Download This Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download This Article in PDF Format A&A 614, A15 (2018) https://doi.org/10.1051/0004-6361/201731644 Astronomy & © ESO 2018 Astrophysics Mutual event observations of solar system objects by SRC on Mars Express? Analysis and release of observations R. Ziese1 and K. Willner2 1 Technische Universität Berlin, Institute of Geodesy and Geoinformation Science, Str. des 17. Juni 135, 10628 Berlin, Germany e-mail: [email protected] 2 German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany e-mail: [email protected] Received 25 July 2017 / Accepted 21 January 2018 ABSTRACT Context. Both Martian moons, Phobos and Deimos, have been observed during several imaging campaigns by the Super Resolution Channel (SRC) on the Mars Express probe. Several tens of images are obtained during mutual event observations – when the Martian moons are both observed or together with another solar system body. These observations provide new opportunities to determine the bodies’ positions in their orbits. Aims. A method was sought to automate the observation of the positions of the imaged bodies. Within one image sequence a similarly accurate localization of the objects in all images should be possible. Methods. Shape models of Phobos and Deimos are applied to simulate the appearance of the bodies in the images. Matching the illuminated simulation against the observation provides a reliable determination of the bodies’ location within the image. To enhance the matching confidence several corrections need to be applied to the simulation to closely reconstruct the observation. Results. A list of 884 relative positions between the different objects is provided through the Centre de Données astronomiques de Strasbourg (CDS). Key words. astrometry – ephemerides – planets and satellites: individual: Phobos – planets and satellites: individual: Deimos 1. Introduction 2003 and carries the High Resolution Stereo Camera (HRSC) designed for multi-spectral mapping of the Martian surface First observed in 1877 by Asaph Hall, an astronomer of the (Jaumann et al. 2007). This camera also features the Super US Naval Observatory in Washington, the two natural Mar- Resolution Channel (SRC), a 1 K by 1 K framing camera, which tian satellites, Phobos and Deimos, can only be observed from provides high-resolution details within HRSC scenes, thus Earth during Mars oppositions, that is, every two years (Morley enabling studies of small-scale geologic features (Oberst et al. 1989). The bright appearance of Mars combined with the 2008). In contrast to other missions, Mars Express is in a highly moons’ relatively small sizes, Phobos having approximately elliptical nearly polar orbit around Mars. The periapsis height 27 × 22 × 18 km (Willner et al. 2014) diameter and Deimos of the MEX orbit is optimized for HRSC observations of Mars measuring 16 × 12 × 10 km in diameter, as well as their low to ensure surface resolutions in the range of 10 to 15 m pixel−1 orbits, 6000 km and 20 000 km above the Martian surface, make and is thus at a height of 250 km above the Martian surface Earth-based observations difficult. (Jaumann et al. 2007) with a latitudinal precession to assure In the past Phobos’ and Deimos’ positions in space were global coverage. As a consequence, the apoapsis of MEX’s orbit observed separately by several spacecraft during their approach is at a distance of about 11 000 km to the Martian surface and to Mars and at times also during flyby or far distance observa- thus beyond the orbit of Phobos. The nearly equatorial orbits of tions, for example, by Mariner 9 (Duxbury & Callahan 1989), Phobos and Deimos allow observations of the moons by MEX Viking (Duxbury & Callahan 1988), Phobos 2 (Kolyuka et al. instruments from distances of less than 5000 km and 12 000 km, 1991), MGS (Bills et al. 2005; Jacobson 2010, and references respectively, at an interval of five to six months. therein), MRO (Jacobson 2010; Jacobson & Lainey 2014) and Several different techniques have been applied to gather Mars Express (Oberst et al. 2006; Willner et al. 2008; Pasewaldt astrometric information from SRC images (see Oberst et al. et al. 2012, 2015). 2006; Willner et al. 2008; Pasewaldt et al. 2012, 2015). In Here we focus on observations by the European Mars contrast to the method that is described below, Willner et al. Express (MEX) probe, which has been in orbit about Mars since (2008) and Pasewaldt et al.(2012, 2015) used stars in the background to control the camera pointing for astrometric ? Tables A.1–A.4 are only available at the CDS via anony- observations. According to Willner et al.