Wilms' Tumor Suppressor Gene WT1: from Structure to Renal

Total Page:16

File Type:pdf, Size:1020Kb

Wilms' Tumor Suppressor Gene WT1: from Structure to Renal J Am Soc Nephrol 11: S106–S115, 2000 Wilms’ Tumor Suppressor Gene WT1: From Structure to Renal Pathophysiologic Features CHRISTIAN MROWKA*† and ANDREAS SCHEDL* *Max Delbru¨ck Center for Molecular Medicine and †Franz Volhard Clinic, Humboldt University of Berlin, Berlin-Buch, Germany. Abstract. Normal development of the kidney is a highly com- current understanding of the structural features of WT1, how plex process that requires precise orchestration of proliferation, they modulate the transcriptional and post-transcriptional ac- differentiation, and apoptosis. In the past few years, a number tivities of the protein, and how mutations affecting individual of genes that regulate these processes, and hence play pivotal isoforms can lead to diseased kidneys is summarized. In addi- roles in kidney development, have been identified. The Wilms’ tion, results from transgenic experiments, which have yielded tumor suppressor gene WT1 has been shown to be one of these important findings regarding the function of WT1 in vivo, are essential regulators of kidney development, and mutations in discussed. Finally, data on the unusual feature of RNA editing this gene result in the formation of tumors and developmental of WT1 transcripts are presented, and the relevance of RNA abnormalities such as the Denys-Drash and Frasier syndromes. editing for the normal functioning of the WT1 protein in the A fascinating aspect of the WT1 gene is the multitude of kidney is discussed. isoforms produced from its genomic locus. In this review, our The kidney is crucial for survival. The molecular mechanisms Structural Features underlying the development of this organ, however, are only The human WT1 gene spans approximately 50 kb and in- beginning to be elucidated. Three sets of kidneys develop cludes 10 exons, which generate a 3-kb mRNA (3,4). Four zinc during embryogenesis, i.e., the pronephros, the mesonephros, finger motifs in the carboxyl-terminal portion form the DNA- and the metanephros (1). The precursors of the permanent binding domain and share homology with the early growth kidney in the metanephros result from reciprocal interactions response gene 1 family, suggesting a role for the WT1 protein between the epithelial ureteric bud and the pluripotent meta- as a transcription factor (Figure 1A). Up to 24 different iso- nephric mesenchyme. The mesenchyme induces the bud to forms may result from a combination of alternative transla- grow and branch, thus forming the ureter, renal pelvis, and tional start sites, alternative RNA splicing, and RNA editing. collecting ducts. The ureteric bud induces the mesenchyme to One alternative translational start site (CTG) is located 204 bp undergo an epithelial transformation, to condense and form upstream of the major ATG site, creating an isoform with 68 (via the comma- and S-shaped bodies) the mature nephron with additional amino acids at its amino terminus (5). Recently, the glomerulus, proximal convoluted tubule, loop of Henle, shorter versions of WT1, resulting from translation initiation at and distal convoluted tubule. In the past decade, several genes the second in-frame ATG, have also been detected (6). Two have been identified that demonstrate spatially and temporally alternatively spliced exons are known, one inserting or exclud- distinct expression patterns during kidney development and ing exon 5, which encodes 17 amino acids, and the other lead to abnormal organ development when disrupted by gene- affecting exon 9 via insertion or exclusion of three amino acids targeting experiments (for review, see reference (2). One of [lysine-threonine-serine (KTS)] between the third and forth these genes is the Wilms’ tumor suppressor gene WT1. This zinc fingers. The ratio of splice variants is highly conserved in review focuses on structural features of and how they relate to normal fetal kidney and is maintained throughout development (7). Finally, an RNA-editing site has been identified in tran- WT1 function during kidney development. This is particularly scripts of rat and human WT1 genes, leading to the replacement relevant because we want to understand the basis of WT1 of an amino acid in exon 6 (8). A more detailed description of mutations related to human renal diseases, such as the Denys- RNA editing is provided below. Drash syndrome (DDS) and the Frasier syndrome (FS). It is now well established that WT1 can bind, via its zinc fingers, to the promoter regions of Ͼ20 putative downstream target genes (for review, see reference (9). WT1 effects on transcription can be either repressing or activating, depending Correspondence to Dr. Andreas Schedl, Max Delbru¨ck Center for Molecular on the cell type and the target gene with which WT1 