Himalayan Leucogranites and Migmatites: Nature, Timing and Duration of Anatexis

Total Page:16

File Type:pdf, Size:1020Kb

Himalayan Leucogranites and Migmatites: Nature, Timing and Duration of Anatexis J. metamorphic Geol., 2016, 34, 821–843 doi:10.1111/jmg.12204 Himalayan leucogranites and migmatites: nature, timing and duration of anatexis R. F. WEINBERG School of Earth, Atmosphere and Environment, Monash University, Clayton, Vic. 3800, Australia ([email protected]) ABSTRACT Widespread anatexis was a regional response to the evolution of the Himalayan-Tibetan Orogen that occurred some 30 Ma after collision between Asia and India. This paper reviews the nature, timing, duration and conditions of anatexis and leucogranite formation in the Greater Himalayan Sequence (GHS), and compares them to contemporaneous granites in the Karakoram mountains. Himalayan leucogranites and associated migmatites generally share a number of features along the length of the mountain front, such as similar timing and duration of magmatism, common source rocks and clock- wise P–T paths. Despite commonalities, most papers emphasize deviations from this general pattern, indicating a fine-tuned local response to the dominant evolution. There are significant differences in – – P T XH2O conditions during anatexis, and timing in relation to regional decompression. Further to that, some regions underwent a second event recording melting at low pressures. Zircon and monazite ages of anatectic rocks range between c. 25 and 15 Ma, suggesting prolonged crustal melting. Typi- cally, a single sample may have ages covering most of this 10 Ma period, suggesting recycling of accessory phases from metamorphic rocks and early-formed magmas. Recent studies linking monazite and zircon ages with their composition, have determined the timing of prograde melting and retro- grade melt crystallization, thus constraining the duration of the anatectic cycle. In some areas, this cycle becomes younger down section, towards the leading front of the Himalayas, whereas the oppo- site is true in other areas. The relationship between granites and movement on the South Tibetan Detachment (STD) reveals that fault motion took place at different times and over different dura- tions requiring complex internal strain distribution along the Himalayas. The nature and fate of mag- mas in the GHS contrast with those in the Karakoram mountains. GHS leucogranites have a strong crustal isotopic signature and migration is controlled by low-angle foliation, leading to diffuse injec- tion complexes concentrated below the STD. In contrast, the steep attitude of the Karakoram shear zone focused magma transfer, feeding the large Karakoram-Baltoro batholith. Anatexis in the Karakoram involved a Cretaceous calcalkaline batholith that provided leucogranites with more juve- nile isotopic signatures. The impact of melting on the evolution of the Himalayas has been widely debated. Melting has been used to explain subsequent decompression, or conversely, decompression has been used to explain melting. Weakening due to melting has also been used to support channel flow models for extrusion of the GHS, or alternatively, to suggest it triggered a change in its critical taper. In view of the variable nature of anatexis and of motion on the STD, it is likely that anatexis had only a second-order effect in modulating strain distribution, with little effect on the general his- tory of deformation. Thus, despite all kinds of local differences, strain distribution over time was such that it maintained the well-defined arc that characterizes this orogen. This was likely the result of a self-organized forward motion of the arc, controlled by the imposed convergence history and energy conservation, balancing accumulation of potential energy and dissipation, independent of the presence or absence of melt. Key words: anatexis; continental collision; leucogranite; migmatite; self-organization. 