<<

Vector and operators in Masatsugu Sei Suzuki Department of , SUNY at Binghamton (Date: November 24. 2015)

We discuss the properties of vector and tensor operators under rotations in quantum mechanics. We use the analogy from the classical physics, where vector and tensor of a quantity with three components that transforms by definition like

Vi '  ijV j Tij '  ik  jlTikl j k ,l under rotation. First I will present a brief review in the case of classical physics. After that the properties of vector and tensor operators under rotation in quantum mechanics. The irreducible spherical tensor operators are introduced based on the rotation operators. The Cartesian are decomposed into irreducible spherical tensors. The Wigner – Eckart theorem will be discussed elsewhere.

1. Definition of vector in classical physics (i) 2D rotation Suppose that the vector r is rotated through  (counter-clock wise) around the z axis. The vector r is changed into r' in the same orthogonal {e1, e2}.

y

r'

e 2 r e ' 2 x2

e1'

f x2 x1 f x x1 e1

In this Fig, we have

e  e ' cos e e ' sin 1 1 , 2 1 e1  e2 ' sin e2 e2 ' cos

Spherical Harmonics as rotator matrices 1 9/3/2017

We define r and r' as

r' x 'e x 'e x e ' x e '  1 1  2 2  1 1  2 2 ,

and

r x e x e  1 1  2 2 .

Using the relation

e  r' e  (x 'e  x 'e )  e  (x e 'x e ') 1 1 1 1 2 2 1 1 1 2 2 e2  r' e2  (x1'e1  x2 'e2 )  e2  (x1e1'x2e2 ')

we have

x ' e (x e 'x e ')  x cos  x sin 1 1 1 1 2 2 1 2 x2 ' e2 (x1e1'x2e2 ')  x1 sin  x2 cos or

 x1 '  x1  11 12  x1  cos  sin  x1     ()           x2 '  x2  21 22  x2   sin cos  x2 

where

ij  ei e j '

(ii) 3D rotation Next we discuss the three-dimensional (3D) case,

3 3 3 r   x j e j , r'   x j 'e j   x j e j ' j1 j1 j1

Note that

ei  (ei e j ')e j '  ij e j ' j j

ei '  (ei 'e j )e j  (e j ei ')e j   ji e j j j j

where

Spherical Harmonics as rotator matrices 2 9/3/2017

ij  ei e j ' Then we get

3 3 3 r'   xi 'ei   x j e j '  x j ij ei  ij x j ei i1 j1 ji1 i, j

or

xi '  ij x j j

or

 x '     x   1   11 12 13  1  r'   x2 '  z ()r  21 22 23  x2        x3 ' 31 32 33  x3  where

cos  sin 0   z ()   sin cos 0  0 0 1  

Using the relation r' z ()r , we can write down

3 3 3 r' z ()r  z ()( x j e j )   x jz ()e j   x j e j ' j1 j1 j1

where

z ()e j  e j ' , ei z ()e j  ei e j ' ij

We note that

ijik  (ei e j ')(ei ek ')  e j 'ek '  j,k i i

since

e j ' (ei e j ')ei (formula) i

Spherical Harmonics as rotator matrices 3 9/3/2017

______Now we consider more general case in order to get the definition of vector.

x3

P

A

Q

x2

x1

Suppose that

OP   yi ei , OP'   yi 'ei   yiei ' i i i

OQ   zi ei , OQ'  zi 'ei  zi ei ' i i i

Then we have

A  PQ  OQ OP  (zi  yi )ei i

A' P'Q'  OQ'  OP'

 (zi ' yi ')ei i

 (zi  yi )ei ' i

Since

e j '  (ei e j ')ei  ij ei , i j

Spherical Harmonics as rotator matrices 4 9/3/2017 the expression of A can be rewritten as

(zi ' yi ')ei  (z j  y j )e j '  (zi  yi )ij ei . i j i, j

Therefore we get

zi ' yi '  ij (z j  y j ) . j

Since the component of A is given by

Ai  zi  yi , and Ai ' zi 'yi ' in the old and new co-ordinate systems, we can write

Ai '   Rij Aj . j

We note that

 Ai 'ei   Aie j ' i i

In summary, under the rotation of the co-ordinate system, the components of the vector are transformed through

Ai '  ij Aj j where the vector is a tensor of rank 1. Similarly, the components of the tensor are transformed through

, for the tensor of rank 2 Ti j '  ik  jlTkl j and

for the tensor of rank 3 Ti jk ' il jmknTlmn j

((Note)) The (tensor of rank 0) is invariant under the rotation.

Spherical Harmonics as rotator matrices 5 9/3/2017 A'B'  Ai B j (ei 'e j ')   Ai B j i, j   Ai Bi  A B i, j i, j i ______2. Vector operators in quantum mechanics The operators corresponding to various physical quantities will be characterized by their behavior under rotation as scalars, vectors, and tensors.

Vi  ijV j j

Note that  is the rotation . For the rotation by the angle  around the z axis

cos  sin 0  cos sin 0     z ()   sin cos 0 , , az ( )  z ()   sin cos 0      0 0 1  0 0 1

We assume that the state vector changes from the old state  to the new state  ' .

 '  Rˆ  or

 '   Rˆ 

A vector Vˆ for the system is defined as an operator whose expectation is a vector that rotates together with the physical system.

