation:vapor) Category 3 H331 Skin corrosion/irritation Category 1B H314 Serious eye damage/eye irritation Category 1 H318 Specific target organ toxicity (single exposure) Category 1 H370 Specific target organ toxicity (single exposure) Category 3 H336 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS05 GHS06 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H226 - Flammable liquid and vapor H301+H311+H331 - Toxic if swallowed, in contact with skin or if inhaled H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H336 - May cause drowsiness or dizziness H370 - Causes damage to organs Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P307 + P311 - If exposed: Call a poison center/doctor P210 - Keep away from heat, open flames, sparks.
    [Show full text]
  • Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
    AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures.
    [Show full text]
  • A Proposed Radical-Chain Pathway for Photoinitiated Reductive
    A PROPOSED RADICAL- CHAIN PATHWAY FOR PHOTOINITIATED REDUCTIVE- DEHALOGENATION AND SUBSTITUTION REACTIONS OF HETARYL AND ARYL HALIDES IN METHANOLIC METHOXIDE By GEORGE ALLISON LOCKO A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIPJIMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1976 UNIVERSITY OF FLORIDA 3 1262 08552 5797 To Mom and Dad ACKNOWLEDGEMENTS The author wishes to express sincere gratitude to Dr. John A. Zoltewicz, Chairman of his Supervisory Committee, for his guidance during the course of the research which is reported herein. Without the keen insight of Dr. Zoltewicz much of this work would not have been possible. Apprecia- tion is also expressed toward the other members of his committee: Dr. William R. Dolbier, Dr. Paul Tarrant, Dr. Kuang-Pang Li, and Dr. Charles Allen, Jr. The author is very grateful to Ms. Ann Kennedy for the long hours which she spent typing the manuscript. Very special thanks are extended to Sara for her love, patience, and understanding. Ill TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii LIST OF TABLES vii LIST OF FIGURES xiii ABSTRACT xvi CHAPTER: I. INTRODUCTION MECHANISTIC INVESTIGATIONS INVOLVING THE PHOTOINITIATED RADICAL-CHAIN RE- DUCTIVE- DEHALOGENATION AND PHOTOINITI- ATED SRi^jl REACTION OF 3-IODOPYRIDINE WITH THIOPHENOXIDE ION IC Results 10 Discussion 58 STRUCTURE-REACTIVITY CORRELATIONS AND RELATED INVESTIGATIONS PERTAINING TO THE PHOTOINITIATED REACTIONS OF HETARYL AND ARYL HALIDES WITH THIOPHENOXIDE ION IN
    [Show full text]
  • (Z)-And (E)-8-Chlorocinnamohydroximoyl Chlorides with Methoxide
    REACTION OF (Z)- AND (E)-8-CHLOROCINNAMOHYDROXIMOYL CHLORIDES WITH METHOXIDE ION A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN'S UNIVERSITY COLLEGE OF ARTS AND SCIENCES BY JIN LIU, B.S. •· ·--···-DENTON, TEXAS DECEMBER 2008 TEXAS WOMAN'S UNIVERSITY DENTON, TEXAS November 7, 2008 To the Dean of the Graduate School: I am submitting herewith a thesis written by Jin Liu entitled "reaction of (z)- and (e)-B-chlorocinnamohydroximoyl chlorides with methoxide ion." I have examined this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science with a major in Chemistry. We have read this thesis and recommend its acceptance: Accepted: Dean of the Graduate School ACKNOWLEDGMENTS I cordially thank everyone who helped, supported and encouraged me during my studies in the Department of Chemistry and Physics at Texas Woman's University. I especially thank Dr James E. Johnson for the opportunity to conduct research in his laboratory. Without his patient help and guidance, it would have been impossible to complete the thesis. It is my honor and privilege to work under his instruction. iii ABSTRACT JIN LIU REACTION OF (Z}- AND (E)-~-CHLOROCINNAMOHYDROXIMOYL CHLORIDES WITH METHOXIDE ION DECEMBER 2008 New a,~-unsaturated hydroximoyl chlorides and hydroximates were synthesized and characterized. 13C NMR, 1H NMR, IR and elemental analysis were determined for each new compound. The kinetics of methoxide ion substitution on (Z)- and (E)- ~­ chlorocinnamohydroximoy l chloride were measured.
