Quantum Mechanics II

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Mechanics II Quantum Mechanics II. Janos Polonyi University of Strasbourg (Dated: September 8, 2021) Contents I. Perturbation expansion 4 A. Stationary perturbations 5 1. First order 6 2. Second order 6 3. Degenerate perturbation 7 B. Time dependent perturbations 9 C. Non-exponential decay rate 12 D. Quantum Zeno-effect 15 E. Time-energy uncertainty principle 16 F. Fermi’s golden rule 17 II. Rotations 18 A. Finite translations 18 B. Finite rotations 19 C. Euler angles 21 D. Summary of the angular momentum algebra 22 E. Rotational multiplets 23 F. Wigner’s D matrix 24 G. Invariant integration over rotations 26 H. Spherical harmonics 28 III. Addition of angular momentum 31 A. Additive observables and quantum numbers 31 1. Momentum 31 2. Angular momentum 32 2 B. System of two particles 32 IV. Selection rules 38 A. Tensor operators 38 B. Orthogonality relations 39 C. Wigner-Eckart theorem 41 V. Symmetries in quantum mechanics 43 A. Representation of symmetries 44 B. Unitary and anti-unitary symmetries 45 C. Space inversion 48 D. Time inversion 50 VI. Relativistic corrections to the hydrogen atom 54 A. Scale dependence of physical laws 54 B. Hierarchy of scales in QED 56 C. Unperturbed, non-relativistic dynamics 58 D. Fine structure 59 1. Relativistic corrections to the kinetic energy 59 2. Darwin term 60 3. Spin-orbit coupling 61 E. Hyperfine structure 64 F. Splitting of the fine structure degeneracy 65 1. n = 1 65 2. n = 2 66 VII. Identical particles 68 A. A macroscopic quantum effect 68 B. Fermions and bosons 69 C. Occupation number representation 73 D. Exchange interaction 74 VIII. Potential scattering 75 A. Cross section 75 B. Optical theorem 77 3 C. Lippmann-Schwinger equation 78 D. Partial waves 81 1. Scattering amplitude 84 2. Phase shift 85 3. Low energy scattering 87 4. Bound states 88 5. Resonances 89 IX. Outlook 90 A. Measurement theory 91 B. (In)Determinism 93 C. Non-locality I. Einsein-Podolksi-Rosen experiment 94 D. Non-locality II. Bell inequality 95 E. Contextuality 96 F. Instead of conclusion 97 A. Density matrix 98 1. Gleason theorem 98 2. Properties 100 3. Composite systems 101 4. Physical origin 102 a. Loss of classical information 102 b. Entangled states 104 c. Relative states 106 B. Quantum anomalies 107 1. Singular time dependence 108 2. Quantization rules in polar coordinates 109 4 Quantum mechanics is usually taught on four different levels: 1. Basic ideas, simple examples for a one dimensional particle, particle in spherical potential 2. More realistic, three dimensional cases with few particles 3. Several particles, relativistic effects (Quantum Field Theory) 4. Fundamental issues, challenges, paradoxes and interpretation of the quantum world This lecture note belongs to level 2. You should be warned when embarking level 1 to leave your expectations, intuitions behind and start from scratch. There is no other discipline thought at Universities where one has to ask the students at the half of their university time to follow such a strange attitude. Now, at level 2., you should keep the experience of your first encounter with quantum mechanics, whatever confusing and unsatisfactory they were, this is the time to develop further your knowledge. But please keep your dissatisfaction about the subject in mind and remember it later when you can try to improve our understanding and maneuverability in the quantum world. It is not clear how far we are from a better understanding of quantum mechanics. We may miss only few elements or we may even have to change completely our mathematics. But it is sure that we have to improve our way we look at Nature. Until this happens try to understand why don’t you understand quantum mechanics. I. PERTURBATION EXPANSION The Hamiltonian, being a hermitian operator, can always be brought into a diagonal form by using an appropriate basis where the Schr¨odinger equation, and the dynamics of a quantum system is trivial. But this simplicity is naturally misleading because the basis where the dynamics is simple is usually highly non-trivial in terms of the usual observables. A systematic approximation scheme, the perturbation expansion, is