1998). Decades of research helped elucidate their spa- INTRODUCTION tial distribution, timing and conditions of anatexis, as Miocene granites and migmatites are some of the well as their role in the evolution of the Orogen. Yet most studied features of the Himalayan-Tibetan Oro- their relative timing in relation to major structures, gen. They are central to understanding its evolution the origin of the heat source for melting and the tec- and the basis for many evolutionary models (England tonic impact of melting, remain widely debated et al., 1992; Harris & Massey, 1994; Huerta et al., (Hodges, 2000; Yin & Harrison, 2000; Kohn, 2014). 1996; Harrison et al., 1997a, 1998, 1999b; Hodges, Several tectonic models have been presented to © 2016 John Wiley & Sons Ltd 821 822 R. F. WEINBERG explain the evolution of these mountains (see Kohn, and key features significant to understanding the 2014 for a summary) many of which are fundamen- origin of collisional granitoids and the behaviour of tally linked to crustal melting. For example, channel the Orogen. It is demonstrated how the process of models require the presence of melt, weakening thick granite generation is simultaneously tightly con- sections of the Greater Himalayan Sequence (GHS), strained as well as highly variable responding to to allow the flow of rocks from underneath Tibet local conditions. The paper starts with an introduc- (Beaumont et al., 2001; Grujic et al., 2002; Jamieson tion to the geological setting of the anatectic rocks, et al., 2004). followed by: (i) melting conditions and melting reac- Miocene granitoids are typically Ms–Bt–Grt–Tur tions across the Orogen; (ii) timing and duration of peraluminous leucogranites, and crop out in three magmatism, and significance for granite generation; distinct regions in the Orogen with significant tec- and (iii) granite ages constraining movement dura- tono-thermal and temporal differences: (i) within the tion on the STD. The section on melting conditions GHS along the Himalayan front, cropping out (i) is separated from the section on timing and dura- between the Main Central Thrust (MCT) zone and tion of magmatism (ii) in order to emphasize chang- the South Tibetan Detachment (STD), and known as ing patterns along the Himalayas. Himalayan Greater or Higher Himalayan leucogranites; (ii) north anatectic rocks are then contrasted to those from of the STD, in association with domes (the North the Karakoram before a discussion focusing on how Himalayan granites; Le Fort, 1986; Harrison et al., the data inform and constrain the tectonic evolution 1998; King et al., 2011); and (iii) in the Karakoram of the Orogen. The paper finishes by suggesting that Range, north of the Indus-Tsangpo Suture Zone the variety of conditions and timing of magma gen- (Fig. 1). A fourth and much younger anatectic event eration and movement on the STD had only a (<4 Ma) is exposed in the two syntaxes, at Namche second-order effect in modulating strain distribution. Barwa and Nanga Parbat. These were local responses to a broader pattern of This article reviews the literature on migmatites self-organized motion imposed by the potential and leucogranites (referred to collectively as anatec- energy stored in the Orogen and the continued tic rocks) of the GHS and then contrasts them to northward indentation of India, which allowed for anatectic rocks from the Karakoram Range. The the orderly development of the Orogen and mainte- focus is dominantly on the more recent literature nance of the orogenic arc. Karakoram N Baltoro Transhimalaya Indus-Tsangpo Suture Zone (ITSZ) K akoram a Tethyan Himalayan Sequence (THS) r r a a K k Greater Himalayan Sequence (GHS) o ra High Himalayan and Karakoram m leucogranites fa North Himalayan leucogranites u lt Zanskar Lesser Himalayan Sequence (LHS) ST Pleistocene basins D Main Central thrust (MCT) MC Tangtse MBT T Leo Pargil Main Boundary thrust (MBT) Zanskar South Tibetan Detachment (STD) MB TIBET 32°N T Annapurna Rongbuk Mabja 75°E S Manaslu TD Everest Dinggye Gharwal Him. Makalu Khula Kangri 250 km STD Lhasa MC T INDIA MB Gangotri T STD MCT T STD MCT MB Malari Modi Khola Bura Buri Kathmandu Sikkim MBT Bhutan Arunachal Him. Langtang 90°E Fig. 1. Simplified