(2008) pointing errors mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via of MEX mainly relate to attitude uncertainties about the X and http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A15 Y axes of the camera leading to translations of the observed Article published by EDP Sciences A15, page 1 of9 A&A 614, A15 (2018) bodies’ location in the image. Compared to these translational errors, rotations about the boresight axis can be neglected (Willner 2009). The HRSC planning team has identified occasions where both moons or one of the satellites together with another plan- etary object, for example, a planet, moon, star or star field, can be observed. This kind of observation is referred to as mutual event. Usually during such occasions a sequence of several tens of images is obtained. These observations provide a unique Fig. 1. Measurements showing a) Phobos and Deimos (HD090_0032), opportunity to derive information on the relative position of the b) Phobos and Jupiter (HC151_0085) and c) Deimos together with Martian moons with respect to another distant but well-known Saturn (HC921_0030). celestial object. However, no analysis of these data has been carried out to date. The advantage of mutual event observations over observa- the background are analyzed (Fig.1). Next to these mutual event tions of only one Martian moon is that the absolute camera observations, a wealth of data exist imaging Phobos or Deimos pointing is irrelevant as long as two objects are visible and the and a star or star field. A few observations containing the Earth’s relative angular separation between the two bodies can be deter- moon and the Galilean moons exist. These bodies are, due to mined. This leads to accurate position information of Phobos their size and distance, comparable to point-like light sources or Deimos with respect to one of the other, above-mentioned and appear similar to star records in SRC images. As this kind celestial bodies. Furthermore, mutual event observations can be of observation requires a different measurement approach, their obtained more frequently than direct observations during fly- analysis will be discussed in a separate publication. bys. Distance is considered less critical in theses cases due to In total there are 1024 images showing two planetary objects the independency from the spacecraft pointing and thus obser- (cf. Table1). If either Phobos or Deimos is imaged together with vations from a wide range of MEX orbit positions are possible. the Jovian system or Saturn, then the Martian moon is designated Both features make this kind of observation an ideal input to as the primary object and the other planetary body as the sec- orbit modeling algorithms. ondary object. If Phobos and Deimos are imaged, then Phobos is Improved ephemerides for Phobos and Deimos have some considered as the primary object. immediate benefits for navigational purposes. However, besides During mutual event observations the apparent viewing from being an indispensable prerequisite for spacecraft mis- geometry between camera and primary object (e.g., Phobos or sion design, orbit planning and optical navigation, accurate Deimos) changes only on a minimal scale. Hence, initially it ephemerides also serve scientific objectives. was assumed that the perspective between observer and primary The ephemerides are derived by numerically integrating the object as well as secondary object does not change signifi- satellite orbits while simultaneously fitting these to the astromet- cantly throughout one observation series. Under this assumption, ric observations (Lainey et al. 2007; Jacobson 2010; Jacobson techniques to detect the observed features automatically can & Lainey 2014). Dynamical model parameter values are also be applied assuring consistency in the quality of observations determined during the least-squares adjustment, including the throughout one image sequence. amplitude of Phobos’ libration in longitude and Phobos’ secular However, a detailed analysis revealed that the observation acceleration (Jacobson 2010). geometry changes throughout long observation series or simply Variations in the rotational motion (i.e., librations) impose due to an unfortunate imaging geometry, for example, view- constraints on the mass distribution inside Phobos on a finer ing Phobos from an angle from which small changes of the scale (Rambaux et al. 2012). Combined with a precise knowledge observers’ position changes the image significantly. In these of the secular drift of the periapsis of Phobos’ orbit, they allow cases a segmentation of the image series was applied; see conclusions on the satellites’ second-order gravity field coeffi- Sect. 3.3. cents (Borderies & Yoder 1990; Jacobson & Lainey 2014). Varia- Other than the secondary object, which is usually completely tions in the orbital motion of the Martian moons are also a means visible in all images, the primary object enters and leaves the of studying Mars itself. Temporal accelerations can be used field of view (FOV) throughout one image series. Images show- to investigate the Martian J2 gravity coefficient, in particular ing more than approximately 15% of the primary object are its seasonal changes. Furthermore, tidal accelerations allow the evaluated (see Sect. 3.2), images showing a lesser portion of the determination of the rate of tidal dissipation (Lainey et al. 2007; primary object are excluded from further analysis.
