3Delight 11.0 User's Manual

Total Page:16

File Type:pdf, Size:1020Kb

3Delight 11.0 User's Manual 3Delight 11.0 User’s Manual A fast, high quality, RenderMan-compliant renderer Copyright c 2000-2013 The 3Delight Team. i Short Contents .................................................................. 1 1 Welcome to 3Delight! ......................................... 2 2 Installation................................................... 4 3 Using 3Delight ............................................... 7 4 Integration with Third Party Software ....................... 27 5 3Delight and RenderMan .................................... 28 6 The Shading Language ...................................... 65 7 Rendering Guidelines....................................... 126 8 Display Drivers ............................................ 174 9 Error Messages............................................. 183 10 Developer’s Corner ......................................... 200 11 Acknowledgements ......................................... 258 12 Copyrights and Trademarks ................................ 259 Concept Index .................................................. 263 Function Index ................................................. 270 List of Figures .................................................. 273 ii Table of Contents .................................................................. 1 1 Welcome to 3Delight! ...................................... 2 1.1 What Is In This Manual ?............................................. 2 1.2 Features .............................................................. 2 2 Installation ................................................. 4 2.1 MacOS X ............................................................. 4 2.2 Linux ................................................................. 4 2.3 Windows ............................................................. 5 2.4 Environment Variables ................................................ 5 3 Using 3Delight ............................................. 7 3.1 Using the RIB Renderer - renderdl ................................... 7 3.2 Using the Shader Compiler - shaderdl ............................... 11 3.3 Using the Texture Optimizer - tdlmake .............................. 14 3.4 Using dsm2tif to Visualize DSMs .................................... 20 3.5 Using hdri2tif on High Dynamic Range Images ..................... 21 3.6 Using shaderinfo to Interrogate Shaders ............................ 22 3.7 Using ribshrink .................................................... 23 3.8 Using ribdepends ................................................... 23 3.9 Using ptc2brick .................................................... 25 3.10 Using ptcview...................................................... 25 3.11 Using ptcmerge .................................................... 26 4 Integration with Third Party Software.................. 27 4.1 Autodesk’s Maya .................................................... 27 4.2 Softimage’s XSI ..................................................... 27 4.3 Side Effects Software’s Houdini ...................................... 27 5 3Delight and RenderMan ................................ 28 5.1 Options.............................................................. 28 5.1.1 Image and Camera Options ..................................... 28 5.1.2 Implementation Specific Options ................................ 35 Rendering Options ................................................. 35 Quality vs. Performance Options ................................... 38 Search Paths Options .............................................. 40 Statistics Options .................................................. 41 Messages Options .................................................. 42 Network Cache Options ............................................ 42 User Options ....................................................... 43 RIB Output Options ............................................... 43 Other Options ..................................................... 43 5.2 Attributes ........................................................... 46 5.2.1 Primitives Identification ........................................ 46 iii 5.2.2 Primitives Visibility and Ray Tracing ........................... 47 5.2.3 Global Illumination Attributes .................................. 49 5.2.4 Subsurface Light Transport ..................................... 50 5.2.5 Displacement ................................................... 51 5.2.6 User Attributes ................................................. 53 5.2.7 Other Attributes................................................ 54 5.3 Geometric Primitives ................................................ 57 5.3.1 Subdivision Surfaces ............................................ 57 5.3.2 Parametric Patches ............................................. 58 5.3.3 Curves ......................................................... 58 5.3.4 Polygons ....................................................... 58 5.3.5 Points .......................................................... 58 5.3.6 Implicit Surfaces (Blobbies) ..................................... 59 5.3.7 Quadrics ....................................................... 60 5.3.8 Procedural Primitives........................................... 60 5.3.9 Object Instances................................................ 61 5.3.10 Constructive Solid Geometry .................................. 61 5.4 External Resources .................................................. 61 5.4.1 Texture Maps .................................................. 