geological map of the southern part of the Himalayan-Tibet Orogen showing the GHS, between the STD and the MCT, and the two belts of leucogranites, including the Karakoram-Baltoro Batholith on the upper left (NW) of the figure. Locations refer to those mentioned in the text. © 2016 John Wiley & Sons Ltd HIMALAYAN LEUCOGRANITES AND MIGMATITES 823 separates it from the low-metamorphic grade rocks GEOLOGICAL SETTING OF LEUCOGRANITES of the THS. It began moving prior to 22 Ma, and The Himalayas and the Tibetan plateau result from has had a short duration in some places (Hodges collision between India and Asia between 54 and et al., 1996; Carosi et al., 2013; Finch et al., 2014), 50 Ma (Hodges, 2000). The Himalayas form a well- whereas in others it may have continued to move to defined arc, with a sinuous front forming salients and c. 11 Ma (Kellett et al., 2009). recesses at the scale of a few 100 km in length Miocene migmatites are found from within the (Bendick & Bilham, 2001; Mukul, 2010). Hodges MCT zone (Hubbard, 1989; Coleman, 1998; (2000), building on previous work, divided the evolu- Dasgupta et al., 2009) to the base of the STD (Pog- tion of the Himalayas into two deformation phases, nante, 1992; Kohn, 2014). Migmatites are commonly, linked to distinct metamorphic events: the Middle but not solely, developed in the 500–400 Ma gneisses Eocene–Late Oligocene Eohimalayan, recording crus- at the top of the GHS (e.g. Sikkim, Dasgupta et al., tal thickening with metamorphism peaking at c. 33– 2009; Zanskar, Finch et al., 2014; Horton et al., 2015; 28 Ma; and the Early Miocene to present Neohi- E Nepal, Groppo et al., 2012). These are physically malayan phase, associated with sillimanite-bearing linked with granites through complex channel net- rocks, anatexis and leucogranite intrusions. This works. The Higher Himalayan leucogranites form a phase is associated with a substantial change in tec- discontinuous belt along the highest structural levels tonics at the start of the Miocene, and remains of the GHS, generally immediately below or over- roughly unchanged, suggesting a quasi-steady-state printed by the STD.
Recommended publications
  • Geology of the Vardeklettane Terrane, Heimefrontfjella (East Antarctica)
    Umbruch 79-1 04.11.2009 16:20 Uhr Seite 29 Polarforschung 79 (1), 29 – 32, 2009 Geology of the Vardeklettane Terrane, Heimefrontfjella (East Antarctica) by Wilfried Bauer1, Joachim Jacobs2, Robert J. Thomas3, Gerhard Spaeth4 and Klaus Weber5 Abstract: In the southwest of the Heimefrontfjella mountain range a granu- ly, the collected samples are extensively retrogressed with lite-facies terrane is exposed in the small Vardeklettane nunataks. The Varde- abundant chlorite and sericitised plagioclase, so granulite- klettane Terrane extends, however, at least 65 km farther WNW to the nunatak group of Mannefallknausane, where comparable granulites are exposed. The facies metamorphism was not identified. For the nunatak terrane is composed of mafic and felsic granulites, leucogranite orthogneiss group of Mannefallknausane however, JUCKES (1968) reported and metasedimentary rocks. The maximum deposition age of the latter is charnockites and granulite-facies rocks. Granulite-facies rocks constrained by detrital zircon U-Pb data ranging from 2000 to 1200 Ma whereas the leucogranite gneiss gave a late Mesoproterozoic crystallization were subsequently recognised at Vardeklettane by ARNDT et al. age of 1135 Ma. The Vardeklettane Terrane is unique as being the only part of (1987), who described charnockites as well as felsic and mafic the otherwise juvenile Late Mesoproterozoic basement of Heimefrontfjella to granulites, interpreting the latter as meta-volcanic rocks. The have a Paleoproterozoic crustal component. Structurally, the terrane is sepa- rated from the main range by the Heimefront Shear Zone. following description is based on the systematic mapping at 1:10,000 scale completed during the international Heimefront- Zusammenfassung: In den kleinen Vardeklettane Nunataks im Südwesten der fjella expedition of 1994 (BAUER et al.
