Preservation of Periodicity in Variational Integrators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hamiltonian Perturbation Theory (And Transition to Chaos) H 4515 H
Hamiltonian Perturbation Theory (and Transition to Chaos) H 4515 H Hamiltonian Perturbation Theory dle third from a closed interval) designates topological spaces that locally have the structure Rn Cantor dust (and Transition to Chaos) for some n 2 N. Cantor families are parametrized by HENK W. BROER1,HEINZ HANSSMANN2 such Cantor sets. On the real line R one can define 1 Instituut voor Wiskunde en Informatica, Cantor dust of positive measure by excluding around Rijksuniversiteit Groningen, Groningen, each rational number p/q an interval of size The Netherlands 2 2 Mathematisch Instituut, Universiteit Utrecht, ;>0 ;>2 : q Utrecht, The Netherlands Similar Diophantine conditions define Cantor sets Article Outline in Rn. Since these Cantor sets have positive measure their Hausdorff dimension is n.Wheretheunper- Glossary turbed system is stratified according to the co-dimen- Definition of the Subject sion of occurring (bifurcating) tori, this leads to a Can- Introduction tor stratification. One Degree of Freedom Chaos An evolution of a dynamical system is chaotic if its Perturbations of Periodic Orbits future is badly predictable from its past. Examples of Invariant Curves of Planar Diffeomorphisms non-chaotic evolutions are periodic or multi-periodic. KAM Theory: An Overview A system is called chaotic when many of its evolutions Splitting of Separatrices are. One criterion for chaoticity is the fact that one of Transition to Chaos and Turbulence the Lyapunov exponents is positive. Future Directions Diophantine condition, Diophantine frequency vector Bibliography A frequency vector ! 2 Rn is called Diophantine if there are constants >0and>n 1with Glossary jhk;!ij for all k 2 Znnf0g : Bifurcation In parametrized dynamical systems a bifur- jkj cation occurs when a qualitative change is invoked by a change of parameters. -
Hamiltonian Dynamical Systems
Hamiltonian Dynamical Systems Heinz Hanßmann Aachen, 2007 Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 1.1 Newtonian mechanics . 3 1.2 Lagrangean mechanics . 4 1.3 Hamiltonian mechanics . 5 1.4 Overview . 6 2 One degree of freedom : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2.1 The harmonic oscillator . 8 2.2 An anharmonic oscillator . 9 2.3 The mathematical pendulum . 11 3 Hamiltonian systems on the sphere S2 : : : : : : : : : : : : : : : : : : : : : 13 3.1 The Poisson bracket . 15 3.2 Examples on S2 . 17 4 Theoretical background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21 4.1 The structure matrix . 22 4.2 The theorem of Liouville . 25 5 The planar Kepler system : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29 5.1 Central force fields. 30 5.2 The eccentricity vector . 36 6 The spherical pendulum : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43 6.1 Dirac brackets . 44 6.2 Symmetry reduction . 45 6.3 Reconstruction . 49 6.4 Action angle variables . 52 VIII Contents 7 Coupled oscillators : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55 7.1 The Krein collision . 58 7.2 Normalization . 60 7.3 Symmetry reduction . 63 7.4 The Hamiltonian Hopf bifurcation . 64 8 Perturbation Theory: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67 8.1 The homological equation . 68 8.2 Small denominators . 69 References -
Poincaré and the Three-Body Problem
Poincare´, 1912-2012, S´eminairePoincar´eXVI (2012) 45 { 133 S´eminairePoincar´e Poincar´eand the Three-Body Problem Alain Chenciner Observatoire de Paris, IMCCE (UMR 8028), ASD 77, avenue Denfert-Rochereau, 75014 Paris, France [email protected] & D´epartement de math´ematique,Universit´eParis VII Abstract. The Three-Body Problem has been a recurrent theme of Poincar´e's thought. Having understood very early the need for a qualitative study of \non- integrable" differential equations, he developed the necessary fundamental tools: analysis, of course, but also topology, geometry, probability. One century later, mathematicians working on the Three-Body Problem still draw inspiration from his works, in particular in the three volumes of Les m´ethodes nouvelles de la m´ecanique c´eleste published respectively in 1892, 1893, 1899. Contents 1 Introduction 45 2 General problem of dynamics 49 2.1 Equations of the N-Body Problem . 49 2.2 Kepler Problem: Delaunay and Poincar´ecoordinates . 50 2.3 Planetary problem: heliocentric coordinates . 51 2.4 Reduced problem . 53 2.5 General problem of dynamics . 54 2.6 The basic intuition . 55 3 Next approximation: Lagrange's and Laplace's secular system 56 3.1 Kepler degeneracy: fast and slow variables . 56 3.2 Averaged system . 57 3.3 Quadratic part and singularities . 58 4 Periodic solutions 1) Local existence by continuation 60 4.1 P´en´etrerdans une place jusqu'ici r´eput´eeinabordable . 60 4.2 The three \sorts" . 62 4.3 and some others . 65 5 Quasi-periodic solutions 1) Formal aspects: Lindstedt series 65 5.1 What is a Lindstedt series? . -