61 5.4.2 Archives ........................................................ 62 5.4.2.1 RiArchiveRecord .......................................... 62 5.4.2.2 Inline Archives ............................................ 62 5.5 Configuration filerendermn.ini ( ) ................................... 62 6 The Shading Language ................................... 65 6.1 Syntax .............................................................. 65 6.1.1 General Shader Structure ....................................... 65 6.1.1.1 Traditional Structure ...................................... 65 6.1.1.2 Shader Objects ............................................ 65 6.1.2 Variable Types ................................................. 67 6.1.2.1 Scalars .................................................... 67 6.1.2.2 Colors ..................................................... 68 6.1.2.3 Points, Vectors and Normals ............................... 68 6.1.2.4 Matrices................................................... 70 6.1.2.5 Strings .................................................... 71 6.1.2.6 Co-Shaders ................................................ 71 6.1.2.7 The Void Type ............................................ 71 6.1.3 Structures ...................................................... 72 6.1.3.1 Definition ................................................. 72 6.1.3.2 Declaration and Member Selection ......................... 72 6.1.3.3 Structures as Function Parameters ......................... 72 6.1.3.4 Limitations ................................................ 72 6.1.4 Arrays.......................................................... 73 6.1.4.1 Static Arrays .............................................. 73 6.1.4.2 Resizable Arrays........................................... 73 6.1.5 Variable Classes ................................................ 74 6.1.5.1 Uniform Variables ......................................... 74 6.1.5.2 Varying Variables.......................................... 74 6.1.5.3 Constant Variables ........................................ 75 6.1.5.4 Default Class Behaviour ................................... 75 6.1.6 Parameter Lists................................................. 75 6.1.6.1 Shader and Shader Class Parameters....................... 75 6.1.6.2 Function Parameters....................................... 75 iv 6.1.7 Constructs...................................................... 76 6.1.7.1 Conditional Execution ..................................... 76 6.1.7.2 Classical Looping Constructs .............................. 76 6.1.7.3 Special Looping Constructs ................................ 77 6.1.7.4 Functions.................................................. 85 6.1.7.5 Methods................................................... 87 6.2 Predefined Shader Variables.......................................... 87 6.2.1 Predefined Surface Shader Variables............................. 88 6.2.2 Predefined Light Shader Variables............................... 89 6.2.3 Predefined Volume Shader Variables ............................ 90 6.2.4 Predefined Displacement Shader Variables....................... 91 6.2.5 Predefined Imager Shader Variables ............................. 91 6.3 Predefined Shader Parameters........................................ 92 6.4 Standard Functions .................................................. 92 6.4.1 Mathematics ................................................... 92 6.4.2 Noise and Random ............................................. 94 6.4.3 Geometry, Matrices and Colors ................................. 95 6.4.4 Lighting ........................................................ 97 6.4.5 Ray Tracing .................................................... 98 6.4.5.1 Common Parameters ...................................... 98 6.4.5.2 The trace Shadeop......................................... 99 6.4.5.3 Other Ray Tracing Shadeops ............................. 103 6.4.6 Texture Mapping .............................................
Recommended publications
  • An Overview of Modern Global Illumination
    Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal Volume 4 Issue 2 Article 1 July 2017 An Overview of Modern Global Illumination Skye A. Antinozzi University of Minnesota, Morris Follow this and additional works at: https://digitalcommons.morris.umn.edu/horizons Part of the Graphics and Human Computer Interfaces Commons Recommended Citation Antinozzi, Skye A. (2017) "An Overview of Modern Global Illumination," Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal: Vol. 4 : Iss. 2 , Article 1. Available at: https://digitalcommons.morris.umn.edu/horizons/vol4/iss2/1 This Article is brought to you for free and open access by the Journals at University of Minnesota Morris Digital Well. It has been accepted for inclusion in Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal by an authorized editor of University of Minnesota Morris Digital Well. For more information, please contact [email protected]. An Overview of Modern Global Illumination Cover Page Footnote This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/ 4.0/. UMM CSci Senior Seminar Conference, April 2017 Morris, MN. This article is available in Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal: https://digitalcommons.morris.umn.edu/horizons/vol4/iss2/1 Antinozzi: An Overview of Modern Global Illumination An Overview of Modern Global Illumination Skye A. Antinozzi Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA 56267 [email protected] ABSTRACT world that enable visual perception of our surrounding envi- Advancements in graphical hardware call for innovative solu- ronments.