ˆ ˆ  'Vi  '  ij  Vj  j or

ˆ  ˆ ˆ ˆ R Vi R  ijVj j or

ˆ ˆ ˆ ˆ  Vi  RijV j R j

((Note)) We show that

Spherical Harmonics as rotator matrices 6 9/3/2017 ˆ ˆ ˆ  ˆ RV j R  Viij i

From the relation

ˆ ˆ ˆ ˆ  ˆ ˆ ˆ  Vi  RijV j R  ij RV j R j j

we get

ˆ ˆ ˆ ˆ  Viik  ijik RV j R i i, j ˆ ˆ ˆ    RV j R ijik j i ˆ ˆ ˆ    jk RV j R j ˆ ˆ ˆ   RVk R

or

ˆ ˆ ˆ  ˆ RV j R  Viij i

______We now consider a special case, infinitesimal rotation.

i Rˆ 1ˆ  Jˆ  n 

i Rˆ  1ˆ  Jˆ n 

ˆ i ˆ ˆ ˆ i ˆ ˆ (1 J  n)Vi (1 J  n)  ijV j   j

ˆ i ˆ ˆ ˆ Vi  [Vi ,J n]  ijV j  j where

ˆ ˆ ˆ ˆ ˆ ˆ V1 Vx , V2  Vy , V3 Vz

For n = ez,

Spherical Harmonics as rotator matrices 7 9/3/2017

1   0   z ( )   1 0    0 0 1

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V1  [V1, J z ]  11V1  12V2  13V3  V1  V2 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V2  [V2 , J z ]  21V1  22V2  23V3  V1 V2 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V3  [V3, J z ]  31V1  32V2  33V3  V3  or

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1, J z ]  iV2 , [V2 , J z ]  iV1 , [V3 , J z ]  0

For n = ex,

1 0 0    x ( )  0 1      0  1 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V1  [V1, J x ]  11V1  12V2  13V3  V1 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V2  [V2 , J x ]  21V1  22V2  23V3  V2  V3 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V3  [V3, J x ]  31V1  32V2  33V3  V2 V3 

or

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1, J x ]  0 , [V2 , J x ]  iV3 , [V3, J x ]  iV2

For For n = ey,

Spherical Harmonics as rotator matrices 8 9/3/2017  1 0      y ( )   0 1 0     0 1

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V1  [V1, J y ]  11V1  12V2  13V3  V1  V3 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ V2  [V2 , J y ]  21V1  22V2  23V3  V2 

ˆ i ˆ ˆ ˆ ˆ ˆ ˆ ˆ V3  [V3, Jyx ]  31V1  32V2  33V3  V1 V3 

or

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V1,J y ]  iV3 , [V2, J y ]  0, [V3, J y ]  iV1

Using the Levi-Civita symbol, we have

ˆ ˆ ˆ [Vi , J j ]  iijkVk

We can use this expression as the defining property of a vector operator.

Levi-Civita symbol:ijk

123=231=312=1

132=213=321=-1

all other ijk. =0.

((Example))

When Vˆ  Jˆ,

ˆ ˆ ˆ [Ji , J j ]  iijk Jk

When Vˆ  rˆ and Aˆ  rˆ ,

ˆ [xˆi ,Lj ]  iijk xˆk

Spherical Harmonics as rotator matrices 9 9/3/2017 When Aˆ  pˆ,and Aˆ  rˆ ,

ˆ [pˆi ,Lj ]  iijk pˆk

((Mathematica))

Signature[i,j,k], which is equal to the Levi-Civita  ijk .

((Note)) Speherical component We define the spherical components as

1 1 Vˆ   (Vˆ  iVˆ )   Vˆ , 1 2 x y 2 

ˆ 1 ˆ ˆ 1 ˆ ˆ ˆ V  (V  iV )  V , V0 Vz 1 2 x y 2 

We note that

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [Vx , J x ]  0 , [V y , J x ]  iVz , [Vz , J x ]  iV y

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [Vx , J y ]  iVz , [Vy , J y ]  0, [Vz , J y ]  iVx

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [Vx , J z ]  iVy , [Vy , J z ]  iVx , [Vz , J z ]  0

We introduce the operators as

ˆ ˆ ˆ ˆ ˆ ˆ V  Vx  iVy , J   J x  iJ y

Using the above relation, we get

ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J x ]  [Vx  iVy , J x ]  i[Vy , J x ]  Vz

ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J x ]  [Vx  iVy , J x ]  i[Vy , J x ]  Vz

ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J y ]  [Vx  iVy , J y ]  [Vx , J y ]  iVz

ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J y ]  [Vx  iVy , J y ]  [Vx , J y ]  iVz

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J z ]  [Vx  iVy , J z ]  [Vx , J z ] i[Vy , J z ]  V

Spherical Harmonics as rotator matrices 10 9/3/2017

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [V , J z ]  [Vx  iVy , J z ]  [Vx , J z ] i[Vy , J z ]  V

These relations in turn can be shown to lead to

ˆ ˆ ˆ ˆ [V , J z ]  V , [V , J z ]  V

ˆ ˆ ˆ ˆ [V , J  ]  0 , [V , J  ]  0 ,

ˆ ˆ ˆ ˆ ˆ ˆ [V , J  ]  2Vz , [V , J  ]  2Vz ,

Using the above relations, we get

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [J z ,V1,]  V1 , [J z ,V1]  V1 , [J z ,V0 ]  0

ˆ ˆ ˆ ˆ [J ,V1]  0 , [J ,V1,]  0 ,

ˆ ˆ ˆ ˆ ˆ [J1,V1]  2V0 , [J ,V1]  2V0 ,

These satisfy the following relations

ˆ ˆ ˆ [J z ,Vq ]  qVq

ˆ ˆ ˆ [J ,Vq ]   2  q(q 1)Vq1

where q = 0, 1.