    [Show full text]
  • Archaean Cratonization and Deformation in the Northern Superior Province, Canada: an Evaluation of Plate Tectonic Versus Vertical Tectonic Models Jean H
    Precambrian Research 127 (2003) 61–87 Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models Jean H. Bédard a,∗, Pierre Brouillette a, Louis Madore b, Alain Berclaz c a Geological Survey of Canada, Division Québec, 880, ch.Ste-Foy, Quebec City, Que., Canada G1S 2L2 b Géologie Québec, Ministère des ressources naturelles du Québec, 5700, 4e Avenue Ouest, Charlesbourg, Que., Canada G1H 6R1 c Géologie Québec, Ministère des ressources naturelles du Québec, 545 Crémazie Est, bureau 1110, Montreal, Que., Canada H2M 2V1 Accepted 10 April 2003 Abstract The Archaean Minto Block, northeastern Superior Province, is dominated by tonalite–trondhjemite, enderbite (pyroxene tonalite), granodiorite and granite, with subordinate mafic rocks and supracrustal belts. The plutons have been interpreted as the batholithic roots of Andean-type plate margins and intra-oceanic arcs. Existing horizontal-tectonic models propose that penetrative recrystallization and transposition of older fabrics during terrane assembly at ∼2.77 and ∼2.69 Ga produced a N-NW tectonic grain. In the Douglas Harbour domain (northeastern Minto Block), tonalite and trondhjemite dominate the Faribault–Thury complex (2.87–2.73 Ga), and enderbite constitutes 50–100 km-scale ovoid massifs (Troie and Qimussinguat complexes, 2.74–2.73 Ga). Magmatic muscovite and epidote in tonalite–trondhjemite have corroded edges against quartz + plagioclase, suggesting resorption during ascent of crystal-charged magma. Foliation maps and air photo interpretation show the common development of 2–10 km-scale ovoid structures throughout the Douglas Harbour domain. Outcrop and thin-section scale structures imply that many plutons experienced a phase of syn-magmatic deformation, typically followed by high temperature sub-magmatic overprints.
    [Show full text]
  • The Geology of the Tama Kosi and Rolwaling Valley Region, East-Central Nepal
    The geology of the Tama Kosi and Rolwaling valley region, East-Central Nepal Kyle P. Larson* Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada ABSTRACT Tama Kosi valley in east-central Nepal (Fig. 1). which were in turn assigned to either the Hima- In order to properly evaluate the evolution of the layan gneiss group or the Midlands metasedi- The Tama Kosi/Rolwaling area of east- Himalaya and understand the processes respon- ment group (Fig. 2). The units of Ishida (1969) central Nepal is underlain by the exhumed sible for its formation, it is critical that all areas and Ishida and Ohta (1973) are quite similar in mid-crustal core of the Himalaya. The geol- along the length of the mountain chain be inves- description to the tectonostratigraphy reported ogy of the area consists of Greater Hima- tigated, at least at a reconnaissance scale. by Schelling (1992) who revisited and expanded layan sequence phyllitic schist, paragneiss, The Tama Kosi valley is situated between the the scope of their early reconnaissance work. and orthogneiss that generally increase in Cho Oyu/Everest/Makalu massifs to the east Schelling (1992) separated the geology of metamorphic grade from biotite ± garnet and the Kathmandu klippe/nappe to the west the lower and middle portion of the Tama Kosi assemblages to sillimanite-grade migmatite (Fig. 1). Recent work in these areas serves to into the more traditional Greater Himalayan up structural section. All metamorphic rocks highlight stark differences between them. In the sequence (Higher Himalayan Crystallines) and are pervasively deformed and commonly Kathmandu region, the extruded midcrustal core Lesser Himalayan sequence lithotectonic assem- record top-to-the-south sense shear.