    [Show full text]
  • The Copper Catalysed Reaction of Sodium Methoxide with Aryl Bromides : a Mechanistic Study Leading to a Facile Synthesis of Anisole Derivatives
    The copper catalysed reaction of sodium methoxide with aryl bromides : a mechanistic study leading to a facile synthesis of anisole derivatives Citation for published version (APA): Aalten, H. L., Koten, van, G., Grove, D. M., Kuilman, T., Piekstra, O. G., Hulshof, L. A., & Sheldon, R. A. (1989). The copper catalysed reaction of sodium methoxide with aryl bromides : a mechanistic study leading to a facile synthesis of anisole derivatives. Tetrahedron, 45(17), 5565-5578. https://doi.org/10.1016/S0040-4020(01)89502- 8 DOI: 10.1016/S0040-4020(01)89502-8 Document status and date: Published: 01/01/1989 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
    [Show full text]
  • Anionic Polymerisation of Aziridines
    MAX-PLANCK-INSTITUT FÜR POLYMERFORSCHUNG JOHANNES GUTENBERG‐UNIVERSITÄT MAINZ Anionic Polymerisation of Aziridines Diplomarbeit zur Erlangung des Grades eines Diplom‐Chemikers am Institut für Organische Chemie des Fachbereiches Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz vorgelegt von Laura Thomi geboren in Frankfurt am Main Mainz 2013 Diese Arbeit wurde in der Zeit von November 2012 bis Juli 2013 am Institut für Organische Chemie der Johannes Gutenberg‐Universität Mainz und am Max-Planck-Institut für Polymerforschung in Mainz unter der Betreuung von Herrn Prof. Dr. Holger Frey und Frau Prof. Dr. Katharina Landfester durchgeführt. für meine Eltern “We live on an island surrounded by a sea of ignorance. As our island of knowledge grows, so does the shore of our ignorance.” - John Archibald Wheeler Danksagung Mein Dank gilt Herrn Prof. Dr. Holger Frey und Frau Prof. Dr. Katharina Landfester für die Bereitstellung des Themas und die ausgezeichneten Arbeitsbedingungen. Zudem danke ich Herrn Dr. Frederik Wurm für die freundliche Aufnahme in seine Gruppe und die hervorragende Betreuung der Arbeit. Bei allen Mitgliedern der Arbeitsgruppe Frey bedanke ich mich für die wunderbare Arbeitsatmosphäre und die Unterstützung bei dieser Arbeit. Herrn Christian Moers und Herrn Jan Seiwert danke ich, dass sie mir die anionische Polymerisation von Styrol und Ethylenoxid näher gebracht haben. Bei Frau Anna Hesse und Herrn Christian Moers bedanke ich mich für das Korrekturlesen dieser Arbeit. Frau Katja Weber danke ich für die Bereitstellung des 2-Methyl-N-tosylaziridins. Für die GPC Messungen danke ich Frau Christine Rosenauer und insbesondere Frau Monika Schmelzer. Bei Frau Dr. Elena Berger-Nicoletti möchte ich mich für zahlreiche MALDI Messungen bedanken.
    [Show full text]
  • Ep 0409164 A2
    Europaisches Patentamt European Patent Office © Publication number: 0 409 1 64 A2 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 90113679.6 © Int. CI* C07D 501/36, C07D 498/053, A61K 31/545, A61K 31/535 @ Date of filing: 17.07.90 © Priority: 18.07.89 JP 186330/89 © Applicant: SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of © Date of publication of application: SHIONOGI & CO. LTD.TD. 23.01.91 Bulletin 91/04 1-8, Doshomachi 3-chome Chuo-ku Osaka 541 (JP) © Designated Contracting States: CH DE FR GB IT LI NL © Inventor: Onoue, Hiroshi 3-7-4, Takatsukadai, Kawai-cho Kitakatsuragi-gun, Nara(JP) Inventor: Minami, Kyoji 720-42, Oze-cho Ikoma-shi, Nara(JP) Inventor: Ishikura, Koji 2-11-4, Mimatsu Nara-shi, Nara(JP) © Representative: Vossius & Partnerner Siebertstrasse 4 P.O. Box 86 07 67 D-8000 Munchen 86(DE) © Phenacylpyridiniothiocephalosporins. © An antibacterial- 3-optionally protected-vic-dihydroxyaroyl-Iower alkyl-pyridiniothiomethyl cephalosporin de- rivative represented by the following formula (I): {© (wherein, t™ R1 is an amino group or acylamino; R2 is hydrogen or methoxy; R3 is hydrogen or a mono- or divalent q) substituent; R4 is optionally protected vic-dihydroxyaryl; R5 is straight or branched lower alkylene; R6 is O hydrogen, a carboxy-protecting group or a negative charge when combined with Y; X is oxygen, sulfur, or "@jf sulfinyl; and Y is an anion or a negative charge when combined with R6; and the dotted line shows the presence © or absence of a bond), and method of bacterial infection it, and synthetic methods thereof are provided.
    [Show full text]