3. Example for the 1/2 system We discuss the validity of the above formula for the spin 1/2 system.

The operator

ˆ  0 1 ˆ  0  i ˆ  1 0  J x    , J y    , J z    2 1 0 2  i 0  2 0 1

The rotation operator

Spherical Harmonics as rotator matrices 11 9/3/2017     i  cos  i sin  Rˆ ( )  exp( Jˆ  )   2 2  , x x     i sin cos   2 2 

    i cos  sin  Rˆ ( )  exp( Jˆ  )   2 2  y y     sin cos   2 2 

i ei / 2 0  Rˆ ( )  exp( Jˆ  )    z z  i / 2    0 e 

 0 ei  Rˆ  ( )Jˆ Rˆ ( )     z x z  i  2 e 0 

 0  iei  Rˆ  ( )Jˆ Rˆ ( )     z y z  i  2 ie 0 

1 0 ˆ  ˆ ˆ    Rz ( )J z Rz ( )    2 0 1

The :

cos  sin 0   z ( )   sin cos 0 ,    0 0 1

 0 ei  Rˆ  ( )Jˆ Rˆ ( )   Jˆ   Jˆ   Jˆ     z x z 11 x 12 y 13 z  i  2 e 0 

 0  iei  Rˆ  ( )Jˆ Rˆ ( )   Jˆ   Jˆ   Jˆ     z y z 21 x 22 y 23 z  i  2 ie 0 

1 0 ˆ  ˆ ˆ ˆ ˆ ˆ    Rz ( )J z Rz ( )  31J x  32 J y  33 J z    2 0 1

4. Example for the spin 1 system The angular

Spherical Harmonics as rotator matrices 12 9/3/2017

0 1 0 0  i 0  1 0 0        ˆ  ˆ  ˆ J x  1 0 1 , J y   i 0  i , J z  0 0 0  2   2     0 1 0 0 i 0  0 0 1

The rotation operator

 1 cos isin 1 cos      2 2 2  i  isin i sin  Rˆ ( )  exp( Jˆ  )   cos  , x x    2 2  1 cos isin 1 cos      2 2 2 

1 cos sin 1 cos      2 2 2  i  sin sin  Rˆ ( )  exp( Jˆ  )  cos  y y    2 2 1 cos sin 1 cos     2 2 2 

ei 0 0    ˆ i ˆ Rz ( )  exp( J z )   0 1 0    i   0 0 e 

 0 ei 0    ˆ  ˆ ˆ  i i Rz ( )J x Rz ( )  e 0 e  2  i   0 e 0 

 0  iei 0    ˆ  ˆ ˆ  i i Rz ( )J y Rz ( )  ie 0  ie  2  i   0 ie 0 

1 0 0    ˆ  ˆ ˆ Rz ( )J z Rz ( )  0 0 0    0 0 1

The rotation matrix:

Spherical Harmonics as rotator matrices 13 9/3/2017 cos  sin 0   z ( )   sin cos 0    0 0 1

 0 ei 0    ˆ  ˆ ˆ ˆ ˆ ˆ  i i Rz ( )J x Rz ( )  11J x  12 J y  13 J z  e 0 e  2  i   0 e 0 

 0  iei 0    ˆ  ˆ ˆ ˆ ˆ ˆ  i i Rz ( )J y Rz ( )  21J x  22 J y  23 J z  ie 0  ie  2  i   0 ie 0 

1 0 0    ˆ  ˆ ˆ ˆ ˆ ˆ Rz ( )J z Rz ( )  31J x  32 J y  33 J z  0 0 0    0 0 1

4 Scalar (tensor of rank zero)

The scalar is invariant under the rotation. In quantum mechanics, we may write

 ' Aˆ  '  B'  Aˆ  .B where B denotes an arbitrary vector and also rotates with the system into the vector B'. This can be rewritten as

(Rˆ  Aˆ Rˆ)  B' Aˆ  B or

Aˆ  B' RˆAˆ Rˆ   B

Then we have

ˆ ˆ ˆ ˆ   Ai Bi '  (RAj R )Bj i j

Using the relation

Bi ' ij B j j

Spherical Harmonics as rotator matrices 14 9/3/2017 we get

ˆ ˆ ˆ ˆ  ( Aiij )B j  (RAj R )B j ji j or

ˆ ˆ ˆ  ˆ RAj R   Aiij i

5. operators The standard definition of a Cartesian tensor is that each of its suffix transforms under the rotation as do the components of an ordinary 3D vector. The Cartesian tensor operator is defined by

ˆ  ' Tij  '  ik jl  Tkl  k,l under the rotation specified by the 3x3 orthogonal matrix  .

ˆ ˆ ˆ ˆ  Tij  Rik jlTkl R k,l

The simplest example of a Cartesian tensor of rank 2 is a dyadic formed out of two vectors Uˆ and Vˆ .

ˆ ˆ ˆ Tij UiVj

ˆ ˆ where Ui and Vi are the components of ordinary 3D vector operators. There are nine components: 1+3+5 = 9. This Cartesian tensor is reducible. It can be decomposed into the three parts.

Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ    i j j i  ( i j j i   ) i j 3 ij 2 2 3 ij

The first term on the right-hand side, Uˆ Vˆ is a scalar product invariant under the rotation (corresponding to j = 0)

The second is an anti- which can be written as

ˆ ˆ ijk (U V )k

There are 3 independent components (corresponding to j = 1).