    [Show full text]
  • Northwestern Superior Craton Margin, Manitoba: an Overview of Archean
    GS-7 Northwestern Superior craton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustal growth, erosion and orogenesis (parts of NTS 54D and 64A) by R.P. Hartlaub1, C.O. Böhm, L.M. Heaman2, and A. Simonetti2 Hartlaub, R.P., Böhm, C.O., Heaman, L.M. and Simonetti, A. 2005: Northwestern Superior craton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustal growth, erosion, and orogenesis (parts of NTS 54D and 64A); in Report of Activities 2005, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 54–60. Summary xenocrystic zircon, and in the The northwestern margin of the Superior Province in isotopic signature of Neoarchean Manitoba represents a dynamic boundary zone with good granite bodies (Böhm et al., 2000; potential for magmatic, sedimentary-hosted, and structur- Hartlaub et al., in press). The ALCC extends along the ally controlled mineral deposits. The region has a history Superior margin for at least 50 km, and may have a com- that commences in the early Archean with the formation mon history with other early Archean crustal fragments of the Assean Lake Crustal Complex. This fragment of in northern Quebec and Greenland (Hartlaub et al., in early to middle Archean crust was likely accreted to the press). Superior Province between 2.7 and 2.6 Ga, a major period South of the ALCC, the Split Lake Block repre- of Superior Province amalgamation. Sediments derived sents a variably retrogressed and shear zone–bounded from this amalgamation process were deposited at granulite terrain that is dominated by plutonic rocks and numerous locations along the northwestern margin of mafic granulite (Hartlaub et al., 2003, 2004).
    [Show full text]
  • The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting
    Gondwana Research 22 (2012) 360–376 Contents lists available at SciVerse ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting Zhengfu Guo a,⁎, Marjorie Wilson b a Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China b School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK article info abstract Article history: Late Oligocene–Miocene leucogranites within southern Tibet form part of an extensive intrusive igneous Received 10 February 2011 province within the Himalayan orogen. The main rock types are tourmaline leucogranites (Tg) and two-mica Received in revised form 18 July 2011 87 86 leucogranites (2 mg). They have high SiO2 (70.56–75.32 wt.%), Al2O3 (13.55–15.67 wt.%) and ( Sr/ Sr)i Accepted 25 July 2011 (0.724001–0.797297), and low MgO (0.02–0.46 wt.%) and (143Nd/144Nd) (0.511693–0.511906). Chondri- Available online 11 August 2011 i te-normalized rare earth element (REE) patterns display strong negative Eu anomalies. Whole-rock major and trace element and Sr–Nd isotope data for the leucogranites suggest that their source region was a Keywords: fl Leucogranites two-component mixture between a uid derived from the Lesser Himalayan (LH) crustal sequence and the Decompression melting bulk crust of the Higher Himalayan (HH) sequence. Trace element and Sr–Nd isotope modeling indicate that Himalayan orogen the proportion of fluid derived from the LH sequence varied from 2% to 19% and the resulting metasomatised Steepening of the subducted Indian slab source experienced 7–16% melting.
    [Show full text]
  • Emerald Mineralization and Amphibolite Wall-Rock Alteration at the Khaltaro Pegmatite-Hydrothermal Vein System
    AN ABSTRACT OF THE THESIS OF Brendan M. Laurs for the degree of Master of Science in Geology presented on January 17. 1995. Title: Emerald Mineralization and Amphibolite Wall-Rock Alteration at the Khaltaro Pegmatite-Hydrothermal Vein System. Haramosh Mountains. Northern Pakistan. Redacted for Privacy Abstract approved: John H. Di lles Emeralds form within 0.1 to 1 m thick hydrothermal veins and pegmatites which have intruded amphibolite within layered Proterozoic gneisses in the Nanga Parbat- Haramosh massif. Simply-zoned albite-rich miarolitic pegmatites and hydrothermal veins containing various proportions of massive quartz, albite, tourmaline, muscovite, and beryl are associated with a small >3 m thick heterogeneous leucogranite sill of presumed Tertiary age, which discordantly intrudes the amphibolite and is locally albitized. Emeralds form within thin <30 cm wide massive quartz veins and tourmaline- albite veins, and more rarely in pegmatites, near the contacts with altered amphibolite. Electron microprobe analyses of colorless, pale blue, and emerald green beryl indicate that coloration is due to Cr3+ ± Fe2++Fe34-. Emerald green color is produced by Cr2O3 >0.20 wt%; Fe oxide varies from 0.62 to 0.89 wt% in emerald, 0.10 to 0.63 wt% in pale blue beryl, and 0.07 to 0.28 wt% in colorless beryl. The amphibolite adjacent to the pegmatites/veins is hydrolytically altered into ca. 20 cm-wide symmetrically zoned selvages. A sporadic inner zone containing biotite + tourmaline + fluorite ± albite ± muscovite ± quartz ± beryl assemblages typically extends to ca. 3 cm from the pegmatite/vein contacts; an intermediate zone containing biotite ± plagioclase + fluorite ± quartz assemblages extends to ca.
