Eggplant (Solanum Melongena L.): Taxonomy and Relationships 2

Total Page:16

File Type:pdf, Size:1020Kb

Eggplant (Solanum Melongena L.): Taxonomy and Relationships 2 Eggplant (Solanum melongena L.): Taxonomy and Relationships 2 Sandra Knapp, Xavier Aubriot and Jaime Prohens Abstract currently recognised members of the Eggplant Solanum melongena L. (brinjal eggplant) is a clade and discuss character evolution and member of a small monophyletic group biogeography in the group in the context of (Eggplant clade) of mainly andromonoecious phylogeny. species in the large and diverse Leptoste- monum clade of Solanum (previously referred to as subgenus Leptostemonum Bitter). The 2.1 Introduction Leptostemonum clade (also known as the spiny solanums) is the most diverse mono- The brinjal eggplant (Solanum melongena L.) is phyletic group in the species-rich genus one of approximately 1300 species in the extre- Solanum and contains more than 500 species mely species-rich genus Solanum L. in the occurring on all continents except Antarctica. nightshade family Solanaceae. The family com- In this chapter, we summarise the current state prises 101 genera, including many economic and of knowledge of the taxonomy and phylogeny horticultural importance such as Nicotiana L. of Solanum, the Leptostemonum clade and (the tobaccos, see Knapp et al. 2004) and Petunia that of the monophyletic group of Old World L. (Stehmann et al. 2000). Generic diversity in taxa to which S. melongena belongs. We the family is concentrated in the Americas, provide a species list with distributions of the but there have been several instances of long-distance dispersal giving rise to genera and/or groups that are endemic to the Old World (Dupin et al. 2017). Generic limits in the family are under active investigation, and new genera S. Knapp (&) have been included (e.g. Nolana L.f. and Department of Life Sciences, Natural History Sclerophylax Miers, traditionally recognised as Museum, Cromwell Road, London SW7 5BD, UK e-mail: [email protected] separate families; see Olmstead et al. 2008) and segregated based on new understanding from X. Aubriot Laboratoire Écologie, Systématique et Évolution, molecular phylogenetics (e.g. Trompettia Dupin UMR 8079, Université & S.S.Smith; Dupin and Smith 2018). With the Paris-Sud/CNRS/AgroParisTech, Orsay, France inclusion of previously segregated genera such as J. Prohens Lycopersicon Mill., Cyphomandra Sendtn. and Instituto de Conservación y Mejora de la Normania Lowe, Solanum is resolved as strongly Agrodiversidad Valenciana, Universitat Politècnica è monophyletic and as sister to the genus Jal- de Val ncia, Camino de Vera 14, 46022 Valencia, ä Spain tomata Schltdl. (S rkinen et al. 2013). © Springer Nature Switzerland AG 2019 11 M. A. Chapman (ed.), The Eggplant Genome, Compendium of Plant Genomes, https://doi.org/10.1007/978-3-319-99208-2_2 [email protected] 12 S. Knapp et al. Solanum comprises around half of the species relationships of others are less clear (e.g. species diversity of the family and is one of only a like S. clandestinum Bohs and S. mapiriense handful of flowering plant genera with more than Bohs; see Särkinen et al. 2013). Relationships 1000 species (Frodin 2004). Not only because of between the clades are relatively stable, but a its large size, Solanum is also important for polytomy at the base of Clade 2 of Särkinen et al. containing species of great economic importance (2013) means the sister group of the largest and for humans, such as potato (S. tuberosum L.), most species-rich clade of Solanum—the tomato (S. lycopersicum L.) and of course the Leptostemonum clade or the spiny solanums—is eggplant, plus a host of minor fruit and leaf crops not yet clear (Särkinen et al. 2013). cultivated locally worldwide (see Anderson 1977; Whalen et al. 1981;Särkinen et al. 2018). Species of Solanum occur on all continents 2.2 The Leptostemonum Clade except Antarctica, in a wide variety of habitats from tropical