Spherical Harmonics as rotator matrices 15 9/3/2017

 0 A A   12 13    A12 0 A23      A13  A23 0  where

Uˆ Vˆ Uˆ Vˆ Aˆ  i j j i ij 2

The third term is a 3x3 symmetric traceless tensor with 5 independent components (=6- 1), where 1 comes from the traceless condition (corresponding to j = 2).

 S S S   11 12 13   S12 S22 S23     S13 S23 S33 

with S11  S22  S33  0 , where

Uˆ Vˆ Uˆ Vˆ Uˆ Vˆ S  i j j i   ij 2 3 ij

ˆ ˆ ˆ In conclusion, the Cartesian tensor Tij UiVj can be decomposed into irreducible spherical tensors of rank 0, 1, and 2. The Cartesian tensors are not very suitable for studying transformations under rotations, because they are reducible whenever their rank exceeds 1. It is therefore interesting to consider irreducible spherical tensors.

7. Irreducible spherical tensor Notice the numbers of elements of these irreducible subgroups: 1, 3, and 5. These are exactly the numbers of elements of angular momentum representations for j = 0, 1, and 2.

The first term is trivial: the scalar by definition is not affected by rotation, and neither is an j = 0 state.

To deal with the second and third terms, we introduce tensor operators having three and five components, such that under rotation these sets of components transform among themselves just as do the sets of eigenkets of angular momentum in the j = 1 and j = 2 representation, respectively.

m m Suppose we take a spherical harmonics Yl (,)  Yl (n) , where the orientation of the n is characterized by  and .

Spherical Harmonics as rotator matrices 16 9/3/2017 We now replace n by some vector Vˆ . Then we have a spherical tensor of rank k (in place of l) with magnetic (in place of m).

(k) mq ˆ Tq  Ylk (V ) where

m mq ˆ q ˆ Yl (n)  Yl k (V )  Tk (V )

The quantity

l m Pl,m (x, y, z)  r Yl ( ,) is a homogeneous polynomial of order l.

4 The quantity P (x, y, z)  rY q (,) is a first order homogeneous polynomial in x, y, 1,q 3 1 and z.

(i)

4 x  iy P (x, y, z)  rY 1(,)   1,1 3 1 2

Vˆ  iVˆ T (1)   x y 1 2

(ii)

4 P (x, y, z)  rY 0 (,)  z 1,0 3 1

(1) ˆ T0  Vz

(iii)

4 x  iy P (x, y, z)  rY 1(,)  1,1 3 1 2

Vˆ  iVˆ T (1)  x y 1 2

Spherical Harmonics as rotator matrices 17 9/3/2017

The above example is the simplest nontrivial example to illustrate the reduction of a Cartesian tensor into irreducible spherical tensors.

(k) mq ˆ Tq  Ylk (V)

n'  Rˆ n  n

n'  n Rˆ   n

Using the closure relation,

Rˆ  l,m   l,m' l,m' Rˆ  l,m m'

n' l, m  n Rˆ  l, m   n l, m' l, m' Rˆ  l, m m' or

m m' ˆ * Yl (n')  Yl (n) l,m R l,m' m'

(l) ˆ ˆ Dm,m' (R)  l,m R l,m'

m ˆ If there is an operator that acts like Yl (V ) , it is then reasonable to expect

ˆ  m ˆ ˆ m' ˆ ˆ * m' ˆ (l) * ˆ R Yl (V )R  Yl (V ) l,m R l,m'  Yl (V )Dmm' (R) m' m' from the relation

m ˆ  m ˆ ˆ m' m' ˆ Yl (n')  R Yl (V )R , Yl (n)  Yl (V )

ˆ (k ) We define a spherical tensor operator of rank k as a set of 2k+1, Tq , q = k, k-1,…, -k such that under rotation they transform like a set of angular momentum eigenkets,

k ˆ  ˆ (k ) ˆ (k )* ˆ ˆ (k ) R Tq R   Dqq' (R)Tq' , (1) q'k where

Spherical Harmonics as rotator matrices 18 9/3/2017 ˆ (k) mq ˆ Tq  Yl k (V ) [q = k, k-1, ….., -k+1, -k; (2k+1) components)]

(k) ˆ ˆ Dqq' (R)  k,q R k,q' or

(k )* ˆ ˆ * ˆ  Dqq' (R)  k,q R k,q'  k,q' R k,q with q = k, k-1,…, -k. This can be rewritten as

k ˆ  ˆ (k ) ˆ (k ) ˆ  ˆ (k ) R Tq R   Dq'q (R )Tq' q'k

The switching of Rˆ  Rˆ  leads to another expression

k ˆ ˆ (k ) ˆ  (k ) ˆ ˆ (k ) RTq R   Dq'q (R)Tq' (2) q'k

Considering the infinitesimal form of the expression (1), we have

ˆ ˆ k ˆ ˆ iJ  n ˆ (k ) ˆ iJ  n ˆ (k ) ˆ iJ  n (1 )Tq (1 )   Tq' k,q'1 k,q   q'k  or

k ˆ (k ) i ˆ ˆ (k ) ˆ (k ) i ˆ (k ) ˆ Tq  [J  n,Tq ]  Tq  Tq' k, q' J  n k, q   q'k or

k ˆ (k ) ˆ (k ) ˆ [J  n,Tq ]  Tq' k, q' J  n k, q q'k

In general, we have

k ˆ (k ) ˆ (k ) ˆ [J,Tq ]  Tq' k,q' J k,q q'k

For n = ex, ey, ez

Spherical Harmonics as rotator matrices 19 9/3/2017 k ˆ (k ) ˆ (k ) ˆ ˆ (k ) [J z ,Tq ]  Tq' k,q' J z k,q  qTq (3) q'k

k ˆ (k ) ˆ (k ) ˆ [J x ,Tq ]  Tq' k,q' J x k,q q'k

k ˆ (k ) ˆ (k ) ˆ [J y ,Tq ]  Tq' k,q' J y k,q q'k

k ˆ (k ) ˆ (k ) ˆ ˆ (k ) [J  ,Tq ]  Tq' k,q' J  k, q   (k  q)(k  q 1)Tq1 (4) q'k where

ˆ J  k,q   (k  q)(k  q 1) k,q 1

These two commutation relations can also be taken as a definition of a spherical tensor of rank k.

