Poincare´, 1912-2012, S´eminairePoincar´eXVI (2012) 45 { 133 S´eminairePoincar´e Poincar´eand the Three-Body Problem Alain Chenciner Observatoire de Paris, IMCCE (UMR 8028), ASD 77, avenue Denfert-Rochereau, 75014 Paris, France
[email protected] & D´epartement de math´ematique,Universit´eParis VII Abstract. The Three-Body Problem has been a recurrent theme of Poincar´e's thought. Having understood very early the need for a qualitative study of \non- integrable" differential equations, he developed the necessary fundamental tools: analysis, of course, but also topology, geometry, probability. One century later, mathematicians working on the Three-Body Problem still draw inspiration from his works, in particular in the three volumes of Les m´ethodes nouvelles de la m´ecanique c´eleste published respectively in 1892, 1893, 1899. Contents 1 Introduction 45 2 General problem of dynamics 49 2.1 Equations of the N-Body Problem . 49 2.2 Kepler Problem: Delaunay and Poincar´ecoordinates . 50 2.3 Planetary problem: heliocentric coordinates . 51 2.4 Reduced problem . 53 2.5 General problem of dynamics . 54 2.6 The basic intuition . 55 3 Next approximation: Lagrange's and Laplace's secular system 56 3.1 Kepler degeneracy: fast and slow variables . 56 3.2 Averaged system . 57 3.3 Quadratic part and singularities . 58 4 Periodic solutions 1) Local existence by continuation 60 4.1 P´en´etrerdans une place jusqu'ici r´eput´eeinabordable . 60 4.2 The three \sorts" . 62 4.3 and some others . 65 5 Quasi-periodic solutions 1) Formal aspects: Lindstedt series 65 5.1 What is a Lindstedt series? .