rainforests to the driest deserts and The prickly solanums are the largest mono- have a wide range of life forms, from annual phyletic group within the genus Solanum (Bohs herbs to rainforest trees. The traditional view has 2005;Särkinen et al. 2013; Stern et al. 2011). been that the large majority of species of Sola- They were traditionally referred to as subgenus num occurred in the New World, mostly in South Leptostemonum Bitter (Bitter 1919), or as “cho- America (e.g. see D’Arcy 1972) but recent work rus subgenerum” Stellatipilum Seithe (Seithe in Africa (Vorontsova and Knapp 2016), Asia 1962), highlighting the two characters whose (Aubriot et al. 2016) and Australia and New combination defined the group—the presence of Guinea (e.g. Bean 2002, 2004, 2010, 2011, 2014, stellate trichomes and long attenuate anthers. 2016; Bean and Albrecht 2008) has revealed Neither of these is unique to the Leptostemonum hitherto poorly understood diversity in the clade. Stellate trichomes are found in the Bre- Old World, especially in the spiny solanums vantherum clade (Stern et al. 2013; Giacomin (see below). and Stehmann 2014) and attenuate anthers in two The genus was divided into two main groups small groups, S. nemorense Dunal and relatives by authors in the nineteenth and early twentieth (Bohs 2005) and the S. wendlandii clade (Clark centuries (e.g. Dunal 1852; Seithe 1962), simply et al. 2016); all of these groups are part of the described as the spiny and non-spiny solanums. polytomy at the base of Clade 2 of Särkinen et al. These broad groups were defined on the presence (2013). or absence of prickles and anther shape (see The Leptostemonum clade is strongly mono- Vorontsova and Knapp 2016 for a more com- phyletic (Stern et al. 2011) and comprises at plete discussion). Within those broad groups, current estimates some 560 accepted species Solanum was divided into a number of sections distributed on all continents except Antarctica (S. (see D’Arcy 1972, who listed many sections, Knapp, unpublished). Approximately half of subsections and series), defined largely on these occur in the New World and half in the Old macro-morphological characteristics. Phyloge- World (see Aubriot et al. 2016). Using DNA netic work using DNA sequences showed that sequence data to delimit monophyletic groups most of these sectional groupings were not within the Leptostemonum clade revealed that monophyletic (Bohs 2005); the genus can be the Old World species were a single, mono- divided into 13 major clades (Bohs 2005; phyletic clade (with a few exceptions; Levin Särkinen et al. 2013; Weese and Bohs 2007). et al. 2006; Stern et al. 2011) rather than being Some of these (e.g. the Potato clade, including related to diverse groups of New World taxa as tomatoes and their relatives and a number of had previously been thought (e.g. D’Arcy 1972; smaller groups such as section Pteroidea Dunal Whalen 1984). This large Old World group was and the Regmandra clade; see Tepe et al. 2016) derived within the spiny solanums and was sister are well-supported and monophyletic, while the to a small group of taxa that exhibit an [email protected] 2 Eggplant (Solanum melongena L.): Taxonomy and Relationships 13 amphitropical disjunct distribution between and the rest of the Old World taxa (see Fig. 2.1a North and South America (the S. elaeagnifolium for a summary of the Old World spiny solanum Cav. clade, see Knapp et al. 2017). New World relationships). Monophyletic groups first recog- species of spiny solanums could be divided into nised in the analysis of African taxa by Vor- 13 smaller monophyletic groups, some of them ontsova et al. (2013) were for the most part endemic to Brazil (e.g. Gouvêa and Stehmann upheld in an expanded analysis that included 2019) while others were more widespread across Asian and Pacific taxa (Aubriot et al. 2016), but the Americas (e.g. Whalen et al. 1981). The first relationships between groups along the backbone dichotomy in the spiny