We now consider

k ˆ ˆ (k ) ˆ  (k ) ˆ ˆ (k ) RTq R   Dq'q (R)Tq' q'k

This equation is rewritten as

k ˆ ˆ (k ) (k ) ˆ ˆ (k ) ˆ RTq   Dq'q (R)Tq' R q'k

Then have

k ˆ ˆ (k ) (k ) ˆ ˆ (k ) ˆ RTq j,m  Dq'q (R)Tq' j,m' j,m' R j,m qm''k

k (k ) ˆ ( j) ˆ ˆ (k )  Dq'q (R)Dm'm (R)Tq' j,m' q'k m'

(a) Spherical tensor operator of rank 1 The spherical tensor operator of rank 1 is related to the vector operator by the relation,

Spherical Harmonics as rotator matrices 20 9/3/2017 Vˆ  iVˆ Vˆ  iVˆ Tˆ (1)   x y , Tˆ (1)  Vˆ , Tˆ(1)  x y 1 2 0 z 1 2

The vector operator Vˆ satisfies the commutation relation.

ˆ ˆ ˆ [Vi , J j ]  iijkVk

Using this relation, we can show that

Vˆ  iVˆ ˆ ˆ (1) ˆ x y 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ (1) [J z ,T1 ]  [J z , ]  [Vx  iVy , J z ]  (iVy  Vx )  T1 2 2 2

Vˆ  iVˆ ˆ ˆ (1) ˆ x y 1 ˆ ˆ ˆ 1 ˆ ˆ ˆ (1) [J z ,T1 ]  [J z , ]   [Vx  iVy , J z ]   (iVy  Vx )  T1 2 2 2

ˆ ˆ (1) ˆ ˆ [J z ,T0 ]  [J z ,Vz ]  0 where

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [Vx , J z ]  i132Vy  iVy , [Vy , J z ]  i231Vx  iVx .

((Note)) Using

Vˆ  iVˆ Vˆ  iVˆ Vˆ   x y , Vˆ  Vˆ , Vˆ  x y 1 2 0 z 1 2 the vector operator Vˆ van be expressed as

1 ˆ ˆ ˆ ˆ ˆ ˆ  ˆ V  Vx e x Vy e y Vz ez  V1u1 V0u0 V1u1  (1) V u  1 where

e  ie e  ie u   x y , u  x y , u  e . 1 2 1 2 0 z

The orthonormality relation of these new unit vectors is

 u u'   ,' (1)

Spherical Harmonics as rotator matrices 21 9/3/2017

Thus the ordinary scalar product of two vectors has the form

ˆ ˆ   ' ˆ V W  (1) VW ' (u  u ' ) , '  ˆ  (1) VW , ˆ ˆ ˆ ˆ ˆ ˆ  V0W0  (V1W1 V1W1)

(b) Spherical tensor operator of rank 2

Spherical tensor of rank 2

(i)

2 0 P2,0 (x, y, z)  r Y2 ( ,) 5  (3z 2  r 2 ) 16 (x  iy)(x  iy) (x  iy)(x  iy) [2z 2   ] 15  2 2 8 6 which corresponds to

2 15 Tˆ (1)Tˆ (1)  2Tˆ (1)  Tˆ (1)Tˆ (1) Tˆ (2)  1 1 0 1 1 0 8 6

(ii)

15 x  iy P (x, y, z)  r 2Y 2 (,)  ( )2 2,2 2 16 2 which corresponds to

ˆ (2) 15 ˆ (1) 2 T2  T1 16

(iii)

15 z(x  iy)  (x  iy)z P (x, y, z)  r 2Y 1(,)  2,1 2 8 2 2

Spherical Harmonics as rotator matrices 22 9/3/2017 which corresponds to

15 Tˆ (1)Tˆ (1)  Tˆ (1)Tˆ (1) Tˆ (2)  0 1 1 0 1 8 2

(iv)

15 z(x  iy)  (x  iy)z P (x, y, z)  r 2Y 1(,)   2,1 2 8 2 2 which corresponds to

15 Tˆ (1)Tˆ (1) Tˆ (1)Tˆ (1) Tˆ (2)  0 1 1 0 1 8 2

8 Product of tensors (CG)

((Theorem)) (k ) (k ) Let Xˆ 1 and Zˆ 2 be irreducible spherical tensors of rank k1 and k2, respectively. q1 q2 Then

Tˆ (k )  k ,k ;q ,q k ,k ;k,q Xˆ (k1 )Zˆ (k2 ) q  1 2 1 2 1 2 q1 q2 q1 ,q2 is a spherical (irreducible) tensor of rank k, where

k1,k2;q1,q2 k1,k2;k,q is the Clebsch-Gordan (CG) coefficient.