Recommended publications
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • Roving on Phobos: Challenges of the Mmx Rover for Space Robotics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications ROVING ON PHOBOS: CHALLENGES OF THE MMX ROVER FOR SPACE ROBOTICS Jean Bertrand (1), Simon Tardivel (1), Frans IJpelaan (1), Emile Remetean (1), Alex Torres (1), Stéphane Mary (1), Maxime Chalon (2), Fabian Buse (2), Thomas Obermeier (2), Michal Smisek (2), Armin Wedler (2), Joseph Reill (2), Markus Grebenstein (2) (1) CNES, 18 avenue Edouard Belin 31401 Toulouse Cedex 9 (France), [email protected] (2) DLR, Münchener Straße 20 82234 Weßling (Germany), [email protected] ABSTRACT Once on the surface, the rover would deploy and upright itself from its stowed position and orientation, and carry This paper presents a small rover for exploration mission out several science objectives over the course of a few dedicated to the moons of Mars, Phobos and Deimos. months. In October 2018, CNES and DLR have This project is a collaboration between JAXA for the expressed their interest in partnering together on this mother spacecraft, and a cooperative contribution of project and the MMX rover is now a joint project of both CNES and DLR to provide a rover payload. organizations in tight cooperation. After a description of the MMX mission defined by JAXA, this paper presents This rover will be different in many aspects compared to the Phobos environment. Then, it details the mission the existing ones. It will have to drive in a very low constraints and the rover objectives. It outlines some gravity with only little power given by the solar arrays.
    [Show full text]
  • The Nature of the Giant Exomoon Candidate Kepler-1625 B-I René Heller
    A&A 610, A39 (2018) https://doi.org/10.1051/0004-6361/201731760 Astronomy & © ESO 2018 Astrophysics The nature of the giant exomoon candidate Kepler-1625 b-i René Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany e-mail: [email protected] Received 11 August 2017 / Accepted 21 November 2017 ABSTRACT The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indi- cate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0:4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; 112 MJup ≈ 0:11 M ). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water–rock companion of about +19:2 180 M⊕. Furthermore, the planet–moon dynamics during the transits suggest a total system mass of 17:6−12:6 MJup.
    [Show full text]
  • The Formation of the Martian Moons Rosenblatt P., Hyodo R
    The Final Manuscript to Oxford Science Encyclopedia: The formation of the Martian moons Rosenblatt P., Hyodo R., Pignatale F., Trinh A., Charnoz S., Dunseath K.M., Dunseath-Terao M., & Genda H. Summary Almost all the planets of our solar system have moons. Each planetary system has however unique characteristics. The Martian system has not one single big moon like the Earth, not tens of moons of various sizes like for the giant planets, but two small moons: Phobos and Deimos. How did form such a system? This question is still being investigated on the basis of the Earth-based and space-borne observations of the Martian moons and of the more modern theories proposed to account for the formation of other moon systems. The most recent scenario of formation of the Martian moons relies on a giant impact occurring at early Mars history and having also formed the so-called hemispheric crustal dichotomy. This scenario accounts for the current orbits of both moons unlike the scenario of capture of small size asteroids. It also predicts a composition of disk material as a mixture of Mars and impactor materials that is in agreement with remote sensing observations of both moon surfaces, which suggests a composition different from Mars. The composition of the Martian moons is however unclear, given the ambiguity on the interpretation of the remote sensing observations. The study of the formation of the Martian moon system has improved our understanding of moon formation of terrestrial planets: The giant collision scenario can have various outcomes and not only a big moon as for the Earth.