solanums is between a of the tree are still poorly resolved. Australian group of taxa from Brazil and the Caribbean (the species do not comprise a single monophyletic Gardneri, Thomasiifolium and Erythrotrichum group, but sampling of these taxa in Aubriot clades) and the rest of group (Stern et al. 2011). et al. (2016) was limited; Australian species The largest of the New World clades is the Torva diversity is very high (see below), and expanded clade with ca. 70 species of mostly Andean sampling of these taxa is a priority for under- distribution (but see below). The continued standing relationships in the Old World spiny discovery of new species of spiny solanums in solanums. Previous phylogenetic work on Aus- the Americas, particularly in Brazil (e.g. Gouvêa tralian spiny solanums has focused on small and Stehmann 2016; Gouvêa et al. 2018; groups of dioecious taxa (Martine et al. 2006, Ribero-Silva and Proença 2011), means that 2009). The endemic Malagasy spiny solanums limits and composition of New World groups are are all closely related and form a monophyletic both in active revision. group, despite their markedly divergent mor- phologies (see Vorontsova and Knapp 2016). The Eggplant clade, containing S. melongena and its 2.3 The Old World spiny solanums close relatives (Knapp et al. 2013), has been recovered as a strongly supported lineage in all Data from a number of studies using molecular analyses to date (Fig. 2.1b; see also summary in phylogenetics showed that the Old World species Aubriot et al. 2016), but with some differences in of spiny solanums formed a strongly supported circumscription (see below). That early branching monophyletic group (Aubriot et al. 2016; Levin lineages in the Old World spiny solanums are all et al. 2006; Stern et al. 2011; Vorontsova et al. Australasian, and Pacific suggests that any 2013), with the exception of a small clade of long-distance dispersal from the New World was Asian species nested within the otherwise New across what is now the Pacific Ocean and not the World Torva clade (Aubriot et al.
Recommended publications
  • Human-Mediated Introductions of Australian Acacias
    Diversity and Distributions, (Diversity Distrib.) (2011) 17, 771–787 S EDITORIAL Human-mediated introductions of PECIAL ISSUE Australian acacias – a global experiment in biogeography 1 2 1 3,4 David M. Richardson *, Jane Carruthers , Cang Hui , Fiona A. C. Impson , :H Joseph T. Miller5, Mark P. Robertson1,6, Mathieu Rouget7, Johannes J. Le Roux1 and John R. U. Wilson1,8 UMAN 1 Centre for Invasion Biology, Department of ABSTRACT - Botany and Zoology, Stellenbosch University, MEDIATED INTRODUCTIONS OF Aim Australian acacias (1012 recognized species native to Australia, which were Matieland 7602, South Africa, 2Department of History, University of South Africa, PO Box previously grouped in Acacia subgenus Phyllodineae) have been moved extensively 392, Unisa 0003, South Africa, 3Department around the world by humans over the past 250 years. This has created the of Zoology, University of Cape Town, opportunity to explore how evolutionary, ecological, historical and sociological Rondebosch 7701, South Africa, 4Plant factors interact to affect the distribution, usage, invasiveness and perceptions of a Protection Research Institute, Private Bag globally important group of plants. This editorial provides the background for the X5017, Stellenbosch 7599, South Africa, 20 papers in this special issue of Diversity and Distributions that focusses on the 5Centre for Australian National Biodiversity global cross-disciplinary experiment of introduced Australian acacias. A Journal of Conservation Biogeography Research, CSIRO Plant Industry, GPO Box Location Australia and global. 1600, Canberra, ACT, Australia, 6Department of Zoology and Entomology, University of Methods The papers of the special issue are discussed in the context of a unified Pretoria, Pretoria 0002, South Africa, framework for biological invasions.