((Proof))

Spherical Harmonics as rotator matrices 23 9/3/2017 RˆTˆ (k ) Rˆ   k ,k ;q ,q k ,k ;k,q (RˆXˆ (k1) Rˆ  )(RˆZˆ (k2 ) Rˆ  ) q  1 2 1 2 1 2 q1 q2 q1,q2  k ,k ;q ,q k ,k ;k,q D(k1) (Rˆ)Xˆ (k1) D(k2 ) (Rˆ)Zˆ (k2 )  1 2 1 2 1 2 q1q1' q1' q2q2 ' q2 ' q1,q2 ,q1',q2 '  k ,k ;q ,q k ,k ;k,q k ,k ;q ',q ' k ,k ;k",q' k ,k ;q ,q k ,k ;k",q" D(k") (Rˆ)Xˆ (k1)Zˆ (k2 )  1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 q'q" q1' q2 ' q1,q2 ,q1',q2 ' k",q",q'    k ,k ;q ',q ' k ,k ;k",q' D(k") (Rˆ)Xˆ (k1 )Zˆ (k2 )  k ,k" q,q" 1 2 1 2 1 2 q'q" q1' q2 ' q1',q2 ' k",q",q'  k ,k ;q ',q ' k ,k ;k,q' Xˆ (k1)Zˆ (k2 ) D(k ) (Rˆ)  1 2 1 2 1 2 q1' q2 ' q'q q',q1',q2 ' (k ) ˆ (k )   Dq'q (R)Tq' q' where

ˆ ˆ (k1 ) ˆ  (k1 ) ˆ ˆ (k1 ) RX q R  D ' (R)X q ' 1  q1q1 1 q1 '

RˆZˆ (k2 ) Rˆ   D(k2 ) (Rˆ)Zˆ (k2 ) q2  q2 q2 ' q2 ' q2 '

D(k1 ) (Rˆ)D(k2 ) (Rˆ)  k ,k ;q ',q ' k ,k ;k",q' k ,k ;q ,q k ,k ;k",q' D(k") (Rˆ) q1q1 ' q2q2 '  1 2 1 2 1 2 1 2 1 2 1 2 q'q" k"q"q'

(Clebsch-Gordan series) where

D  D  D  D  ... D , k1 k1 k1 k2 k1 k2 1 k1 k2 or

k" k1  k2 ,k1  k2 1,...,| k1  k2 |.

Orthogonality of the Clebsch-Gordan coefficient

j , j ;m ,m j , j ; j,m j , j ;m ',m ' j , j ; j,m     1 2 1 2 1 2 1 2 1 2 1 2 m1 ,m1 ' m2 ,m2 ' j,m and

Spherical Harmonics as rotator matrices 24 9/3/2017  j1, j2;m1,m2 j1, j2; j,m j1, j2;m1,m2 j1, j2; j',m'   j, j' m,m' m1 ,m2

9 Tensor of rank 2 from CG In the case of

D1  D1  D2  D1  D0

we consider the case k = 2 for k1=1 (q1 = 1, 0, -1), and k2 = 1 (q2 = 1, 0, -1):

D1  D1  D2

We use the values of CG.

ˆ (2) ˆ (1) (1) T2  X1 Z1 ˆ ˆ  U1V1 1  (Uˆ  iUˆ )(Vˆ  iVˆ ) 2 x y x y 1 i  (Uˆ Vˆ Uˆ Vˆ )  (Uˆ Vˆ Uˆ Vˆ ) 2 x x y y 2 x y y x

Xˆ (1)Zˆ (1)  Xˆ (1)Zˆ (1) Tˆ (2)  1 0 0 1 1 2 Uˆ Vˆ Uˆ Vˆ  1 0 0 1 2 Uˆ Vˆ Uˆ Vˆ  Uˆ Vˆ Uˆ Vˆ    z x x z   i y z z y       2   2 

Spherical Harmonics as rotator matrices 25 9/3/2017 Xˆ (1)Zˆ (1)  2Xˆ (1)Zˆ (1)  Xˆ (1)Zˆ (1) Tˆ (2)  1 1 0 0 1 1 0 6 Uˆ Vˆ  2Uˆ Vˆ Uˆ Vˆ  1 1 0 0 1 1 6

Uˆ Vˆ Uˆ Vˆ  2Uˆ Vˆ    x x y y z z     6  1   (Uˆ Vˆ  3Uˆ Vˆ ) 6 z z

Xˆ (1)Zˆ (1)  Xˆ (1)Zˆ (1) Tˆ (2)  0 1 1 0 1 2 Uˆ Vˆ Uˆ Vˆ  0 1 1 0 2 Uˆ Vˆ Uˆ Vˆ  Uˆ Vˆ Uˆ Vˆ    z x x z   i y z z y       2   2 

ˆ (2) ˆ (1) ˆ (1) T2  X 1 Z1 ˆ ˆ  U 1V1 1  (Uˆ  iUˆ )(Vˆ  iVˆ ) 2 x y x y

ˆ ˆ When Ui  Vi  xˆi (in a special case), we have

1 1 Tˆ ( 2 )  ( xˆ  iyˆ )( xˆ  iyˆ )  ( xˆ 2  yˆ 2 )  ixˆyˆ 2 2 2

ˆ ( 2 ) T1   xˆzˆ  iyˆzˆ

 xˆ 2  yˆ 2  2 zˆ 2  ˆ ( 2 )   T0     6 

ˆ ( 2 ) T1  xˆzˆ  iyˆzˆ

1 1 Tˆ ( 2 )  ( xˆ  iyˆ )( xˆ  iyˆ )  ( xˆ 2  yˆ 2 )  ixˆyˆ  2 2 2

Spherical Harmonics as rotator matrices 26 9/3/2017 Therefore we have the following relations.