interacts. Medicine, Robert-Ro¨ssle Str. 10, D-13092 Berlin-Buch, Germany. Phone: 49-30-9406-2337; Fax: 49-30-9406-2110; E-mail: [email protected] Most target genes have been identified in transfection assays, 1046-6673/1111-0106 and data should be interpreted with care, because the effects of Journal of the American Society of Nephrology chromatin or other interacting proteins are usually neglected in Copyright © 2000 by the American Society of Nephrology vitro. However, in vitro experiments have been corroborated J Am Soc Nephrol 11: S106–S115, 2000 WT1, Glomerulopathy, and RNA Editing S107 Figure 1. (A) Structural features of the Wilms’ tumor suppressor gene WT1. The schematic drawing depicts the main features of the WT1 protein and its various isoforms (numbers in parentheses refer to references). (B) Frasier syndrome (FS). The schematic drawing indicates the most common intronic mutations affecting lysine-threonine-serine (KTS) splicing. aa, amino acid; PU, proteinuria; NS, nephrotic syndrome; ESRF, end-stage renal failure. by in vivo data for an increasing number of target genes that are no-terminally shorter versions seem to lead to reduced repres- either activated or repressed by WT1. These genes include sion but increased activation potential (6). How important those for the cell surface receptor epidermal growth factor these minor products are for WT1 function in vivo remains receptor (10), the transcription factor paired-box-containing unclear. However, alternatively spliced exon 5 has been sug- gene 2 (PAX2) (11), and the growth factor insulin-like growth gested to increase the repressing effect of WT1 on some factor-2 (12) as targets downregulated by WT1. Amphiregulin, promoters (16). Interestingly, the presence of the alternative a member of the epidermal growth factor family, has been exon 5 has been found only in mammalian species (14,15), shown to be a target that can be activated by WT1 (13). indicating that it has been adopted by WT1 at a later stage in Because WT1 is expressed in so many different isoforms, evolution. which are highly conserved throughout evolution (14,15), what Increasing amounts of compelling data suggest a role for properties do the different isoforms have? The addition of a WT1 not only as a transcription factor but also as a potent 68-amino acid amino-terminal region from an alternative trans- modulator at the post-transcriptional level. WT1 is able to bind lational start site has been demonstrated to have little effect on to RNA of the insulin-like growth factor-2 gene (17). How the the transcriptional activity of the protein (5). In contrast, ami- WT1 protein interacts with RNA is still under discussion. S108 Journal of the American Society of Nephrology J Am Soc Nephrol 11: S106–S115, 2000 Although one study reported that the zinc finger region (in type has not yet been observed) and early bilateral nephrec- particular, zinc finger 1) is necessary for these protein-RNA tomy before the development of Wilms’ tumor are life-saving interactions (17), computer modeling suggests that an RNA treatments. However, a late manifestation of Wilms’ tumor recognition motif in the amino-terminal region is important after renal transplantation in a child with retrospectively sus- (18). These two regions may be equally important, with the pected DDS has been observed (26). amino-terminal region serving as a nonspecific binding domain More than 60 germline mutations (both familial and de and the zinc finger region providing sequence specificity. novo) have been described, which essentially leave the WT1 Interestingly, the distinct isoforms of WT1 seem to behave protein intact but affect the DNA-binding zinc finger domain differently, in terms of their nucleic acid-binding capacity. (27) (for review, see reference (28). Most of these mutations Whereas variants lacking the KTS sequence (ϪKTS) bind to are missense mutations within exons 8 and 9, which code for DNA sequences and can act as potent transcriptional regula- zinger finger domains 2 and 3, respectively. A mutation hot tors, KTS-containing isoforms (ϩKTS) demonstrate higher spot seems to be present at nucleotide 1180 in codon 394, affinities for RNA. The actual function of the interaction of leading to the replacement of arginine with tryptophan WT1 with RNA is still unknown; it could stabilize or destabi- (R394W). Only a few deletions, insertions, and nonsense mu- lize certain RNA forms or could be involved in post-transcrip- tations result in truncated proteins. All mutations, however, tional modifications such as RNA editing or splicing. Evidence alter the structure of the DNA-binding domain, thus changing for the latter is derived from immunocolocalization and immu- its ability to bind to both DNA and RNA. The severe pheno- noprecipitation experiments. In transfection studies,
Recommended publications
  • Wt1) – an Effector in Leukemogenesis?
    WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS? Vidovic, Karina 2010 Link to publication Citation for published version (APA): Vidovic, K. (2010). WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS?. Lund University: Faculty of Medicine. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 07. Oct. 2021 Division of Hematology and Transfusion Medicine Lund University, Lund, Sweden WILMS’ TUMOUR GENE 1 PROTEIN (WT1) – AN EFFECTOR IN LEUKEMOGENESIS? Karina Vidovic Thesis 2010 Contact adress Karina Vidovic Division of Hematology and Transfusion Medicine BMC, C14 Klinikgatan 28 SE- 221 84 Lund Sweden Phone +46 46 222 07 30 e-mail: [email protected] ISBN 978-91-86443-99-3 ! Karina Vidovic Printed by Media-Tryck, Lund, Sweden 2 ”The journey of a thousand miles begins with one step” Lao Tzu (Chinese taoist), 600-531 BC 3 4 LIST OF PAPERS This thesis is based on the following papers, referred to in the text by their Roman numerals I.
    [Show full text]
  • An Integrated Genome Screen Identifies the Wnt Signaling Pathway As a Major Target of WT1
    An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1 Marianne K.-H. Kima,b, Thomas J. McGarryc, Pilib O´ Broind, Jared M. Flatowb, Aaron A.-J. Goldend, and Jonathan D. Lichta,b,1 aDivision of Hematology/Oncology and cFeinberg Cardiovascular Research Institute, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; bRobert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611; and dDepartment of Information Technology, National University of Ireland, Galway, Republic of Ireland Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved May 18, 2009 (received for review February 12, 2009) WT1, a critical regulator of kidney development, is a tumor suppressor control. A first generation of in vitro cotransfection and DNA for nephroblastoma but in some contexts functions as an oncogene. binding assays have given way to more biologically relevant exper- A limited number of direct transcriptional targets of WT1 have been iments where manipulation of WT1 levels has been accompanied identified to explain its complex roles in tumorigenesis and organo- by examination of candidate or global gene expression. Classes of genesis. In this study we performed genome-wide screening for direct WT1 targets thus identified consist of inducers of differentiation, WT1 targets, using a combination of ChIP–ChIP and expression arrays. regulators of cell growth and modulators of cell death. WT1 target Promoter regions bound by WT1 were highly G-rich and resembled genes include CDKN1A (22), a negative regulator of the cell cycle; the sites for a number of other widely expressed transcription factors AREG (23), a facilitator of kidney differentiation; WNT4 (24), a such as SP1, MAZ, and ZNF219.