    [Show full text]
  • Document Downloaded From: This Paper Must Be Cited As: the Final Publication Is Available at Copyright Additional Information Ht
    Document downloaded from: http://hdl.handle.net/10251/96051 This paper must be cited as: San José, R.; Plazas Ávila, MDLO.; Sánchez-Mata, MC.; Cámara Hurtado, MM.; Prohens Tomás, J. (2016). Diversity in composition of scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and of interspecific hybrids between S. aethiopicum and common eggplant (S. melongena). Journal of Food Composition and Analysis. 45:130-140. doi:10.1016/j.jfca.2015.10.009 The final publication is available at http://doi.org/10.1016/j.jfca.2015.10.009 Copyright Elsevier Additional Information Original Research Article Diversity for composition in scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants and in interspecific hybrids between S. aethiopicum and common eggplant (S. melongena) Raquel San José a, Mariola Plazas b, M. Cortes Sánchez-Mata a, Montaña Cámara a, Jaime Prohens b, * a Departamento de Nutrición y Bromatología II – Bromatología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain b Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain *Corresponding author: Tel. +34 963879424; fax: +34 963879422. E-mail address: [email protected] (J. Prohens). ABSTRACT Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are cultivated vegetable crops native to Africa for which no comprehensive reports exist on composition and its diversity. We have evaluated diversity for composition in three varieties of scarlet eggplant and four varieties of gboma eggplant as well as in four interspecific hybrids between scarlet and common eggplant (S. melongena) and their respective parents.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • March 2018 Number 177 Meeting Report
    March 2018 Number 177 Inside this Issue... Meeting Report - Meeting Report - February 2018....................................1 Methods of propagation - February 2018 marcotting.........................................2 SGAP Cairns first meeting for 2018 was hosted by our Common procedures in marcotting2 Pimelea in North Queensland..........4 President, Tony Roberts. Of necessity, February excursion Introduction....................................4 planning must be conservative. One never knows if tropical Some Notes on Queensland species downpours, washed out roads or cyclonic winds will impact of Pimelea ......................................4 on a bush outing - so it's always best to keep things close to Key to Species adapted from Bean home. The conservative approach provided us with an ideal (2017).............................................7 Paul Kennedy from the Hakea Study opportunity for the more Group writes:....................................9 experienced members of our Innisfail Branch................................10 group to share their Townsville Branch...........................10 knowledge of plant Tablelands Branch...........................10 propagation in an informal Cairns Branch - next meeting.........10 workshop setting. The weather was typical for the year: warm, humid with occasional showers. After a splendid lunch of shared goodies (which could easily have gone on all afternoon), we sat down to listen, watch and learn. The Don and Pauline Lawie double act. Society for Growing Australian Plants, Inc. 2017-2018 COMMITTEE Cairns Branch President: Tony Roberts Website: www.sgapcairns.org.au Vice President: Pauline Lawie Secretary: Sandy Perkins ([email protected]) Email: [email protected] Treasurer: Val Carnie Newsletter: Stuart Worboys ([email protected]) Webmaster: Tony Roberts Mary Gandini demonstrated propagation from cuttings; discussing soil mixes, selecting the right material for taking cuttings, and how to use commercial rooting hormones.
    [Show full text]
  • Garden Egg.” ©
    Urban Markets, Changing farms: Dual-Tiered Targeted support for Ethnic and Specialty crops Dwane Jones, Ph.D., Director of the Center of Sustainable Development Yao Afantchao, Ethnic Crop Development Specialist Oluwakemi (“Kemi) Adeola, UDC Master’s Degree Candidate in Nutrition & Dietetics Cecilia Andrea Herrera, Graduate Student Intern Dual-Tiered Targeted Support for Ethnic and Specialty Crops Center for Sustainable Development June 2015 Table of Contents 1. IntroDuction ............................................................................................................................ 2 2. Data anD MethoDology ........................................................................................................... 3 2.1 Consumers’ Data Collection anD Analyzing methoDs ........................................................... 4 2.2 Distributors’ Data Collection anD Analysis ....................................................................... 5 3. Cooperation anD Contributions .............................................................................................. 5 4. Results, Conclusions anD Lessons LearneD ................................................................................. 6 4.1 Results of Consumers’ Surveys ............................................................................................. 6 4.3 Results of Distributors’ Surveys ............................................................................................ 9 4.3.1 Quantitative Analysis ....................................................................................................