based on the assumption that the Hamiltonian can be written as a sum of two hermitian operators, H = H0 + gH1, one is stationary and easily diagonalizable and the other is assumed to be weak, a condition to be specified later. We treat g as a small parameter and organize the solution of the Schr¨odinger equation as a power series in g. 5 A. Stationary perturbations We assume first that H0 is non-degenerate and H1 is time independent and seek the spectrum and the stationary states, thee eigenvalues and the eigenvectors, H ψ = E ψ . For this end we | ni n| ni assume that the unknown eigenvector and eigenvalues can be expanded in the small parameter, ψ = ψ(0) + g ψ(1) + g2 ψ(2) + , | ni | n i | n i | n i · · · E = E(0) + gE(1) + g2E(2) + , (1) n n n n · · · which gives after inserting into the eigenvalue equation 0 = g0 H ψ(0) E(0) ψ(0) 0| n i− n | n i +g H ψ(1) + H ψ(0) E(1) ψ(0) E(0) ψ(1) 0| n i 1| n i− n | n i− n | n i +g2 H ψ(2) + H ψ(1) E(2) ψ(0) E(1) ψ(1) E(0) ψ(2) + (2) 0| n i 1| n i− n | n i− n | n i− n | n i · · · We can now consider the different orders one-by-one, 0 (0) (0) (0) g : H ψn = E ψ O 0| i n | n i (0) (1) (1) (0) (g) : (H En ) ψn = (E H ) ψ O 0 − | i n − 1 | n i 2 (0) (2) (1) (1) (2) (0) g : (H En ) ψn = (E H ) ψ + E ψ O 0 − | i n − 1 | n i n | n i k (0) (k) (1) (k 1) (k) (0) g : (H En ) ψn = (E H ) ψ − + + E ψ (3) O 0 − | i n − 1 | n i · · · n | n i (0) The zeroth-order equation shows that the vectors ψn , the eigenvectors of a non-degenerate | i (0) (0) Hermitian operator are orthogonal, ψm ψn = δ . The higher order equations can not be h | i mn (k) solved in a unique manner. In fact, to solve say the last equation for ψn one multiplies the | i (0) 1 equation by (H En ) . However the latter operator has a non-trivial null-space (the null-space 0 − − of an operator A is a linear subspace, consistsing of the vectors turned into zero by the operator in question, A 0 = 0) where its inverse does not exist. To overcome this difficulty observe that if the | i (k) vector ψn represents a solution of the k-th order eigenvalue equation then another solution can | i (k) (0) (0) (k) be found by adding to it a vector from the null-spaces, ψn + c ψn . We choose c = ψn ψn | i | i −h | i (0) (k) which is equivalent with imposing the condition ψn ψn = δ , to render the solution unique and h | i k,0 well defined by definition. This method of solving the equations fails if the spectrum is continuous. In that case one adds an infinitesimal imaginary term to the free Hamiltonian, H H + iǫ, with 0 → 0 ǫ 0, c.f. eq. (364). → 6 1. First order (1) (0) One supposes the form ψn = c ψ and the projection of the second equation of (3) | i k n,k| k i (0) on ψ gives P h k | (E(0) E(0))c = E(1)δ H , k − n n,k n k,n − 1kn H1kn (0) (0) , k = n En E 6 cn,k = − k 0 k = n, (1) En = H1nn, (4) (0) (0) where H = ψm H ψn . 1mn h | 1| i 2. Second order (2) (0) (0) We now write ψn = d ψ and project the third equation of (3) on ψ , | i k n,k| k i h k | P (E(0) E(0))d = E(1)c + E(2)δ H c (5) k − n n,k n n,k n k,n − 1kℓ n,ℓ Xℓ The case k = n, using cn,n = 0 gives H 2 E(2) = 1nℓ (6) n (0)| | (0) En E Xℓ − ℓ and we find H1nnH1kn + 1 H1kℓH1ℓn , k = n (0) (0) 2 (0) (0) ℓ (0) (0) − (En E ) En E En E 6 dn,k = − k − k − ℓ (7) P 0 k = n. These kind of corrections are small as long as g ψ(0) H ψ(0) E(0) h n | 1| n i ≪ n g ψ(0) H ψ(0) E(0) E(0) . (8) |h k | 1| n i| ≪ | n − k | The first equation indicates that perturbation should be smaller than H0 in the diagonal, a con- ditions which is compatible with classical expectations. But the second inequality states an upper bound for the off-diagonal matrix elements of the perturbation which is a genuine quantum phe- nomenon. 7 Though the inequalities (8) can be satisfied for sufficiently small g the perturbation series are usually non-convergent in quantum mechanics due to the piling up of the higher order contributions. Consider for instance an anharmonic oscillators, defined by the Hamiltonian p2 mω2 g H = + x2 + x4. (9) 2m 2 4! The basic assumption of perturbation expansion is that the eigenvalues and the eigenvectors are analytical at g = 0. But this is usually not the case because analyticity shows up on a complex plane rather than on a line.