    [Show full text]
  • Transcriptional Regulation by Extracellular Signals 209
    Cell, Vol. 80, 199-211, January 27, 1995, Copyright © 1995 by Cell Press Transcriptional Regulation Review by Extracellular Signals: Mechanisms and Specificity Caroline S. Hill and Richard Treisman Nuclear Translocation Transcription Laboratory In principle, regulated nuclear localization of transcription Imperial Cancer Research Fund factors can involve regulated activity of either nuclear lo- Lincoln's Inn Fields calization signals (NLSs) or cytoplasmic retention signals, London WC2A 3PX although no well-characterized case of the latter has yet England been reported. N LS activity, which is generally dependent on short regions of basic amino acids, can be regulated either by masking mechanisms or by phosphorylations Changes in cell behavior induced by extracellular signal- within the NLS itself (Hunter and Karin, 1992). For exam- ing molecules such as growth factors and cytokines re- ple, association with an inhibitory subunit masks the NLS quire execution of a complex program of transcriptional of NF-KB and its relatives (Figure 1; for review see Beg events. While the route followed by the intracellular signal and Baldwin, 1993), while an intramolecular mechanism from the cell membrane to its transcription factor targets may mask NLS activity in the heat shock regulatory factor can be traced in an increasing number of cases, how the HSF2 (Sheldon and Kingston, 1993). When transcription specificity of the transcriptional response of the cell to factor localization is dependent on regulated NLS activity, different stimuli is determined is much less clear. How- linkage to a constitutively acting NLS may be sufficient to ever, it is possible to understand at least in principle how render nuclear localization independent of signaling (Beg different stimuli can activate the same signal pathway yet et al., 1992).
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases
    Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Olivares, Ana Maria, Oscar Andrés Moreno-Ramos, and Neena B. Haider. 2015. “Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases.” Journal of Experimental Neuroscience 9 (Suppl 2): 93-121. doi:10.4137/JEN.S25480. http:// dx.doi.org/10.4137/JEN.S25480. Published Version doi:10.4137/JEN.S25480 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27320246 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Journal name: Journal of Experimental Neuroscience Journal type: Review Year: 2015 Volume: 9(S2) Role of Nuclear Receptors in Central Nervous System Running head verso: Olivares et al Development and Associated Diseases Running head recto: Nuclear receptors development and associated diseases Supplementary Issue: Molecular and Cellular Mechanisms of Neurodegeneration Ana Maria Olivares1, Oscar Andrés Moreno-Ramos2 and Neena B. Haider1 1Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA. 2Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia. ABSTRACT: The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance.
    [Show full text]
  • Multiple Functions and Essential Roles of Nuclear Receptor Coactivators of Bhlh-PAS Family
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ENDOCRINE REGULATIONS, Vol. 50, No. 3, 165–181, 2016 165 doi:10.1515/enr-2016-0019 Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family Pecenova L, Farkas R Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia E-mail: [email protected] Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numer- ous metabolic pathways, and can be misregulated in many types of cancers. Their enormous func- tional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and high- light some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.
    [Show full text]
  • Identifying the Role of Wilms Tumor 1 Associated Protein in Cancer Prediction Using Integrative Genomic Analyses
    MOLECULAR MEDICINE REPORTS 14: 2823-2831, 2016 Identifying the role of Wilms tumor 1 associated protein in cancer prediction using integrative genomic analyses LI‑SHENG WU1*, JIA-YI QIAN2*, MINGHAI WANG3* and HAIWEI YANG4 1Department of General Surgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001; 2Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029; 3Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241002; 4Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China Received August 31, 2015; Accepted June 2, 2016 DOI: 10.3892/mmr.2016.5528 Abstract. The Wilms tumor suppressor, WT1 was first iden- regulatory factor 1, glucocorticoid receptor and peroxisome tified due to its essential role in the normal development of proliferator‑activated receptor γ transcription factor binding the human genitourinary system. Wilms tumor 1 associated sites were identified in the upstream (promoter) region of the protein (WTAP) was subsequently revealed to interact with human WTAP gene, suggesting that these transcription factors WT1 using yeast two‑hybrid screening. The present study may be involved in WTAP functions in tumor formation. identified 44 complete WTAP genes in the genomes of verte- brates, including fish, amphibians, birds and mammals. The Introduction vertebrate WTAP proteins clustered into the primate, rodent and teleost lineages using phylogenetic tree analysis. From The Wilms tumor suppressor gene WT1 was first identified 1,347 available SNPs in the human WTAP gene, 19 were due to its essential role in the normal development of the identified to cause missense mutations.