    [Show full text]
  • Geology and Tectonic Implications of Tourmaline Bearing Leucogranite of Bastipadu, Kurnool, Andhra Pradesh, India
    J. Earth Syst. Sci. (2018) 127:87 c Indian Academy of Sciences https://doi.org/10.1007/s12040-018-0990-8 Geology and tectonic implications of tourmaline bearing leucogranite of Bastipadu, Kurnool, Andhra Pradesh, India Kiran Jyoti Mishra, Santanu Bhattacharjee* , M S Reddy, M N Praveen, A D Bhimte and N Mahanta Geological Survey of India, Southern Region, Hyderabad 500 068, India. *Corresponding author. e-mail: [email protected] MS received 17 October 2017; revised 2 January 2018; accepted 19 January 2018; published online 2 August 2018 Tourmaline bearing leucogranite occurs as a pluton with pegmatitic veins intruding the Archaean granodiorite in the Bastipadu area, Kurnool district of Andhra Pradesh. We present field and petrographic relations, mineral chemistry and geochemical data for the leucogranite. It is essentially a two-mica granite, composed of quartz, perthite, microcline, albite, tourmaline and muscovite along with minor biotite and titanite. The euhedral tourmalines are regularly distributed in the rock. The geochemical studies show that the leucogranite is calc-alkaline, peraluminous to metaluminous which formed in a syn-collisional to volcanic arc-related setting. It displays strong ‘S’ type signatures with high K/Na ratios, moderately fractionated light rare earth elements, relatively flat heavy rare earth elements with [Ce/Yb]N ≤ 27.8 and a strong negative Eu anomaly. The geochemical characteristics indicate that the leucogranite melt might have been generated from partial melting of metasediments. Electron probe microanalyser data show the presence of alkali group tourmaline in leucogranite represented by schorl and dravite. Tourmaline compositions plot in the Li-poor granitoids and associated pegmatites and aplites and metapelites/metasammites fields.
    [Show full text]
  • 40Ar/39Ar Age Constraints on Deformation and Metamorphism in the Maine Central Thrust Zone and Tibetan
    TECTONICS, VOL. 8, NO. 4, PAGES 865-880, AUGUST 1989 40Ar/39Ar AGE CONSTRAINTSON DEFORMATION AND METANDRPHISM IN THE MAIN CENTRAL THRUST ZONE AND TIBETAN SLAB, EASTERN NEPAL HIMALAYA Mary S. Hubbard1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge T. Mark Harrison Department of Geological Sciences, State University of New York at Albany Abstract. In eastern Nepal, structural 6.4+0.8 Ma (Tc=225ñ20ø C). An adjacent and petrologic observations suggest that gneiss yields a 9.1ñ0.2 Ma biotite movement on the Main Central Thrust (MCT), isochron and a K-feldspar minimum age of the development of an inverted metamorphic 3.6_+0.2 Ma (Tc=210-+50øC). In the upper sequence, and leucogranite plutonism were Tibetan Slab, samples collected >200 m genetically related. Samples from across from visible intrusives yield a biotite the MCT zone and its hanging wall, the isochron age of 20.2!0.2 Ma and a complex Tibetan Slab, were collected from four hornblende age spectrum suggestive of locations in the Everest region for excess argon. At the fourth location an 40Ar/39Ar studies: (1) the MCT zone, (2) augen gneiss, a pegmatite, and a the lower Tibetan Slab, (3) the upper tourmaline-bearing leucogranite, all in Tibetan Slab away from intrusive rocks, mutual contact, yield indistinguishable and (4) the upper Tibetan Slab adjacent to mineral ages. The average biotite and and including leucogranitic material. muscovite isochron ages for these samples Within the MCT zone, muscovite and are 17.0_+1.4 and 16.6ñ0.2 Ma, hornblende yield cooling ages of 12.0-+0.2 respectively.