Recommended publications
  • Tensor-Tensor Products with Invertible Linear Transforms
    Tensor-Tensor Products with Invertible Linear Transforms Eric Kernfelda, Misha Kilmera, Shuchin Aeronb aDepartment of Mathematics, Tufts University, Medford, MA bDepartment of Electrical and Computer Engineering, Tufts University, Medford, MA Abstract Research in tensor representation and analysis has been rising in popularity in direct response to a) the increased ability of data collection systems to store huge volumes of multidimensional data and b) the recognition of potential modeling accuracy that can be provided by leaving the data and/or the operator in its natural, multidi- mensional form. In comparison to matrix theory, the study of tensors is still in its early stages. In recent work [1], the authors introduced the notion of the t-product, a generalization of matrix multiplication for tensors of order three, which can be extended to multiply tensors of arbitrary order [2]. The multiplication is based on a convolution-like operation, which can be implemented efficiently using the Fast Fourier Transform (FFT). The corresponding linear algebraic framework from the original work was further developed in [3], and it allows one to elegantly generalize all classical algorithms from linear algebra. In the first half of this paper, we develop a new tensor-tensor product for third-order tensors that can be implemented by us- ing a discrete cosine transform, showing that a similar linear algebraic framework applies to this new tensor operation as well. The second half of the paper is devoted to extending this development in such a way that tensor-tensor products can be de- fined in a so-called transform domain for any invertible linear transform.
    [Show full text]
  • The Pattern Calculus for Tensor Operators in Quantum Groups Mark Gould and L
    The pattern calculus for tensor operators in quantum groups Mark Gould and L. C. Biedenharn Citation: Journal of Mathematical Physics 33, 3613 (1992); doi: 10.1063/1.529909 View online: http://dx.doi.org/10.1063/1.529909 View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/33/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Irreducible tensor operators in the regular coaction formalisms of compact quantum group algebras J. Math. Phys. 37, 4590 (1996); 10.1063/1.531643 Tensor operators for quantum groups and applications J. Math. Phys. 33, 436 (1992); 10.1063/1.529833 Tensor operators of finite groups J. Math. Phys. 14, 1423 (1973); 10.1063/1.1666196 On the structure of the canonical tensor operators in the unitary groups. I. An extension of the pattern calculus rules and the canonical splitting in U(3) J. Math. Phys. 13, 1957 (1972); 10.1063/1.1665940 Irreducible tensor operators for finite groups J. Math. Phys. 13, 1892 (1972); 10.1063/1.1665928 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 130.102.42.98 On: Thu, 29 Sep 2016 02:42:08 The pattern calculus for tensor operators in quantum groups Mark Gould Department of Applied Mathematics, University of Queensland,St. Lucia, Queensland,Australia 4072 L. C. Biedenharn Department of Physics, Duke University, Durham, North Carolina 27706 (Received 28 February 1992; accepted for publication 1 June 1992) An explicit algebraic evaluation is given for all q-tensor operators (with unit norm) belonging to the quantum group U&(n)) and having extremal operator shift patterns acting on arbitrary U&u(n)) irreps.