2 2 ˆ (2) ˆ (2) xˆ  yˆ  T2  T2

Tˆ (2)  Tˆ (2) xˆyˆ  2 2 2i

Tˆ (2)  Tˆ (2) yˆzˆ  1 1  2i

Tˆ (2)  Tˆ (2) xˆzˆ  1 1  2

 xˆ2  yˆ 2  2zˆ2    ˆ (2)    T0  6 

((Note)) We use the commutation relations;

[xˆ, yˆ]  0 , [ yˆ, zˆ]  0 .

10 Tensor of rank 1 from CG We consider the case k = 1 for k1=1 (q1 = 1, 0, -1), and k2 = 1 (q2 = 1, 0, -1):

D1  D1  D1

Spherical Harmonics as rotator matrices 27 9/3/2017 X (1)Z (1)  X (1)Z (1) T (1)  1 0 0 1 1 2 Uˆ Vˆ Uˆ Vˆ  1 0 0 1 2 1 (Uˆ Vˆ Uˆ Vˆ )  (Uˆ Vˆ Uˆ Vˆ )  i y z z y 2 z x x z 2i 1 1  (Uˆ Vˆ)  (Uˆ Vˆ) 2 y 2i x

X (1)Z (1)  X (1)Z (1) T (1)  1 1 1 1 0 2 Uˆ Vˆ Uˆ Vˆ  1 1 1 1 2

(Uˆ Vˆ Uˆ Vˆ )   x y y x 2i 1   (Uˆ Vˆ) 2i z

X (1)Z (1)  X (1)Z (1) T (1)  0 1 1 0 1 2 Uˆ Vˆ Uˆ Vˆ  0 1 1 0 2 1 (Uˆ Vˆ Uˆ Vˆ )  (U V U V )  y z z y 2 z x x z 2i 1 1  (Uˆ Vˆ)  (Uˆ Vˆ) 2 y 2i x

This tensors can be written in terms of its Cartesian components as

1 1 T (1)   (C  iC ) , T (1)  (C  iC ) 1 2 x y 1 2 x y

(1) T0  Cz

Then we get

T (1)  T (1) (Uˆ Vˆ) 1 1  C  x 2 x 2i

Spherical Harmonics as rotator matrices 28 9/3/2017 T (1)  T (1) (Uˆ Vˆ) 1 1  C  y 2i y 2i

(Uˆ Vˆ)  T (1)  C  z 0 z 2i leading to

(Uˆ Vˆ) (Uˆ Vˆ) (Uˆ Vˆ) C  i x , C  i y , C  i z x 2 y 2 z 2 or

(Uˆ Vˆ ) C  i 2

This is, up to a factor, nothing but the ordinary vector product.

11 Tensor of rank 0 from CG We consider the case k = 0 for k1=1 (q1 = 1, 0, -1), and k2 = 1 (q2 = 1, 0, -1):

D1  D1  D0

X (1)Z (1)  X (1)Z (1)  X (1)Z (1) T (0)  1 1 0 0 1 1 0 3 U V U V U V  1 1 0 0 1 1 3 1   (U V ) 3

______REFERENCES

Spherical Harmonics as rotator matrices 29 9/3/2017 J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, second edition (Addison- Wesley, New York, 2011). Eugen Merzbacher, Quantum Mechanics, third edition (John Wiley & Sons, New York, 1998). Nouredine Zettili, Quantum Mechanics, Concepts and Applications, 2nd edition (John Wiley & Sons, New York, 2009). K. Gottfried and T-M. Yan, Quantum Mechanics: Fundamentals 2nd edition (Springer, 2003, New York) M. Tinkham and Quantum Mechanics (McGraw-Hill, New York, 1964). D. Dubbers and H.-J. Stöckmann, Quantum Physics: The Bottom-Up Approach (Springer, 2013). ______APPENDIX We consider the rotation operator for the angular momentum J = ħ.

ˆ i ˆ Rz   exp( J z) 

ˆ  ˆ ˆ ˆ We calculate R Ji R for i = 1 (x), 2 (y), and 3(z), and compare these with ij J j j

cos  sin 0   z   sin cos 0    0 0 1

Here we present the calculation for J = 3/2 using the Mathematica program.

((Mathematica))

Spherical Harmonics as rotator matrices 30 9/3/2017 Matrices j = 3/2

Clear "Global`" ;j 3 2; exp_  : exp . Complex re_, im_  Complex re, im ; — Jx j_, n_, m_ : j m j  m  1 KroneckerDelta n, m  1  2 —       j  m j  m  1 KroneckerDelta n, m  1 ; 2       — Jy j_, n_, m_ :   j  m j  m  1 KroneckerDelta n, m  1    2    —  j  m j  m  1 KroneckerDelta n, m  1 ; 2       Jz j_, n_, m_ : — m KroneckerDelta n, m ; Jx  Table Jxj, n, m , n,j,j, 1 , m,j,j, 1 ; Jy  Table Jy j, n, m , n,j,j, 1 , m,j,j, 1 ; Jz Table Jz j, n, m , n,j,j, 1 , m,j,j, 1 ;        Jx MatrixForm      