    [Show full text]
  • Petrological Description of the Leucogranite in Örsviken
    UNIVERSITY OF GOTHENBURG Department of Earth Sciences Geovetarcentrum/Earth Science Centre Petrological description of the leucogranite in Örsviken Johanna Engelbrektsson Hannah Berg ISSN 1400-3821 B775 Bachelor of Science thesis Göteborg 2014 Mailing address Address Telephone Telefax Geovetarcentrum Geovetarcentrum Geovetarcentrum 031-786 19 56 031-786 19 86 Göteborg University S 405 30 Göteborg Guldhedsgatan 5A S-405 30 Göteborg SWEDEN Abstract For a deeper understanding of the different processes that can create, alter and destroy magnetic minerals in rocks it is important to integrate rock magnetism with conventional petrology. Bulk composition, hydrothermal alteration, redox state, metamorphism and tectonic setting influence the magnetic properties of igneous rocks. An investigation of a part of a cape that consists of a leucogranite in Örsviken, 20 kilometres south of Gothenburg, was of interest after high susceptibility values had been discovered in the area. Five samples from the leucogranite were collected in order to do a whole rock major element analysis, find the cause of the high susceptibility, classify and interpret the origin of the leucogranite. Magnetite is the cause of the high susceptibility values across the leucogranite. The leucogranite is considered to be an A-type alkali granite with an anorogenic or a post-orogenic petrogenesis. The leucogranite shows quite similar patterns and chemistry to the Askim- and Kärra Granites, which may indicate that the leucogranite is associated with them. Keywords: Magnetic minerals, leucogranite, Örsviken, susceptibility, whole rock major element analysis, magnetite, A-type granite. Sammanfattning För att få en djupare förståelse för de olika processer som kan skapa, förändra och förstöra magnetiska mineral i berg är det viktigt att integrera bergarters magnetism och konventionell petrologi.
    [Show full text]
  • Internal Framework and Geochemistry of the Carboniferous Huaco Granite Pluton, Sierra De Velasco, NW Argentina
    Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile Internal framework and geochemistry of the Carboniferous Huaco granite pluton, Sierra de Velasco, NW Argentina Sardi, Fernando; Grosse, Pablo; Murata, Mamoru; Lozano Fernández, Rafael Pablo Internal framework and geochemistry of the Carboniferous Huaco granite pluton, Sierra de Velasco, NW Argentina Andean Geology, vol. 45, no. 2, 2018 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173955659006 DOI: https://doi.org/10.5027/andgeoV45n2-3015 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Fernando Sardi, et al. Internal framework and geochemistry of the Carboniferous Huaco granite plu... Artículos de Investigación Internal framework and geochemistry of the Carboniferous Huaco granite pluton, Sierra de Velasco, NW Argentina Estructura interna y geoquímica del plutón granítico carbonífero de Huaco, Sierra de Velasco, NW de Argentina Fernando Sardi DOI: https://doi.org/10.5027/andgeoV45n2-3015 INSUGEO, Argentina Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=173955659006 Pablo Grosse CONICET, Argentina [email protected] Mamoru Murata Naruto University of Education, Japón [email protected] Rafael Pablo Lozano Fernández Instituto Geológico y Minero de España, España [email protected] Received: 28 November 2016 Accepted: 11 November 2017 Abstract: e A-type Huaco granite pluton of the Velasco range (Sierras Pampeanas of northwest Argentina) is formed by three coeval granitic facies and contains subordinate coeval-to-late facies, as well as enclaves, dikes and stocks that show different temporal relations, textures and compositions.