    [Show full text]
  • Arxiv:2012.13347V1 [Physics.Class-Ph] 15 Dec 2020
    KPOP E-2020-04 Bra-Ket Representation of the Inertia Tensor U-Rae Kim, Dohyun Kim, and Jungil Lee∗ KPOPE Collaboration, Department of Physics, Korea University, Seoul 02841, Korea (Dated: June 18, 2021) Abstract We employ Dirac's bra-ket notation to define the inertia tensor operator that is independent of the choice of bases or coordinate system. The principal axes and the corresponding principal values for the elliptic plate are determined only based on the geometry. By making use of a general symmetric tensor operator, we develop a method of diagonalization that is convenient and intuitive in determining the eigenvector. We demonstrate that the bra-ket approach greatly simplifies the computation of the inertia tensor with an example of an N-dimensional ellipsoid. The exploitation of the bra-ket notation to compute the inertia tensor in classical mechanics should provide undergraduate students with a strong background necessary to deal with abstract quantum mechanical problems. PACS numbers: 01.40.Fk, 01.55.+b, 45.20.dc, 45.40.Bb Keywords: Classical mechanics, Inertia tensor, Bra-ket notation, Diagonalization, Hyperellipsoid arXiv:2012.13347v1 [physics.class-ph] 15 Dec 2020 ∗Electronic address: [email protected]; Director of the Korea Pragmatist Organization for Physics Educa- tion (KPOP E) 1 I. INTRODUCTION The inertia tensor is one of the essential ingredients in classical mechanics with which one can investigate the rotational properties of rigid-body motion [1]. The symmetric nature of the rank-2 Cartesian tensor guarantees that it is described by three fundamental parameters called the principal moments of inertia Ii, each of which is the moment of inertia along a principal axis.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Some Applications of Eigenvalue Problems for Tensor and Tensor–Block Matrices for Mathematical Modeling of Micropolar Thin Bodies
    Mathematical and Computational Applications Article Some Applications of Eigenvalue Problems for Tensor and Tensor–Block Matrices for Mathematical Modeling of Micropolar Thin Bodies Mikhail Nikabadze 1,2,∗ and Armine Ulukhanyan 2 1 Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia 2 Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, 105005 Moscow, Russia; [email protected] * Correspondence: [email protected] Received: 26 January 2019; Accepted: 21 March 2019; Published: 22 March 2019 Abstract: The statement of the eigenvalue problem for a tensor–block matrix (TBM) of any order and of any even rank is formulated, and also some of its special cases are considered. In particular, using the canonical presentation of the TBM of the tensor of elastic modules of the micropolar theory, in the canonical form the specific deformation energy and the constitutive relations are written. With the help of the introduced TBM operator, the equations of motion of a micropolar arbitrarily anisotropic medium are written, and also the boundary conditions are written down by means of the introduced TBM operator of the stress and the couple stress vectors. The formulations of initial-boundary value problems in these terms for an arbitrary anisotropic medium are given. The questions on the decomposition of initial-boundary value problems of elasticity and thin body theory for some anisotropic media are considered. In particular, the initial-boundary problems of the micropolar (classical) theory of elasticity are presented with the help of the introduced TBM operators (tensors–operators). In the case of an isotropic micropolar elastic medium (isotropic and transversely isotropic classical media), the TBM operator (tensors–operators) of cofactors to TBM operators (tensors–tensors) of the initial-boundary value problems are constructed that allow decomposing initial-boundary value problems.
