Bacteria and Archaea - Aharon Oren
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. -
Emended Descriptions of Genera of the Family Halobacteriaceae
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 637–642 DOI 10.1099/ijs.0.008904-0 Taxonomic Emended descriptions of genera of the family Note Halobacteriaceae Aharon Oren,1 David R. Arahal2 and Antonio Ventosa3 Correspondence 1Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, Aharon Oren The Hebrew University of Jerusalem, Jerusalem 91904, Israel [email protected] 2Departamento de Microbiologı´a y Ecologı´a and Coleccio´n Espan˜ola de Cultivos Tipo (CECT), Universidad de Valencia, 46100 Burjassot, Valencia, Spain 3Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain The family Halobacteriaceae currently contains 96 species whose names have been validly published, classified in 27 genera (as of September 2008). In recent years, many novel species have been added to the established genera but, in many cases, one or more properties of the novel species do not agree with the published descriptions of the genera. Authors have often failed to provide emended genus descriptions when necessary. Following discussions of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteriaceae, we here propose emended descriptions of the genera Halobacterium, Haloarcula, Halococcus, Haloferax, Halorubrum, Haloterrigena, Natrialba, Halobiforma and Natronorubrum. The family Halobacteriaceae was established by Gibbons rRNA gene sequence-based phylogenetic trees rather than (1974) to accommodate the genera Halobacterium and on true polyphasic taxonomy such as recommended for the Halococcus. At the time of writing (September 2008), the family (Oren et al., 1997). As a result, there are often few, if family contained 96 species whose names have been validly any, phenotypic properties that enable the discrimination published, classified in 27 genera. -
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. -
Can Methanogens Grow in a Perchlorate Environment on Mars? T.A
72nd Annual Meteoritical Society Meeting (2009) 5136.pdf CAN METHANOGENS GROW IN A PERCHLORATE ENVIRONMENT ON MARS? T.A. Kral1,2, T. Goodhart1, K.L. Howe2 and P. Gavin2. 1Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, 2Arkansas Cen- ter for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701. [email protected]. Introduction: We have been studying methanogens as a model for life on Mars for a number of years now. Methanogens are microorganism in the domain Archaea that use carbon diox- ide as a carbon source, molecular hydrogen as an energy source, produce methane as a by-product of metabolism, and have been shown to grow on a Mars soil simulant, JSC Mars-1 (1). The relatively recent discovery of methane in the Martian atmosphere has added relevance to these types of studies (2). In 2008, The Mars Phoenix Lander discovered perchlorate at its landing site in concentrations of approximately 1.0wt% (3). Because of perchlo- rate’s powerful oxidizing property, many believed that the chances for extant life on the planet had decreased. Methods: The research reported here was designed to de- termine if methanogens could grow in the presence of three dif- ferent perchlorate salts. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Metha- nobacterium formicicum and Methanococcus maripaludis. Stan- dard growth media were prepared containing 0, 0.1, 0.5 and 1.0wt% magnesium perchlorate, sodium perchlorate, or potas- sium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism’s optimal growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace samples. -
Determination of Hydrolytic Enzyme Capabilities of Halophilic Archaea Isolated from Hides and Skins and Their Phenotypic and Phylogenetic Identification by S