A Perturbation Theory for Hamilton's Principal Function
A Perturbation Theory for Hamilton’s Principal Function: Applications to Boundary Value Problems by Oier Pe˜nagaricano Mu˜noa A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan 2010 Doctoral Committee: Professor Daniel J. Scheeres, Chair Professor Anthony M. Bloch Professor Pierre Tshimanga Kabamba Professor N. Harris McClamroch c Oier Pe˜nagaricano Mu˜noa 2010 All Rights Reserved To my family ii ACKNOWLEDGEMENTS First of all, I must thank the Department of Education, Research, and Universities of the Basque Government for supporting the research that has led to the conclusion of this thesis from 2004 until 2010. The financial support provided has made it pos- sible for this research to be carried out properly. I have been lucky to be part of the University of Michigan Aerospace Engineering graduate program since 2004. I feel blessed to have been able to take courses and share insights and knowledge with world renowned faculty that includes my commit- tee members Professor McClamroch, Professor Kabamba, and Professor Bloch, and also Professor Bernstein and Professor Greenwood. Special thanks to Denise Phelps for helping me with all the bureaucratic trou- bles and paperwork that as an international student I seemed to often get lost with. She helped me by not letting me get in trouble with technicalities that I was of- ten unaware of. I would also like to thank the International Center for all the help and counseling they provided from the very first moment that I arrived in Ann Arbor. -
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Kenneth R. Meyer • Daniel C. Offin Introduction to Hamiltonian Dynamical Systems and the N-Body Problem Third Edition 123 Kenneth R. Meyer Daniel C. Offin Department of Mathematical Sciences Department of Mathematic and Statistics University of Cincinnati Queen’s University Cincinnati, OH, USA Kingston, ON, Canada ISSN 0066-5452 ISSN 2196-968X (electronic) Applied Mathematical Sciences ISBN 978-3-319-53690-3 ISBN 978-3-319-53691-0 (eBook) DOI 10.1007/978-3-319-53691-0 Library of Congress Control Number: 2017935540 Mathematics Subject Classification (2010): 34C15, 34K12, 37E40, 70H08 1st edition: © Springer Science+Business Media New York 1992 2nd edition: © Springer-Verlag New York 2009 3rd edition: © Springer International Publishing AG 2017 This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface The theory of Hamiltonian systems is a vast subject which can be stud- ied from many different viewpoints. This book develops the basic theory of Hamiltonian differential equations from a dynamical systems point of view. In this third edition, the first four chapters give a sound grounding in Hamiltonian theory and celestial mechanics making it suitable for an ad- vanced undergraduate or beginning graduate course. It contains an expanded treatment of the restricted three-body problem including a new derivation, a treatment of Hill’s regions, discrete symmetries, and more. It also has a detailed presentation of the symmetries, the moment map, Noether’s theo- rem, and the Meyer-Marsden-Weinstein reduction theorem with applications to the three-body problem. -
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Applied Mathematical Sciences Volume 90 Editors S.S. Antman J.E. Marsden L. Sirovich Advisors J.K. Hale P. Holmes J. Keener J. Keller B.J. Matkowsky A. Mielke C.S. Peskin K.R. Sreenivasan For further volumes: http://www.springer.com/series/34 Kenneth R. Meyer Glen R. Hall Dan Offin Introduction to Hamiltonian Dynamical Systems and the N-Body Problem Second edition 123 Kenneth R. Meyer Glen R. Hall Department of Mathematics Department of Mathematics and Statistics University of Cincinnati Boston University Cincinnati, OH 45221-0025 Boston, MA 02215 USA USA Dan Offin Department of Mathematics and Statistics Queen’s University Kingston, Ontario Canada Editors S.S. Antman J.E. Marsden L. Sirovich Department of Mathematics Control and Dynamical Laboratory of Applied and Systems 107-81 Mathematics Institute for Physical Science California Institute of Department of and Technology Technology Biomathematical Sciences University of Maryland Pasadena, CA 91125 Mount Sinai School College Park, MD 20742-4015 USA of Medicine USA [email protected] New York, NY 10029-6574 [email protected] USA [email protected] ISBN 978-0-387-09723-7 e-ISBN 978-0-387-09724-4 DOI 10.1007/978-0-387-09724-4 Library of Congress Control Number: 2008940669 Mathematics Subject Classification (2000): 37N05, 70F15, 70Hxx c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.