    [Show full text]
  • Entanglement Entropy from One-Point Functions in Holographic States
    Published for SISSA by Springer Received: May 10, 2016 Accepted: June 6, 2016 Published: June 15, 2016 Entanglement entropy from one-point functions in JHEP06(2016)085 holographic states Matthew J.S. Beach, Jaehoon Lee, Charles Rabideau and Mark Van Raamsdonk Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1W9, Canada E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: For holographic CFT states near the vacuum, entanglement entropies for spa- tial subsystems can be expressed perturbatively as an expansion in the one-point functions of local operators dual to light bulk fields. Using the connection between quantum Fisher information for CFT states and canonical energy for the dual spacetimes, we describe a general formula for this expansion up to second-order in the one-point functions, for an arbitrary ball-shaped region, extending the first-order result given by the entanglement first law. For two-dimensional CFTs, we use this to derive a completely explicit formula for the second-order contribution to the entanglement entropy from the stress tensor. We show that this stress tensor formula can be reproduced by a direct CFT calculation for states related to the vacuum by a local conformal transformation. This result can also be reproduced via the perturbative solution to a non-linear scalar wave equation on an auxiliary de Sitter spacetime, extending the first-order result in arXiv:1509.00113. Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence ArXiv ePrint: 1604.05308 Open Access, c The Authors.
    [Show full text]
  • 10-5 Tensor Operator
    Tensors Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: December 04, 2010) 1 Vector operators The operators corresponding to various physical quantities will be characterized by their behavior under rotation as scalars, vectors, and tensors. Vi ijV j . j We assume that the state vector changes from the old state to the new state ' . ' Rˆ , or ' Rˆ . A vector operator Vˆ for the system is defined as an operator whose expectation is a vector that rotates together with the physical system. ˆ ˆ 'Vi ' ij V j j or ˆ ˆ ˆ ˆ R Vi R ijV j j or ˆ ˆ ˆ ˆ Vi RijV j R j We now consider a special case, infinitesimal rotation. i Rˆ 1ˆ Jˆ n 1 i Rˆ 1ˆ Jˆ n ˆ i ˆ ˆ ˆ i ˆ ˆ (1 J n)Vi (1 J n) ijV j j ˆ i ˆ ˆ ˆ Vi [Vi ,J n] ijV j j For n = ez, 1 0 z ( ) 1 0 0 0 1 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V1 [V1, J z ] 11V1 12V2 13V3 V1 V2 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V2 [V2 , J z ] 21V1 22V2 23V3 V1 V2 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V3 [V3, J z ] 31V1 32V2 33V3 V3 or ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1, J z ] iV2 , [V2 , J z ] iV1 , [V3, J z ] 0 For For n = ex, 1 0 0 x ( ) 0 1 0 1 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V1 [V1, J x ] 11V1 12V2 13V3 V1 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V2 [V2 , J x ] 21V1 22V2 23V3 V2 V3 2 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V3 [V3, J x ] 31V1 32V2 33V3 V2 V3 or ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1, J x ] 0 , [V2 , J x ] iV3 , [V3, J x ] iV2 For For n = ey, 1 0 y ( ) 0 1 0 0 1 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V1 [V1, J y ] 11V1 12V2 13V3 V1 V3 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V2 [V2 , J y ] 21V1 22V2 23V3 V2 ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V3 [V3, Jyx ] 31V1 32V2 33V3 V1 V3 or ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1, J y ] iV3 , [V2 , J y ] 0, [V3, J y ] iV1 Using the Levi-Civita symbol, we have ˆ ˆ ˆ [Vi , J j ] iijkVk We can use this expression as the defining property of a vector operator.