33 DETERMinATION OF HYDROLYTic ENZYME CAPABILITIES OF HALOPHILIC ARCHAEA ISOLATED FROM HIDES AND SKins AND THEIR PHENOTYpic AND PHYLOGENETic IDENTIFicATION by S. T. B LG School of Health, Canakkale Onsekiz Mart University, Terzioglu Campus Canakkale, Turkey, 17100. and B. MER ÇL YaPiCi Biology Department, Faculty of Arts and Science, Canakkale ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, Canakkale, Turkey, 17100. and İsmail Karaboz Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, İzmi r, Turkey, 35100. ABSTRACT INTRODUCTION This research aims to isolate extremely halophilic archaea The main constituent of the raw hide is protein, mainly from salted hides, to determine the capacities of their collagen (33% w/w), and remainder is moisture and fat. During hydrolytic enzymes, and to identify them by using phenotypic storage of raw hide, collagen’s excessive proteolysis by and molecular methods. Domestic and imported salted hide lysosomal autolysis or proteolytic bacterial enzymes can lead and skin samples obtained from eight different sources were to the disintegration of the structure of collagen fibers.1 used as the research material. 186 extremely halophilic Biodeterioration is among the major causes of impairment of microorganisms were isolated from salted raw hides and aesthetic, functional and other properties of leather and other skins. Some biochemical, antibiotic sensitivity, pH, NaCl, biopolymers or organic materials and the products made from temperature tolerance and quantitative and qualitative them. Due to the fact that prevention of biological degradation hydrolytic enzyme tests were performed on these isolates. In is very important in conservation and processing of leather, our study, taking into account the phenotypic findings of the great effort is being made for decontamination of these research, 34 of 186 isolates were selected. -
Fmicb-11-00948 May 15, 2020 Time: 16:54 # 1
UvA-DARE (Digital Academic Repository) Stromatolites as Biosignatures of Atmospheric Oxygenation Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp. - Dominated Culture Popall, R.M.; Bolhuis, H.; Muyzer, G.; Sánchez-Román, M. DOI 10.3389/fmicb.2020.00948 Publication date 2020 Document Version Final published version Published in Frontiers in Microbiology License CC BY Link to publication Citation for published version (APA): Popall, R. M., Bolhuis, H., Muyzer, G., & Sánchez-Román, M. (2020). Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp. - Dominated Culture. Frontiers in Microbiology, 11, [948]. https://doi.org/10.3389/fmicb.2020.00948 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:05 Oct 2021 fmicb-11-00948 May 15, 2020 Time: 16:54 # 1 ORIGINAL RESEARCH published: 19 May 2020 doi: 10.3389/fmicb.2020.00948 Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema sp. -
Protein Complexing in a Methanogen Suggests Electron Bifurcation and Electron Delivery from Formate to Heterodisulfide Reductase
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase Kyle C. Costaa,b, Phoebe M. Wonga, Tiansong Wanga,c, Thomas J. Liea, Jeremy A. Dodswortha,b,1, Ingrid Swansona, June A. Burna, Murray Hackettc, and John A. Leigha,b,2 aDepartment of Microbiology, bNational Science Foundation Integrative Graduate Education Research Traineeship Program in Astrobiology, and cDepartment of Chemical Engineering, University of Washington, Seattle, WA 98195 Edited by William Metcalf, University of Illinois, Urbana, IL, and accepted by the Editorial Board May 6, 2010 (received for review March 19, 2010) In methanogenic Archaea, the final step of methanogenesis gen- Most methanogens can use H2 as the electron donor, and many fi erates methane and a heterodisul de of coenzyme M and co- can also use formate. Reduced coenzyme F420 (F420H2)isarequired fi enzyme B (CoM-S-S-CoB). Reduction of this heterodisul de by intermediate, and can be generated from H2 by F420-reducing hy- fi heterodisul de reductase to regenerate HS-CoM and HS-CoB is an drogenase (Fru) or by a cycle involving the enzymes H2-dependent Nat Rev Micro- exergonic process. Thauer et al. [Thauer, et al. 2008 methylene-H4MPT dehydrogenase and F420-dependent methylene- biol – 6:579 591] recently suggested that in hydrogenotrophic metha- H4MPT dehydrogenase (2). When formate is the electron donor, fi nogens the energy of heterodisul de reduction powers the most it is oxidized to CO2 by a formate dehydrogenase (Fdh) that endergonic reaction in the pathway, catalyzed by the formylmetha- yields F420H2. nofuran dehydrogenase, via flavin-based electron bifurcation. -
Proposal to Transfer Halococcus Turkmenicus, Halobacterium Trapanicum JCM 9743 and Strain GSL-11 to Haloterrigena Turkmenica Gen