    [Show full text]
  • Vzorová Prezentace Dcgi
    Textures Jiří Bittner, Vlastimil Havran Textures . Motivation - What are textures good for? MPG 13 . Texture mapping principles . Using textures in rendering . Summary 2 Textures Add Details 3 Cheap Way of Increasing Visual Quality 4 Textures - Introduction . Surface macrostructure . Sub tasks: - Texture definition: image, function, … - Texture mapping • positioning the texture on object (assigning texture coordinates) - Texture rendering • what is influenced by texture (modulating color, reflection, shape) 5 Typical Use of (2D) Texture . Texture coordinates (u,v) in range [0-1]2 u brick wall texel color v (x,y,z) (u,v) texture spatial parametric image coordinates coordinates coordinates 6 Texture Data Source . Image - Data matrix - Possibly compressed . Procedural - Simple functions (checkerboard, hatching) - Noise functions - Specific models (marvle, wood, car paint) 8 Texture Dimension . 2D – images . 1D – transfer function (e.g. color of heightfield) . 3D – material from which model is manufactured (wood, marble, …) - Hypertexture – 3D model of partly transparent materials (smoke, hair, fire) . +Time – animated textures 9 Texture Data . Scalar values - weight, intensity, … . Vectors - color - spectral color 10 Textures . Motivation - What are textures good for? MPG 13 . Texture mapping principles . Using textures in rendering . Summary 11 Texture Mapping Principle Texture application Planar Mapping texture 2D image to 3D surface (Inverse) texture mapping T: [u v] –> Color M: [x y z] –> [u v] M ◦ T: [x y z] –> [u v] –> Color 12 Texture Mapping – Basic Principles . Inverse mapping . Geometric mapping using proxy surface . Environment mapping 13 Inverse Texture Mapping – Simple Shapes . sphere, toroid, cube, cone, cylinder T(u,v) (M ◦ T) (x,y,z) v z v y u u x z z [x, y, z] r r h y β α y x x [u,v]=[0,0.5] [u,v]=[0,0] 14 Texture Mapping using Proxy Surface .
    [Show full text]
  • Environment Mapping
    Environment Mapping Computer Graphics CSE 167 Lecture 13 CSE 167: Computer graphics • Environment mapping – An image‐based lighting method – Approximates the appearance of a surface using a precomputed texture image (or images) – In general, the fastest method of rendering a surface CSE 167, Winter 2018 2 More realistic illumination • In the real world, at each point in a scene, light arrives from all directions (not just from a few point light sources) – Global illumination is a solution, but is computationally expensive – An alternative to global illumination is an environment map • Store “omni‐directional” illumination as images • Each pixel corresponds to light from a certain direction • Sky boxes make for great environment maps CSE 167, Winter 2018 3 Based on slides courtesy of Jurgen Schulze Reflection mapping • Early (earliest?) non‐decal use of textures • Appearance of shiny objects – Phong highlights produce blurry highlights for glossy surfaces – A polished (shiny) object reflects a sharp image of its environment 2004] • The whole key to a Adelson & shiny‐looking material is Willsky, providing something for it to reflect [Dror, CSE 167, Winter 2018 4 Reflection mapping • A function from the sphere to colors, stored as a texture 1976] Newell & [Blinn CSE 167, Winter 2018 5 Reflection mapping • Interface (Lance Williams, 1985) Video CSE 167, Winter 2018 6 Reflection mapping • Flight of the Navigator (1986) CSE 167, Winter 2018 7 Reflection mapping • Terminator 2 (1991) CSE 167, Winter 2018 8 Reflection mapping • Star Wars: Episode
    [Show full text]
  • Ahenvironmentlight Version 3.0 for DAZ Studio Version 3.0.1.139 and Above
    ahEnvironmentLight V3 for DAZ Studio 3.0 by Pendragon - Manual Page 1 of 32 © 2009 by Arthur Heinz - All Rights Reserved. ahEnvironmentLight Version 3.0 for DAZ Studio Version 3.0.1.139 and above Arthur Heinz aka “Pendragon” <[email protected]> ahEnvironmentLight V3 for DAZ Studio 3.0 by Pendragon - Manual Page 2 of 32 © 2009 by Arthur Heinz - All Rights Reserved. Table of Contents Featured Highlights of Version 3.0 ...................................................................................................................4 Quick Start........................................................................................................................................................5 Where to find the various parts....................................................................................................................5 Loading and rendering a scene with the IBL light........................................................................................6 New features concerning setup...................................................................................................................8 Preview Light..........................................................................................................................................8 Internal IBL Image Rotation Parameters...............................................................................................10 Overall Illumination Settings.................................................................................................................10
    [Show full text]
  • IBL in GUI for Mobile Devices Andreas Nilsson
    LiU-ITN-TEK-A--11/025--SE IBL in GUI for mobile devices Andreas Nilsson 2011-05-11 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LiU-ITN-TEK-A--11/025--SE IBL in GUI for mobile devices Examensarbete utfört i medieteknik vid Tekniska högskolan vid Linköpings universitet Andreas Nilsson Examinator Ivan Rankin Norrköping 2011-05-11 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose.