    [Show full text]
  • Combining Angular Momentum States
    6.4.1 Spinor Space and Its Matrix Representation . 127 6.4.2 Angular Momentum Operators in Spinor Representation . 128 6.4.3 IncludingSpinSpace ..........................128 6.5 Single Particle States with Spin . 131 6.5.1 Coordinate-Space-Spin Representation . 131 6.5.2 Helicity Representation . 131 6.6 Isospin......................................133 6.6.1 Nucleon-Nucleon (NN) Scattering . 135 7 Combining Angular Momentum Eigenstates 137 7.1 AdditionofTwoAngularMomenta . .137 7.2 ConstructionoftheEigenstates . 141 7.2.1 Symmetry Properties of Clebsch-Gordan Coefficients . 143 7.3 SpecialCases ..................................144 7.3.1 Spin-OrbitInteraction . .144 1 7.3.2 Coupling of Two Spin- 2 Particles ...................146 7.4 PropertiesofClebsch-GordanCoefficients . 147 7.5 Clebsch-GordanSeries .............................149 7.5.1 Addition theorem for spherical Harmonics . 150 7.5.2 Coupling Rule for spherical Harmonics . 151 7.6 Wigner’s 3 j Coefficients...........................152 − 7.7 CartesianandSphericalTensors . 155 v 7.8 TensorOperatorsinQuantumMechanics . 159 7.9 Wigner-EckartTheorem . .. .. .162 7.9.1 Qualitative . 162 7.9.2 ProofoftheWigner-EckartTheorem . 163 7.10Applications...................................164 8 Symmetries III: Time Reversal 170 8.1 Anti-UnitaryOperators. .. .. .170 8.2 Time Reversal for Spinless Particles . 171 8.3 Time Reversal for Particles with Spin . 173 8.4 InvarianceUnderTimeReversal . 174 8.5 AddendumtoParityTransformations . 176 8.6 Application: Construction of the Nucleon Nucleon Potential FromInvarianceRequirements. .177 9 Quantum Mechanics of Identical Particles 183 9.1 General Rules for Describing Several Identical Particles . ......183 9.2 SystemofTwoIdenticalParticles . 185 9.3 PermutationGroupforThreeParticles . 188 9.4 MatrixRepresentationofaGroup. 189 9.5 Important Results About Representations of the Permutation Group . 190 9.6 Fermi-,Bose-andPara-Particles.
    [Show full text]
  • Pos(Modave VIII)001
    Introduction to Conformal Field Theory PoS(Modave VIII)001 Antonin Rovai∗† Université Libre de Bruxelles and International Solvay Institues E-mail: [email protected] An elementary introduction to Conformal Field Theory is provided. We start by reviewing sym- metries in classical and quantum field theories and the associated existence of conserved currents by Noether’s theorem. Next we describe general facts on conformal invariance in d dimensions and finish with the analysis of the special case d = 2, including an introduction to the operator formalism and a discussion of the trace anomaly. Eighth Modave Summer School in Mathematical Physics 26th august - 1st september 2012 Modave, Belgium ∗Speaker. †FNRS Research Follow c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Introduction to Conformal Field Theory Antonin Rovai Contents Foreword 2 Introduction 3 1. Symmetries and Conservation laws 3 PoS(Modave VIII)001 1.1 Definitions 4 1.2 Noether’s theorem 6 1.3 The energy-momentum tensor 8 1.4 Consequences for the quantum theory 10 2. Conformal invariance in d dimensions 11 2.1 General considerations and algebra 11 2.2 Action of conformal transformations on fields 15 2.3 Energy-momentum tensor and conformal invariance 16 2.4 Conformal invariance in quantum field theory and Ward identities 16 3. Conformal invariance in two dimensions 19 3.1 Identification of the transformations and analysis 19 3.2 Ward identities 23 3.3 Operator Formalism 26 3.3.1 Radial order and mode expansion 26 3.3.2 Operator Product Expansion 27 3.3.3 Virasoro algebra 29 3.4 Trace anomaly 30 References 32 Foreword These lectures notes were written for the eighth edition of the Modave Summer School in Mathematical Physics.