    [Show full text]
  • Space Colonization Using Space-Elevators from Phobos
    Space Colonization Using Space-Elevators from Phobos Leonard M. Weinstein Advanced Measurement and Diagnostics Branch, NASA Langley Research Center, Hampton, VA 23681, USA Phone: (757)864-5543, fax: (757)864-8315, [email protected] Abstract. A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars. INTRODUCTION Numerous papers and books extensively examine the requirement and the potential value to establish a civilization in space and on other planets.
    [Show full text]
  • Roche Limit.  Formation of Small Aggregates
    ROYAL OBSERVATORY OF BELGIUM On the formation of the Martian moons from a circum-Mars accretion disk Rosenblatt P. and Charnoz S. 46th ESLAB Symposium: Formation and evolution of moons Session 2 – Mechanism of formation: Moons of terrestrial planets June 26th 2012 – ESTEC, Noordwijk, the Netherlands. The origin of the Martian moons ? Deimos (Viking image) Phobos (Viking image)Phobos (MEX/HRSC image) Size: 7.5km x 6.1km x 5.2km Size: 13.0km x 11.39km x 9.07km Unlike the Moon of the Earth, the origin of Phobos & Deimos is still an open issue. Capture or in-situ ? 1. Arguments for in-situ formation of Phobos & Deimos • Near-equatorial, near-circular orbits around Mars ( formation from a circum-Mars accretion disk) • Mars Express flybys of Phobos • Surface composition: phyllosilicates (Giuranna et al. 2011) => body may have formed in-situ (close to Mars’ orbit) • Low density => high porosity (Andert, Rosenblatt et al., 2010) => consistent with gravitational-aggregates 2. A scenario of in-situ formation of Phobos and Deimos from an accretion disk Adapted from Craddock R.A., Icarus (2011) Giant impact Accretion disk on Proto-Mars Mass: ~1018-1019 kg Gravitational instabilities formed moonlets Moonlets fall Two moonlets back onto Mars survived 4 Gy later elongated craters Physical modelling never been done. What modern theories of accretion can tell us about that scenario? 3. Purpose of this work: Origin of Phobos & Deimos consistent with theories of accretion? Modern theories of accretion : 2 main regimes of accretion. • (a) The strong tide regime => close to the planet ~ Roche Limit Background : Accretion of Saturn’s small moons (Charnoz et al., 2010) Accretion of the Earth’s moon (Canup 2004, Kokubo et al., 2000) • (b) The weak tide regime => farther from the planet Background : Accretion of big satellites of Jupiter & Saturn Accretion of planetary embryos (Lissauer 1987, Kokubo 2007, and works from G.