    [Show full text]
  • Nuclear Receptor Assay Applications Presented Fall 2009
    Nuclear Receptor Assay Applications Presented Fall 2009 Click the icon in the upper left hand corner to view speaker notes for slides. Have a question? Ask a Scientist GloResponse is a trademark and Dual-Luciferase is a registered trademark of Promega Corporation. HighWire Press is a registered trademark of the Board of Trustees of the Leland Stanford Junior University ©2009, Promega Corporation. All rights reserved. Application Overview POST-TRANSCRIPTION MIRNA CONTROL In vivo PROTEIN applications INTERACTIONS expression level varies with treatment NUCLEAR RECEPTORS SIGNALING Experimental firefly luciferase PATHWAY construct expression level varies little with PROMOTER treatment Control DISSECTION Renilla luciferase construct 2 Traditional Nuclear Receptor Assays Steroid A good assay Works with endogenous receptors Steroid Receptor RNA Pol II NRE luciferase 3 Your expression analysis found an uncharacterized NR… N-Terminal Hinge C-Terminal Domain Region Domain A/B C D E F DNA Binding Ligand Binding Domain Domain •Response elements are not specifically known •Agonists are not known •Coactivators are not known •How can you do work on this nuclear receptor? A One-Hybrid Luciferase Reporter Assay can help understand the nuclear receptor more fully 4 Universal Nuclear Receptor Assays Ligand binding domain responsible for: • homodimerization (class I receptors) • heterodimerization (class II receptors) • corepressor binding • coactivator binding Nuclear Receptor Ligand Binding Domain pBIND Vector GAL4 BD GAL4 GAL4 GAL4 GAL4 GAL4 GAL4 GAL4
    [Show full text]
  • Understanding Nuclear Receptor Form and Function Using Structural Biology
    F RASTINEJAD and others Understanding NR form 51:3 T1–T21 Thematic Review and function Understanding nuclear receptor form and function using structural biology Correspondence Fraydoon Rastinejad, Pengxiang Huang, Vikas Chandra and Sepideh Khorasanizadeh should be addressed to F Rastinejad Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Email Florida 32827, USA frastinejad@ sanfordburnham.org Abstract Nuclear receptors (NRs) are a major transcription factor family whose members selectively Key Words bind small-molecule lipophilic ligands and transduce those signals into specific changes in " nuclear receptors gene programs. For over two decades, structural biology efforts were focused exclusively on " steroid hormones the individual ligand-binding domains (LBDs) or DNA-binding domains of NRs. These " transcription factors analyses revealed the basis for both ligand and DNA binding and also revealed receptor " gene regulation conformations representing both the activated and repressed states. Additionally, " metabolism crystallographic studies explained how NR LBD surfaces recognize discrete portions of transcriptional coregulators. The many structural snapshots of LBDs have also guided the development of synthetic ligands with therapeutic potential. Yet, the exclusive structural focus on isolated NR domains has made it difficult to conceptualize how all the NR polypeptide segments are coordinated physically and functionally in the context of receptor Journal of Molecular Endocrinology quaternary architectures. Newly emerged crystal structures of the peroxisome proliferator- activated receptor-g–retinoid X receptor a (PPARg–RXRa) heterodimer and hepatocyte nuclear factor (HNF)-4a homodimer have recently revealed the higher order organizations of these receptor complexes on DNA, as well as the complexity and uniqueness of their domain–domain interfaces.
    [Show full text]
  • Pax6 During Visual System Development
    Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development Thorsten Pfirrmanna,1, Enrico Jandta,1, Swantje Ranfta,b, Ashwin Lokapallya, Herbert Neuhausa, Muriel Perronc, and Thomas Hollemanna,2 aInstitute for Physiological Chemistry, University of Halle-Wittenberg, 06114 Halle, Germany; bGynecological Hospital, University Medical Center Mannheim, 68167 Mannheim, Germany; and cParis-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405 Orsay, France Edited by Richard M. Harland, University of California, Berkeley, CA, and approved July 19, 2016 (received for review January 16, 2016) Pax6 is a key transcription factor involved in eye, brain, and pancreas remains unclear how Pax6 protein is removed from the eyestalk development. Although pax6 is expressed in the whole prospective territory on time. Some authors report the regulation of Pax6 retinal field, subsequently its expression becomes restricted to the activity by posttranslational modifications (21–23), and most optic cup by reciprocal transcriptional repression of pax6 and pax2. interestingly, Tuoc et al. showed that in cortical progenitor cells, However, it remains unclear how Pax6 protein is removed from the Pax6 protein is degraded by the proteasome mediated by Trim11 eyestalk territory on time. Here, we report that Mid1, a member of (24). However, the existence of similar mechanisms leading to the RBCC/TRIM E3 ligase family, which was first identified in patients the development of the visual system is not known. with the X-chromosome–linked Opitz BBB/G (OS) syndrome, inter- The data of our present study show that Midline1 (Mid1) acts with Pax6. We found that the forming eyestalk is a major do- serves as one of these links.