    [Show full text]
  • Vector and Tensor Operators in Quantum Mechanics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: November 24
    Vector and Tensor operators in quantum mechanics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: November 24. 2015) We discuss the properties of vector and tensor operators under rotations in quantum mechanics. We use the analogy from the classical physics, where vector and tensor of a quantity with three components that transforms by definition like Vi ' ijV j Tij ' ik jlTikl j k ,l under rotation. First I will present a brief review in the case of classical physics. After that the properties of vector and tensor operators under rotation in quantum mechanics. The irreducible spherical tensor operators are introduced based on the rotation operators. The Cartesian tensors are decomposed into irreducible spherical tensors. The Wigner – Eckart theorem will be discussed elsewhere. 1. Definition of vector in classical physics (i) 2D rotation Suppose that the vector r is rotated through (counter-clock wise) around the z axis. The position vector r is changed into r' in the same orthogonal basis {e1, e2}. y r' e 2 r e ' 2 x2 e1' f x2 x1 f x x1 e1 In this Fig, we have e e ' cos e e ' sin 1 1 , 2 1 e1 e2 ' sin e2 e2 ' cos Spherical Harmonics as rotator matrices 1 9/3/2017 We define r and r' as r' x 'e x 'e x e ' x e ' 1 1 2 2 1 1 2 2 , and r x e x e 1 1 2 2 . Using the relation e1 r' e1 (x1'e1 x2 'e2 ) e1 (x1e1'x2e2 ') e2 r' e2 (x1'e1 x2 'e2 ) e2 (x1e1'x2e2 ') we have x1' e1 (x1e1'x2e2 ') x1 cos x2 sin x2 ' e2 (x1e1'x2e2 ') x1 sin x2 cos or x1 ' x1 11 12 x1 cos sin x1 () x2 '
    [Show full text]
  • Chapter 9 Symmetries and Transformation Groups
    Chapter 9 Symmetries and transformation groups When contemporaries of Galilei argued against the heliocentric world view by pointing out that we do not feel like rotating with high velocity around the sun he argued that a uniform motion cannot be recognized because the laws of nature that govern our environment are invariant under what we now call a Galilei transformation between inertial systems. Invariance arguments have since played an increasing role in physics both for conceptual and practical reasons. In the early 20th century the mathematician Emmy Noether discovered that energy con- servation, which played a central role in 19th century physics, is just a special case of a more general relation between symmetries and conservation laws. In particular, energy and momen- tum conservation are equivalent to invariance under translations of time and space, respectively. At about the same time Einstein discovered that gravity curves space-time so that space-time is in general not translation invariant. As a consequence, energy is not conserved in cosmology. In the present chapter we discuss the symmetries of non-relativistic and relativistic kine- matics, which derive from the geometrical symmetries of Euclidean space and Minkowski space, respectively. We decompose transformation groups into discrete and continuous parts and study the infinitesimal form of the latter. We then discuss the transition from classical to quantum mechanics and use rotations to prove the Wigner-Eckhart theorem for matrix elements of tensor operators. After discussing the discrete symmetries parity, time reversal and charge conjugation we conclude with the implications of gauge invariance in the Aharonov–Bohm effect.
    [Show full text]
  • * Appendix A: Spherical Tensor Formalism
    * Appendix A: Spherical Tensor Formalism The geometrical aspects of the quantum-mechanical properties of molecular systems are described in terms of quantities familiar from angular momentum theory and the reader is referred to the text books existing on this subject. 1- 3 In this appendix we collect together the quantities and relations most fre­ quently used in calculations concerning the properties of solid hydrogen and other systems of interacting molecules. A.1 Spherical Harmonics The spherical harmonics Y,m(O,<jJ) are defined as the angular parts of the simultaneous eigenfunctions of the square and the :: component of the orbital angular momentum of a single particle, measured in units h (A.1) where m = I, I - 1, ... , -I and I = 0, 1,2, .... These functions are mu­ tually orthogonal and normalized on the unit sphere, (1m I I'm') == SOh S: Y;';" Y,'m,sine de d<jJ = ()ll'()mm' (A.2) The Y,m are determined uniquely by eqs. (A.1)-(A.2) up to arbitrary phase factors which we fix by choosing the so-called Condon and Shortley phases defined by the conditions that the nonvanishing matrix elements of the operators L, ± iLy and the values of the Y,o at 0 = °are real and positive (Lx ± iL)Y,m = [(I ± m + 1)(1 =+= m)]1'2y,.m±1 (A.3) and 21 + 1)1.12 Y,o(O,<jJ) = ( ~ (AA) 277 278 Appendix A • Spherical Tensor Formalism F or this choice of phases Y'tr,(8,c/J) = (-lrr;m(8,c/J) (A.5) where m == -m.
    [Show full text]