    [Show full text]
  • Global Illumination for Dynamic Voxel Worlds Using Surfels and Light Probes
    Master of Science in Computer Science May 2020 Global Illumination for Dynamic Voxel Worlds using Surfels and Light Probes Dan Printzell Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial ful- filment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. The authors declare that they are the sole authors of this thesis and that they have not used any sources other than those listed in the bibliography and identified as references. They further declare that they have not submitted this thesis at any other institution to obtain a degree. Contact Information: Author(s): Dan Printzell E-mail: [email protected] University advisor: Dr. Prashant Goswami Department of Computer Science Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract Background. Getting realistic in 3D worlds has been a goal for the game industry since its creation. With the knowledge of how light works; computing a realistic looking image is possible. The problem is that it takes too much computational power for it to be able to render in real-time with an acceptable frame rate. In a paper Jendersie, Kuri and Grosch [8] and in a thesis by Kuri [9] they present a method of calculation light paths ahead-of- time, that will then be used at run-time to get realistic light.
    [Show full text]
  • Global Illumination Compendium (PDF)
    Global Illumination Compendium September 29, 2003 Philip Dutré [email protected] Computer Graphics, Department of Computer Science Katholieke Universiteit Leuven http://www.cs.kuleuven.ac.be/~phil/GI/ This collection of formulas and equations is supposed to be useful for anyone who is active in the field of global illu- mination in computer graphics. I started this document as a helpful tool to my own research, since I was growing tired of having to look up equations and formulas in various books and papers. As a consequence, many concepts which are ‘trivial’ to me are not in this Global Illumination Compendium, unless someone specifically asked for them. There- fore, any further input and suggestions for more useful content are strongly appreciated. If possible, adequate references are given to look up some of the equations in more detail, or to look up the deriva- tions. Also, an attempt has been made to mention the paper in which a particular idea or equation has been described first. However, over time, many ideas have become ‘common knowledge’ or have been modified to such extent that they no longer resemble the original formulation. In these cases, references are not given. As a rule of thumb, I include a reference if it really points to useful extra knowledge about the concept being described. In a document like this, there is always a fair chance of errors. Please report any errors, such that future versions have the correct equations and formulas. Thanks to the following people for providing me with suggestions and spotting errors: Neeharika Adabala, Martin Blais, Michael Chock, Chas Ehrlich, Piero Foscari, Neil Gatenby, Simon Green, Eric Haines, Paul Heckbert, Vladimir Koylazov, Vincent Ma, Ioannis (John) Pantazopoulos, Fabio Pellacini, Robert Porschka, Mahesh Ramasubramanian, Cyril Soler, Greg Ward, Steve Westin, Andrew Willmott.
    [Show full text]
  • Reflective Bump Mapping
    Reflective Bump Mapping Cass Everitt NVIDIA Corporation [email protected] Overview • Review of per-vertex reflection mapping • Bump mapping and reflection mapping • Reflective Bump Mapping • Pseudo-reflective bump mapping • Offset bump mapping, or EMBM (misnomer) • Tangent-space support? • Common usage • True Reflective bump mapping • Simple object-space implementation • Supports tangent-space, and more normal control 2 Per-Vertex Reflection Mapping • Normals are transformed into eye-space • “u” vector is the normalized eye-space vertex position • Reflection vector is calculated in eye-space as r = u − 2n(n •u) Note that this equation depends on n being unit length • Reflection vector is transformed into cubemap- space with the texture matrix • Since the cubemap represents the environment, cubemap-space is typically the same as world- space • OpenGL does not have an explicit world-space, but the application usually does 3 Per-Vertex Reflection Mapping Diagram Eye Space Cube Map Space (usually world space) -z -z r n texture e -x x matrix r n e -x x Reflection vector is computed cube in eye space and rotated in to map cubemap space by the texture matrix eye cube eye map 4 Bump Mapping and Reflection Mapping • Bump mapping and (per-vertex) reflection mapping don’t look right together • Reflection Mapping is a form of specular lighting • Would be like combining per-vertex specular with per-pixel diffuse • Looks like a bumpy surface with a smooth enamel gloss coat • Really need per-fragment reflection mapping • Doing it right requires a lot of