lntemational Journal of Systematic Bacteriology (1 999), 49, 13 1-1 36 Printed in Great Britain Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Antonio Ventosa,' M. Carmen Gutierrez,' Masahiro Kamekura2 and Michael L. Dyall-Smith3 Author for correspondence: Antonio Ventosa. Tel: + 349 5455 6765. Fax: + 349 5462 8162. e-mail : [email protected] 1 Department of The 165 rRNA gene sequences of Halococcus saccharolflicus and Halococcus Microbiology and salifodinae were closely related (94.5-94-7 YO similarity) to that of Halococcus Parasitology, Faculty of Pharmacy, University of morrhuae, the type species of the genus Halococcus. However, Halococcus Seville, 41012 Seville, Spain turkmenicus was distinct from the other members of this genus, with low 165 2 Noda Institute for rRNA similarities when compared to Halococcus morrhuae (887 YO).On the Scientific Research, 399 basis of phylogenetic tree reconstruction, detection of signature bases and Noda, Noda-shi, Chiba-ken DNA-DNA hybridization data, it is proposed to transfer Halococcus 278-0037, Japan turkmenicus to a novel genus, Haloterrigena, as Haloterrigena turkmenica gen. 3 Department of nov., comb. nov., and to accommodate Halobacterium trapanicum JCM 9743 Microbiology and Immunology, University of and strain GSL-11 in the same species. On the basis of morphological, cultural Melbourne, Parkville 3052, and 165 rRNA sequence data, it is also proposed that the culture collection Australia strains -
Haloferax Sulfurifontis Sp. Nov., a Halophilic Archaeon Isolated from a Sulfide- and Sulfur-Rich Spring
International Journal of Systematic and Evolutionary Microbiology (2004), 54, 2275–2279 DOI 10.1099/ijs.0.63211-0 Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring Mostafa S. Elshahed,1 Kristen N. Savage,1 Aharon Oren,2 M. Carmen Gutierrez,3 Antonio Ventosa3 and Lee R. Krumholz1 Correspondence 1Department of Botany and Microbiology, and Institute of Energy and the Environment, Mostafa S. Elshahed University of Oklahoma, Norman, OK 73019, USA [email protected] 2The Institute of Life Sciences and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, Jerusalem, Israel 3Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain A pleomorphic, extremely halophilic archaeon (strain M6T) was isolated from a sulfide- and sulfur-rich spring in south-western Oklahoma (USA). It formed small (0?8–1?0 mm), salmon pink, elevated colonies on agar medium. The strain grew in a wide range of NaCl concentrations + (6 % to saturation) and required at least 1 mM Mg2 for growth. Strain M6T was able to reduce sulfur to sulfide anaerobically. 16S rRNA gene sequence analysis indicated that strain M6T belongs to the family Halobacteriaceae, genus Haloferax; it showed 96?7–98?0 % similarity to other members of the genus with validly published names and 89 % similarity to Halogeometricum borinquense, its closest relative outside the genus Haloferax. Polar lipid analysis and DNA G+C content further supported placement of strain M6T in the genus Haloferax. DNA–DNA hybridization values, as well as biochemical and physiological characterization, allowed strain M6T to be differentiated from other members of the genus Haloferax. -
Geochemical Cycles on Present-Day Earth @Methanojen 2019 Sagan Exoplanet Summer Workshop “Astrobiology for Astronomers” July 15, 2019
Geochemical Cycles on Present-Day Earth @methanoJen www.JenniferGlass.com 2019 Sagan Exoplanet Summer Workshop “AstroBiology for Astronomers” July 15, 2019 Artwork by Sam Walton On Earth, O2 and CH4 have no significant abiotic sources N2 78.08% O2 20.95% Ar 0.93% CO2 0.0407% Ne 0.0018% He 0.000524% CH4 0.00018% I. Modern Cycle Biological Methanogenesis 4H2 + CO2 CH4 + 2H2O 0-120°C no O2 46 Fe-S clusters in first enzyme: FWD NicKel cofactor F430 in last Wagner et al., 2016, Science enzyme (MCR) ABiotic Methane Production 4H2 + CO2 CH4 + 2H2O “Fischer- Tropsch 3H + CO CH + H O Process” 2 4 2 150–300 °C Abiotic reactions are sluggish at low temperatures without mineral catalysts (Seewald et al. 2006, McCollom 2016) Methane production is overwhelmingly Biological “Abiotic methane production estimates from serpentinization ranging between approximately 1/30th and 1/150th the present biotic flux appear reasonable for modern Earth.” - Arney et al., 2018, Astrobiology Serpentinization: Source of Hydrogen olivine water serpentine hydrogen Biological methane emissions to the atmosphere Lyu Z, Shao N, Akinyemi T, Whitman WB (2018) Methanogenesis. Current Biology 28: R727-R732 Methane cycling prior to release to atmosphere Dean JF, Middelburg JJ, Röckmann T., Aerts R, Blauw LG, Egger M, et al (2018). Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56, 207–250. The major sinks for atmospheric methane is photolytic destruction, which depends on OH radicals Modern methane’s atmospheric lifetime is ~10 years May not go quite as fast in atmosphere without oxygen Natural Methane Sources and Sinks (Tg yr-1) Tropo- Geological spheric OH sources Soil oxidation Wet- Fresh- lands Hydrates waters Anthropogenic Methane Sources and Sinks (Tg yr-1) Biomass Landfills & Rice Rumi- Termites Fossil nants burning waste fuels Tropo- Geological spheric OH sources Soil oxidation Wet- Fresh- lands Hydrates waters MicroBial methane makers: Euryarchaeota Bacteria Archaea Eukaryotes Castelle & Banfield 2018 Cell Sorokin et al. -
Effect of N on Biological Methanation in a Continuous Stirred-Tank
fermentation Article Effect of N2 on Biological Methanation in a Continuous Stirred-Tank Reactor with Methanothermobacter marburgensis Marc Philippe Hoffarth *,†, Timo Broeker and Jan Schneider Institute for Food Technology.NRW (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, 32657 Lemgo, Germany * Correspondence: [email protected]; Tel.: +49-5261-7025769 † Current address: Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany. Received: 20 May 2019; Accepted: 28 June 2019 ; Published: 2 July 2019 Abstract: In this contribution, the effect of the presence of a presumed inert gas like N2 in the feed gas on the biological methanation of hydrogen and carbon dioxide with Methanothermobacter marburgensis was investigated. N2 can be found as a component besides CO2 in possible feed gases like mine gas, weak gas, or steel mill gas. To determine whether there is an effect on the biological methanation of CO2 and H2 from renewable sources or not, the process was investigated using feed gases containing CO2,H2, and N2 in different ratios, depending on the CO2 content. A possible effect can be a lowered conversion rate of CO2 and H2 to CH4. Feed gases containing up to 47% N2 were investigated. The conversion of hydrogen and carbon dioxide was possible with a conversion rate of up to 91% but was limited by the amount of H2 when feeding a stoichiometric ratio of 4:1 and not by adding N2 to the feed gas. Keywords: biological methanation; CSTR; Methanothermobacter marburgensis; methane; carbon dioxide; dinitrogen; hydrogen; power-to-gas 1. Introduction Today’s demand for energy all over the world makes it necessary to reduce the use of fossil energy sources to a minimum. -
Halococcus Dombrowskii Sp. Nov., an Archaeal Isolate from a Permian Alpine Salt Deposit
International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1807–1814 DOI: 10.1099/ijs.0.02278-0 Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit 1 Institut fu$ r Genetik und Helga Stan-Lotter,1 Marion Pfaffenhuemer,1 Andrea Legat,1 Allgemeine Biologie, 2,3 1 1 Hellbrunnerstrasse 34, Hans-Ju$ rgen Busse, Christian Radax and Claudia Gruber A-5020 Salzburg, Austria 2 Institut fu$ r Bakteriologie, Author for correspondence: Helga Stan-Lotter. Tel: j43 662 8044 5756. Fax: j43 662 8044 144. Mykologie und Hygiene, e-mail: helga.stan-lotter!sbg.ac.at Veterina$ rplatz 1, A-1210 Wien, Austria 3 Institut fu$ r Mikrobiologie Several extremely halophilic coccoid archaeal strains were isolated from pieces und Genetik, Universita$ t of dry rock salt that were obtained three days after blasting operations in an Wien, Dr Bohr-Gasse 9, A-1030 Wien, Austria Austrian salt mine. The deposition of the salt is thought to have occurred during the Permian period (225–280 million years ago). On the basis of their polar-lipid composition, 16S rRNA gene sequences, cell shape and growth characteristics, the isolates were assigned to the genus Halococcus. The DNA–DNA reassociation values of one isolate, strain H4T, were 35 and 38% with Halococcus salifodinae and Halococcus saccharolyticus, respectively, and 658–678% with Halococcus morrhuae. The polar lipids of strain H4T were C20–C25 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate. Whole-cell protein patterns, menaquinone content, enzyme composition, arrangements of cells, usage of carbon and energy sources, and antibiotic susceptibility were sufficiently different between strain H4T and H.