—       0 3 00 2 3 — 0 — 0 2 0 — 0 3 — 2 003 — 0 2

Spherical Harmonics as rotator matrices 31 9/3/2017 Jy MatrixForm

0  1  3 — 00 2 1  3 — 0  — 0 2 0  — 0  1  3 — 2 001  3 — 0 2

Jz MatrixForm 3 — 00 0 2 0 — 00  2 00 — 0 2 000 3 — 2

Rotation around the z axis

  A1z  MatrixExp Jz  .Jx. MatrixExp  Jz  Simplify; — — A1z MatrixForm

0 1 3  — 00   2 1 3   — 0  — 0 2 0   — 0 1 3  — 2 001 3   — 0 2

Spherical Harmonics as rotator matrices 32 9/3/2017   A2z  MatrixExp Jz  .Jy.MatrixExp  Jz  Simplify; — — A2z MatrixForm

0 1  3 — 00  2 1  3   — 0   — 0 2 0   — 0  1  3  — 2 001  3   — 0 2

  A3z  MatrixExp Jz  .Jz.MatrixExp  Jz  Simplify; — — A3z MatrixForm

3 — 00 0    2 0 — 00 2 00 — 0 2 000 3 — 2

Mz  RotationMatrix , 0, 0, 1 Cos  , Sin  ,0 , Sin  , Cos  , 0 , 0, 0, 1    Mz MatrixForm               Cos  Sin  0 Sin  Cos  0 001        

Spherical Harmonics as rotator matrices 33 9/3/2017 B1z  Mz 1, 1 Jx  Mz 1, 2 Jy  Mz 1, 3 Jz FullSimplify;

B2z  Mz 2, 1 Jx  Mz 2, 2 Jy  Mz 2, 3 Jz FullSimplify;        B3z  Mz 3, 1 Jx  Mz 3, 2 Jy  Mz 3, 3 Jz FullSimplify;        A1z  B1z Simplify 0, 0, 0, 0 ,0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0  A2z  B2z FullSimplify         0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0  A3z  B3z FullSimplify         0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0

Rotation around the y axis           A1y  MatrixExp Jy  .Jx. MatrixExp  Jy  Simplify; — — A1y MatrixForm

3 — Sin  1 3 — Cos  00   2 2 1 3 — Cos  1 — Sin  — Cos  0 2 2 0   — Cos     1 — Sin  1 3 — Cos  2 2 00    1 3 — Cos    3 — Sin  2 2          

Spherical Harmonics as rotator matrices 34 9/3/2017   A2y  MatrixExp Jy  .Jy.MatrixExp  Jy  Simplify; — — A2y MatrixForm

0  1   3 —  00  2 1  3 — 0  — 0 2 0  — 0  1  3 — 2 001  3 — 0 2

  A3y  MatrixExp Jy  .Jz.MatrixExp  Jy  Simplify; — — A3y MatrixForm

3 — Cos    1 3 — Sin   00 2 2  1 3 — Sin  1 — Cos  — Sin  0 2 2 0   — Sin     1 — Cos   1 3 — Sin  2 2 00     1 3 — Sin    3 — Cos  2 2       My  RotationMatrix , 0, 1, 0 ; My MatrixForm     Cos  0Sin 010 Sin  0Cos        

   

Spherical Harmonics as rotator matrices 35 9/3/2017 B1y  My 1, 1 Jx  M y 1, 2 Jy  My 1, 3 Jz FullSimplify;

B2y  My 2, 1 Jx  My 2, 2 Jy  My 2, 3 Jz FullSimplify;         B3y  My 3, 1 Jx  My 3, 2 Jy  My 3, 3 Jz FullSimplify;        A1y  B1y Simplify 1     1    0,  3 — M y 1, 2 ,0,0 ,   3 — M y 1, 2 ,0, — M y 1, 2 ,0 , 2 2  1 1 0,  — M y 1, 2 ,0,  3 — M y 1, 2 , 0, 0,   3 — M y 1, 2 ,0 2 2              A2y  B2y FullSimplify             0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0  A3y  B3y FullSimplify         0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0

Rotation around the x axis           A1x  MatrixExp Jx  .Jx. MatrixExp  Jx  Simplify; — — A1x MatrixForm

—      0 3 00 2 3— 0 — 0 2 0 — 0 3 — 2 003 — 0 2

Spherical Harmonics as rotator matrices 36 9/3/2017   A2x  MatrixExp Jx  .Jy.MatrixExp  Jx  Simplify; — — A2x MatrixForm

 3 — Sin    1   3 — Cos   00 2 2 1  3 — Cos   1 — Sin   — Cos  0 2 2 0    — Cos    1 — Sin   1  3 — Cos  2 2 00    1  3 — Cos  3 — Sin  2 2         A3x  MatrixExp Jx  .Jz.MatrixExp  Jx   Simplify;   — — A3x MatrixForm

3 — Cos    1   3 — Sin   00 2 2 1  3 — Sin  1 — Cos   — Sin  0 2 2 0    — Sin     1 — Cos   1  3 — Sin  2 2 00    1  3 — Sin   3 — Cos  2 2       Mx  RotationMatrix , 1, 0, 0 ;Mx MatrixForm     10 0 0 Cos  Sin  0 Sin  Cos      B1x  Mx 1, 1 Jx  Mx 1, 2 Jy  Mx 1, 3 Jz FullSimplify;     B2x  Mx 2, 1 Jx  Mx 2, 2 Jy  Mx 2, 3 Jz FullSimplify;        B3x  Mx 3, 1 Jx  Mx 3, 2 Jy  Mx 3, 3 Jz FullSimplify;        A1x  B1x Simplify 0, 0, 0, 0 ,0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0  A2x  B2x FullSimplify         0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0  A3x  B3x FullSimplify         0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0         

Spherical Harmonics as rotator matrices 37 9/3/2017