    [Show full text]
  • Environment Mapping Techniques
    chapter07.qxd 2/6/2003 3:49 PM Page 169 Chapter 7 Environment Mapping Techniques This chapter explains environment mapping and presents several applications of the technique. The chapter has the following four sections: • “Environment Mapping” introduces the technique and explains its key assump- tions and limitations. • “Reflective Environment Mapping” explains the physics of reflection and how to simulate reflective materials with environment mapping. • “Refractive Environment Mapping” describes Snell’s Law and shows how to use environment maps to implement an effect that approximates refraction. • “The Fresnel Effect and Chromatic Dispersion” combines reflection, refraction, the Fresnel effect, and the chromatic properties of light to produce a more complex effect called chromatic dispersion. 7.1 Environment Mapping The preceding chapters showed some basic shading techniques. By now, you know how to light, transform, texture, and animate objects with Cg. However, your render- ings are probably not quite what you envisioned. The next few chapters describe a few simple techniques that can dramatically improve your images. This chapter presents several techniques based on environment mapping. Environment mapping simulates an object reflecting its surroundings. In its simplest form, environ- ment mapping gives rendered objects a chrome-like appearance. 169 7.1 Environment Mapping chapter07.qxd 2/6/2003 3:49 PM Page 170 Environment mapping assumes that an object’s environment (that is, everything sur- rounding it) is infinitely distant from the object and, therefore, can be encoded in an omnidirectional image known as an environment map. 7.1.1 Cube Map Textures All recent GPUs support a type of texture known as a cube map.
    [Show full text]
  • Sistema GRID Para El Render De Escenas 3D Distribuido: YAFRID
    UNIVERSIDAD DE CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMATICA´ INGENIERIA´ EN INFORMATICA´ PROYECTO FIN DE CARRERA Sistema GRID para el Render de Escenas 3D Distribuido: YAFRID Jose´ Antonio Fernandez´ Sorribes Julio, 2006 UNIVERSIDAD DE CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMATICA´ Departamento de Informatica´ PROYECTO FIN DE CARRERA Sistema GRID para el Render de Escenas 3D Distribuido: YAFRID Autor: Jose´ Antonio Fernandez´ Sorribes Director: Carlos Gonzalez´ Morcillo Julio, 2006 c Jose´ Antonio Fernandez´ Sorribes. Se permite la copia, distribucion´ y/o modificacion´ de este documento bajo los terminos´ de la licencia de documentacion´ libre GNU, version´ 1.1 o cualquier version´ posterior publicada por la Free Software Foundation, sin secciones invariantes. Puede consultar esta licencia en http://www.gnu.org. Este documento ha sido compuesto con LATEX. Las figuras que contiene han sido en su mayor´ıa creadas con OpenOffice y El GIMP y los diagramas UML con ArgoUML y Umbrello. Las figuras que aparecen en la introduccion´ a sistemas distribuidos (Apartado 3.5) han sido sacadas de [Moy05]. Las imagenes´ de los dragones de la Figura 3.5 han sido cedidas por Carlos Gonzalez.´ Los derechos de la imagen de Toy Story que aparece en la Introduccion´ pertenecen a Pixar Animation Studios (TM y c 1986 - 2006). TRIBUNAL: Presidente: Vocal: Secretario: FECHA DE DEFENSA: CALIFICACION:´ PRESIDENTE VOCAL SECRETARIO Fdo.: Fdo.: Fdo.: Resumen El ultimo´ paso en el proceso para la generacion´ de imagenes´ y animaciones 3D por ordenador es el llamado render. En esta fase se genera una imagen bidimensional (o un conjunto de imagenes´ en el caso de las animaciones) a partir de la descripcion´ de una escena 3D.