    [Show full text]
  • Intrusive Igneous Rocks, Part 2
    GLY 4310C LAB 7 INTRUSIVE IGNEOUS ROCKS, PART 2 Granite, Alkali Feldspar Granite, Granodiorite, Quartz Monzonite, and Monzonite These intrusive (plutonic) rocks correspond to fields on diagram 2-2 of Winter. These rocks are generally richer in silica and alkali feldspar than those studied in Lab 6. More information about these rocks is included in Chapter 13 and 14 of Moorhouse. GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio is between 10 to 65%), and small amounts of biotite, hornblende or other silicates. K-spar may be orthoclase and/or microcline. The plagioclase is sodic, either oligoclase or andesine. Rocks of this composition are scarce and the definition is often broadened, for example by including quartz monzonite. The alkali feldspar is commonly microcline perthite (mixture of microcline and plagioclase). In some perthites, the albite and K-feldspar are completely separated, possibly due to recrystallization. The quartz is almost always anhedral in granites. The quartz grains often contain inclusions. Biotite is usually brown or brownish green and often contains inclusions. Hornblende is dark green and pleochroitic. Biotite may form a rim around the hornblende. If pyroxene (diopside) is present, hornblende may form a rim around the pyroxene. Muscovite may occur in patches around the biotite. Many granites are foliated. The name is from the Latin granum, meaning grain. ALKALI FELDSPAR GRANITE - Intrusive igneous, plutonic. Medium to coarse-grained plutonic rock containing between 20% to 60% quartz, feldspar (the plagioclase to plagioclase plus alkali feldspar (P/A+P) ratio < 10), and small amounts of biotite, hornblende or other silicates.
    [Show full text]
  • 1 Records of the Evolution of the Himalayan Orogen from in Situ Th-Pb Ion Microprobe Dating of Monazite: Eastern Nepal and Weste
    1 Records of the evolution of the Himalayan orogen from in situ Th-Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal E.J. Catlos,1* T. Mark Harrison,1 Craig E. Manning,2 Marty Grove,2 Santa Man Rai,3 M.S. Hubbard, 4 B.N. Upreti3 1Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, 90095-1567, USA 2Department of Earth and Space Sciences, University of California, Los Angeles, California, 90095-1567, USA 3Department of Geology, Tri-Chandra Campus, Tribhuvan University, Kathmandu, Nepal 4Department of Geology, Kansas State University, Manhattan, Kansas, 66506, USA Abstract. In situ Th-Pb monazite ages from rocks collected along two transects (the Dudh Kosi-Everest, eastern Nepal and the Bhagirathi River, Garhwal Himalaya, India) perpendicular to the Main Central Thrust (MCT) suggest a striking continuity of tectonic events across the Himalaya. The youngest age reported in this study, 5.9±0.2 Ma (MSWD=0.4), from matrix monazite grains collected beneath the MCT in the Garhwal region is consistent with several age data from rocks at similar structural levels in central Nepal, providing support for widespread Late Miocene MCT activity. The lateral parallelism of orogenic events is further manifested by the 20.7±0.1 Ma age of a High Himalayan leucogranite from an injection complex that outcrops along the Dudh Kosi-Everest transect, resembling ages of these bodies reported elsewhere. The youngest monazite grain analyzed along the Dudh Kosi-Everest transect is 10.3±0.8 Ma. The absence of 7-3 Ma monazite ages in eastern Nepal may reflect a different nappe structure, which obscures the reactivated ramp equivalent exposed in the Garhwal and central Nepal.
    [Show full text]