    [Show full text]
  • Phobos State of Knowledge and Rationales for Future Exploration
    Phobos/Deimos State of Knowledge in Preparation for Future Exploration Julie Castillo-Rogez Laboratory for Frozen Astromaterials, PI NIAC for Hybrid Rovers/Hoppers, Study Scientist Jet Propulsion Laboratory, California Institute of Technology Initial Phobos/Deimos DRM Meeting for HAT Outline Introduction Science at Phobos Deimos Human Exploration Considerations Outline Introduction Science at Phobos Deimos Human Exploration Considerations Scope • Characterize Phobos/Deimos environment - Soil properties – mechanical and chemical - Surface dynamics - Subsurface properties (e.g., caves, regolith thickness) - Hazards – Radiations, topography, dust, electrostatic charging • Identify potential landing sites - Hazards – topography, surface dynamics - Vantage point wrt Mars - Scientific interest Moons Properties Phobos Deimos Shape (km) 26.8 × 22.4 × 18.4 15 × 12.2 × 10.4 Density (kg/m3) 1876 1471 Surface Gravity (Equator) µg 190-860 390 Escape Velocity (m/s) 11.3 5.6 SMA (km) 9,377 23,460 Eccentricity 0.015 1 0.000 2 Rotation Period (hr) 7h39.2 30h18 Forced Libration in Longitude 1.24±0.15 ?? (deg.) Orbital Period (hr) Synchronous Synchronous Equatorial Rotation Velocity 11.0 1.6 (km/h) – Longest axis Surface Temperature (K) 150-300 233 Outline Introduction Science at Phobos Deimos Human Exploration Considerations Key Science • Mysterious origin is endless subject of discussion – Remnant planetesimal vs. captured asteroid vs. Mars ejectas – Brings constraints on Mars’ early history and/or Solar system • Likely to have accumulated material from
    [Show full text]
  • Astronomy 4 Test #3 Practice 2. How Were the Rings of Uranus Discovered?
    Astronomy 4 Test #3 Practice Multiple Choice Choose the ONE best answer for each question. 1. Which of the following things makes Saturn’s moon Titan unique amongst all of the moon in the solar system? a. It has a rocky surface. b. It orbits Saturn in the opposite direction from Saturn’s other moons. c. It has a thick atmosphere. d. It has flows of molten lava on its surface. 2. How were the rings of Uranus discovered? a. Astronomers used radar signals from the Earth and bounced them off of the rings, receiving the reflected waves with radio telescopes. b. Astronomers saw a star appear to momentarily get dimmer as it passed behind each of the rings. c. They were among the first features discovered with the telescope in the 1600s. d. Astronomers could see them silhouetted in front of Uranus when they observed Uranus with large telescopes. 3. Which of the following statements best describes what’s weird about the orbit of Triton, the large moon of Neptune? a. Its orbit is more elliptical than those of most moons. b. It orbits closer to Neptune than any other moon orbits its `parent’ planet. c. It orbit Neptune in the opposite direction that most moons orbit their `parent’ planets. d. Its orbit is not very close to the plane of the ecliptic; it passes over the north and south poles of Neptune. 1 4. What’s the biggest difference -besides overall size and mass - between the Earth and Jupiter? a. The Earth’s solid surface has much more atmosphere on top of it than is the case for Jupiter.
    [Show full text]
  • Editorial Manager(Tm) for Earth, Moon, and Planets Manuscript Draft
    Editorial Manager(tm) for Earth, Moon, and Planets Manuscript Draft Manuscript Number: MOON491 Title: Irregularly Shaped Satellites-Phobos & Deimos- moons of Mars, and their evolutionary history. Article Type: Manuscript Keywords: gravitational sling shot effect; Clarke's Orbits; Roche's Limit; velocity of recession/approach; sub-synchronous orbit; extra-synchronous orbit. Corresponding Author: DOCTOR BIJAY KUMAR SHARMA, Ph.D Corresponding Author's Institution: NATIONAL INSTITUTE OF TECHNOLOGY First Author: Bijay K Sharma, B.Tech,MS & Ph.D. Order of Authors: Bijay K Sharma, B.Tech,MS & Ph.D.; BIJAY KUMAR SHARMA, Ph.D Abstract: Phobos, a moon of Mars, is below the Clarke's synchronous orbit and due to tidal interaction is losing altitude. With this altitude loss it is doomed to the fate of total destruction by direct collision with Mars. On the other hand Deimos, the second moon of Mars is in extra-synchronous orbit and almost stay put in the present orbit. The reported altitude loss of Phobos is 1.8 m per century by wikipedia and 60ft per century according to ozgate url . The reported time in which the destruction will take place is 50My and 40My respectively. The authors had proposed a planetary-satellite dynamics based on detailed study of Earth-Moon[personal communication: http://arXiv.org/abs/0805.0100 ]. Based on this planetary satellite dynamics, 2 m/century approach velocity leads to the age of Phobos to be 23 Gyrs which is physically untenable since our Solar System's age is 4.567Gyrs. Hence the present altitude loss is assumed to be 20 m per century.