    [Show full text]
  • SMEDGE Administrator Manual
    smedgesmedge Administrator Manual Smedge 2020 © 2004 - 2020 Überware™ Table of Contents ABOUT IDS 4 PARAMETER COMMANDS 26 SMEDGE ENVIRONMENT VARIABLES 5 COMMON PARAMETERS 32 VARIABLES THAT CONTROL SMEDGE FUNCTIONALITY 5 JOB 33 VARIABLES SET FOR WORK PROCESSES 9 PROCESSJOB 39 RENDERJOB 43 REPEATMERGEDISTRIBUTOR 45 LICENSING 10 R M D 45 SEQUENCEDISTRIBUTOR 47 SLICEDISTRIBUTOR 49 RESTRICTIONS 11 DEFAULT RESTRICTIONS 12 DYNAMIC PRODUCTS 50 PRODUCT EDITOR GUI 50 AUTOMATIC SYSTEMS 13 COMMAND LINE PRODUCT CONTROL 54 CLASSES 55 AUTOMATIC REDUNDANT MASTER 13 AUTOMATIC MASTER LOCATION 15 AUTOMATIC ENGINE MODE 16 LEGACY DYNAMIC PRODUCTS 57 AUTOMATIC ENGINE SETTINGS 17 AUTOMATIC EXECUTABLE PATHS 18 A E P 18 LEGACY MAYA PRODUCTS 58 AUTOMATIC GUI PRESET 19 LEGACY VIRTUAL MODULES 60 RLIB INI FILE SYNTAX 20 PARAMETER TYPES 61 ALTERNATE FILE LOCATIONS 21 COMMON PARAMETERS 63 OVERLOADABLE OPTIONS FILES 22 REFERENCE 65 EXAMPLE FILE 76 .SJ JOB FILES 23 PRODUCT REFERENCE 82 VARIABLE SUBSTITUTION 24 3D STUDIO MAX 83 SYNTAX 25 3D STUDIO MAX (SINGLE FRAME) 85 Smedge 2020 Administrator Manual © 2004 - 2020 Überware™ 2 3DELIGHT 86 MISTIKA VR 139 3DELIGHT FOR MAYA 87 MODO 140 3DELIGHT FOR MAYA (SINGLE FRAME) 89 MODO (SINGLE FRAME) 141 AFTER EFFECTS 92 NUKE 143 AIR 93 PIXAR RENDERMAN 144 AQSIS 94 REDLINE 145 ALIAS 95 REDSHIFT FOR MAYA 146 ARNOLD FOR MAYA 96 RENDERMAN FOR MAYA 147 ARNOLD FOR MAYA (SINGLE FRAME) 98 RENDERMAN FOR MAYA (SINGLE FRAME) 149 ARNOLD STANDALONE 101 RENDITION 152 BLENDER 102 THEA 153 CINEMA 4D 103 TURTLE 154 FINALRENDER FOR MAYA 104 VIZ 155
    [Show full text]
  • Blinn/Newell Method(1976)
    Texturing Methods Alpha Mapping Light Mapping Gloss Mapping Environment Mapping ◦ Blinn/Newell ◦ Cube, Sphere, Paraboloid Mapping Bump Mapping ◦ Emboss Method ◦ EM bump mapping ITCS 3050:Game Engine Design 1 Texturing Methods Alpha Mapping Decaling: Eg., flower in a teapot, parts outside of the flower have α = 0; clamp to border mode with a transparent border. Cutouts: Similar idea, but make all background pixels to be trans- parent. ”Tree” example: Combine the tree texture with a rotated copy to form a cheap 3D tree. ITCS 3050:Game Engine Design 2 Texturing Methods Light Mapping For static environments, diffuse lighting is view independent, specu- lar lighting is not. Can capture diffuse illumination in a texture, as a light map Useful to perform light mapping in a separate stage - can use smaller textures, use texture animation (moving spotlights) Volume light textures provide more comprehensive light maps. ITCS 3050:Game Engine Design 3 Texturing Methods Gloss Mapping Gloss mapping helps selective use of glossiness (shininess) on 3D objects Example: Brick wall with shiny bricks, dull mortar - use a gloss map with high values for brick positions and low values elsewhere. o = tdiff ⊗ idiff + tglossispec Thus, we simply enhance the brightness of the highlights using the gloss map. ITCS 3050:Game Engine Design 4 Texturing Methods Environment Mapping (EM) Introduced by Blinn and Newell. Also called reflection mapping, powerful means to obtain reflections in curved surfaces. Uses the direction of the reflection vector as an index into an image containing the environment. Assumptions: lights are far, no self reflection. ITCS 3050:Game Engine Design 5 Texturing Methods Environment Mapping Procedure Generate 2D image of environment Pixels containing reflective objects - compute reflection vector from normal and view vector Compute index into environment map, using the reflection vector Retrieve texel from the EM to color pixel.
    [Show full text]