    [Show full text]
  • Expression and Role of Nuclear Receptor Coregulators in Colorectal Cancer Mouna Triki, Marion Lapierre, Vincent Cavaillès, Raja Mokdad-Gargouri
    Expression and role of nuclear receptor coregulators in colorectal cancer Mouna Triki, Marion Lapierre, Vincent Cavaillès, Raja Mokdad-Gargouri To cite this version: Mouna Triki, Marion Lapierre, Vincent Cavaillès, Raja Mokdad-Gargouri. Expression and role of nuclear receptor coregulators in colorectal cancer. World Journal of Gastroenterology, Baishideng Publishing Group Co. Limited, 2017, 23 (25), pp.4480 - 4490. 10.3748/wjg.v23.i25.4480. inserm- 02438832 HAL Id: inserm-02438832 https://www.hal.inserm.fr/inserm-02438832 Submitted on 14 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submit a Manuscript: http://www.f6publishing.com World J Gastroenterol 2017 July 7; 23(25): 4480-4490 DOI: 10.3748/wjg.v23.i25.4480 ISSN 1007-9327 (print) ISSN 2219-2840 (online) REVIEW Expression and role of nuclear receptor coregulators in colorectal cancer Mouna Triki, Marion Lapierre, Vincent Cavailles, Raja Mokdad-Gargouri Mouna Triki, Marion Lapierre, Vincent Cavailles, IRCM, Peer-review started: August 3, 2016 Institut de Recherche en Cancérologie de
    [Show full text]
  • A Tumor Suppressive Coactivator Complex of P53 Containing ASC-2 and Histone H3-Lysine-4 Methyltransferase MLL3 Or Its Paralogue MLL4
    A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4 Jeongkyung Leea, Dae-Hwan Kima, Seunghee Leea, Qi-Heng Yangb, Dong Kee Leea, Soo-Kyung Leea, Robert G. Roederb,1, and Jae W. Leea,1 aDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and bLaboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021 Contributed by Robert G. Roeder, March 14, 2009 (sent for review March 5, 2009) ASC-2, a multifunctional coactivator, forms a steady-state complex, To elucidate the physiological role of ASCOM, we recently named ASCOM (for ASC-2 COMplex), that contains the histone established a homozygous mouse line designated MLL3⌬/⌬ (8). H3-lysine-4 (H3K4)-methyltransferase MLL3 or its paralogue MLL4. In these mice, wild-type MLL3 is replaced by a mutant MLL3 Somewhat surprisingly, given prior indications of redundancy that contains an in-frame deletion of a 61-aa catalytic core between MLL3 and MLL4, targeted inactivation of the MLL3 H3K4- region in the MLL3 SET domain and that is expressed and methylation activity in mice is found to result in ureter epithelial incorporated into ASCOM (8). Unlike ASC-2-null mice, which tumors. Interestingly, this phenotype is exacerbated in a p53؉/؊ die at approximately E9.5-E13.5 (1), MLL3⌬/⌬ mice show only a background and the tumorigenic cells are heavily immunostained partial embryonic lethality (8). Interestingly, genetic data are for ␥H2AX, indicating a contribution of MLL3 to the DNA damage also indicative of interactions between MLL3 and ASC-2, be- response pathway through p53.
    [Show full text]