    [Show full text]
  • Mars Orbiter and Lander (ESA)
    So much nonsense has been written about the planet … that it is easy to forget that Mars is still an object of serious scientific investigation. Canadian astronomer Peter M. Millman, in “Is There Vegetation on Mars,” The Sky, 3, 10–11 (1939) Tentative Course outline • Today: Intro to Mars, Early discoveries about Mars (Chapters 1-4) • Oct 17: Canals on Mars, Water on Mars (Chapters 5-8) • Oct 24: Lichens on Mars (Chapter 9) • Oct 31: Viking mission (Chapter 10) • Nov 7: ALH 84001 (Chapter 11) • Nov 14: Methane on Mars (Chapters 12-15) Earth and Mars Basic Facts Earth Mars • 93 million miles from • 142 million miles from sun sun • Diameter: 4,212 miles • Diameter: 7,918 miles (53% of Earth) • Orbit: 365.25 days • Mass: 10.7% of Earth • Solid surface • Orbit: 687 days • Thin atmosphere • Solid surface • Thin atmosphere • 1 big moon • 2 little moons Basic Facts about Earth and Solar System • Sun and planets formed at same time The Nebular Hypothesis Immanuel Pierre Kant Laplace 1755 1796 sun (center) and planets (in disk) form at same time out of rotating cloud that collapses under the force of gravity An ALMA image of the star HD 163296 and its protoplanetary disk as seen in dust. New observations suggested that two planets, each about the size of Saturn, are in orbit around the star. These planets, which are not yet fully formed, revealed themselves in the dual imprint they left in both the dust and the gas portions of the star's protoplanetary disk. Credit: ALMA (ESO/NAOJ/NRAO), Andrea Isella, B.
    [Show full text]
  • Hall: a Phobos and Deimos Sample Return Mission
    41st Lunar and Planetary Science Conference (2010) 1633.pdf HALL: A PHOBOS AND DEIMOS SAMPLE RETURN MISSION. Pascal Lee1,2,3, Joseph Veverka4, Julie Bel- lerose5, Marc Boucher1, John Boynton6, Stephen Braham1,7, Ralf Gellert8, Alan Hildebrand9, David Manzella10, Greg Mungas6, Steven Oleson10, Robert Richards11, Peter C. Thomas4, and Michael D. West1,12. 1Mars Institute, 2SETI Institute, 3NASA Ames Research Center, [email protected], 4Cornell Univ., 5Carnegie Mellon Univ. 6Firestar Engineering, 7Simon Fraser University, 8Univ. of Guelph, 9Univ. of Calgary, 10NASA Glenn Research Cen- ter, 11Optech, 12The Australian National Univ. Introduction: Hall is a proposed NASA-led inter- types of primitive asteroids, but their surfaces also national robotic lander and sample return mission present lateral variations in albedo and color, suggest- (SRM) to explore and return samples from the two ing possible variations in the composition and/or moons of Mars, Phobos and Deimos. The mission will weathering state of their regolith. address the outstanding issues of the origin, nature, and Samples from Phobos and Deimos, if they were to evolution of both Phobos and Deimos, as well as pro- include soils as well, would allow detailed investiga- vide unique insights into early solar system processes, tions of the nature and evolution of their regolith. In planetary formation, and the evolution of Mars itself. this regard, an intriguing prospect is that their regolith Hall is being developed as a New Frontiers-class mis- should include meteoritic signatures from Mars [7-9, 11], asteroids, comets, and interplanetary dust particles sion and will use solar electric propulsion. Hall is (IDPs). Sampling Phobos’s regolith could therefore named after American astronomer Asaph Hall who, in provide access to a wide variety of martian and other 1877, discovered the two moons of Mars.
    [Show full text]