    [Show full text]
  • Solanum Melongena L.) As Revealed by Random Amplified Polymorphic DNA (RAPD) Markers
    Vol. 13(21), pp. 2119-2126, 21 May, 2014 DOI: 10.5897/AJB2013.13493 Article Number: 79C741544749 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Genetic diversity in Nigerian brinjal eggplant (Solanum melongena L.) as revealed by random amplified polymorphic DNA (RAPD) markers Sifau, Mutiu Oyekunle1,3*, Akinpelu, Adejoke1, Ogunkanmi, Liasu Adebayo1, Adekoya, Khalid Olajide1, Oboh, Bola Olufunmilayo1 and Ogundipe, Oluwatoyin Temitayo2 1Department of Cell Biology and Genetics, University of Lagos, Lagos, Lagos State, Nigeria. 2Department of Botany, University of Lagos, Lagos, Lagos State, Nigeria. 3Molecular Biology Laboratory, Biotechnology Unit, National Centre for Genetic Resources and Biotechnology (NACGRAB), PMB 5382, Ibadan, Oyo State, Nigeria. Received 21 November, 2013; Accepted 8 May, 2014 The taxonomy of Solanum melongena L., also known as brinjal eggplant, has remained difficult because previous studies to establish genetic relationships among taxa are mainly based on morphological features, which are insufficient to establish genetic affinities. In the present investigation, five highly polymorphic random amplified polymorphic DNA primers were used to describe the genetic similarity and diversity among its accessions in Nigeria. The results show a high level of polymorphism based on the banding patterns among the samples. This indicated a wide and diverse genetic base. Four distinct clusters were equally noticeable at a coefficient of 0.80 from the dendrogram generated. Generally, the grouping pattern clearly indicates that irrespective of variations in fruit traits among samples, they were still grouped together in different clusters with a high similarity coefficient value.
    [Show full text]
  • Coding Snps Analysis Highlights Genetic Relationships and Evolution Pattern in Eggplant Complexes
    RESEARCH ARTICLE Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes Alberto Acquadro1, Lorenzo Barchi1, Pietro Gramazio2, Ezio Portis1, Santiago Vilanova2, Cinzia Comino1, Mariola Plazas3, Jaime Prohens2*, Sergio Lanteri1* 1 University of TurinÐDISAFAÐPlant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy, 2 Instituto de ConservacioÂn y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, Spain, 3 Instituto de BiologõÂa Molecular y Celular de a1111111111 Plantas, Consejo Superior de Investigaciones CientõÂficas-Universitat Politècnica de València, Camino de a1111111111 Vera 14, Valencia, Spain a1111111111 a1111111111 * [email protected] (SL); [email protected] (JP) a1111111111 Abstract Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) egg- OPEN ACCESS plants are three Old World domesticates. The genomic DNA of a collection of accessions Citation: Acquadro A, Barchi L, Gramazio P, Portis belonging to the three cultivated species, along with a representation of various wild rela- E, Vilanova S, Comino C, et al. (2017) Coding SNPs tives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS a genotype-by-sequencing approach. A total of 210 million useful reads were produced and ONE 12(7): e0180774. https://doi.org/10.1371/ were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 journal.pone.0180774 polymorphic sites identified among the 76 entries in study, 12,859 were associated with cod- Editor: Mohar Singh, National Bureau of Plant ing sequence. A genetic relationships analysis, supported by the output of the FastSTRUC- Genetic Resources, Pusa India, INDIA TURE software, identified four major sub-groups as present in the germplasm panel.
    [Show full text]
  • (Solanum Melongena L.; Solanaceae) and Its Wild Relatives
    Title Shedding new light on the origin and spread of the brinjal eggplant (Solanum melongena L.) and its wild relatives Authors Aubriot, X; Knapp, S; Syfert, MM; Poczai, P; Buerki, S Date Submitted 2018-08-18 1Shedding new light on the origin and spread of the brinjal 2eggplant (Solanum melongena L.; Solanaceae) and its wild 3relatives 4 5Xavier Aubriot1, 2, Sandra Knapp1, Mindy Syfert1, Péter Poczai3, Sven Buerki1, 4 71 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, 8England, UK. 92 Unité Mixte de Recherche 6553 Écosystèmes, Biodiversité, Évolution (ECOBIO), Observatoire des 10Sciences de l'Univers de Rennes, Centre National de la Recherche Scientifique, Université de Rennes 111, Rennes CEDEX, France. 123 Botany Unit, Finnish Museum of Natural History, University of Helsinki, PO Box 7, Helsinki FI- 1300014, Finland. 144 Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, Idaho 1583725, U.S.A. 16 17Authors for correspondence: Xavier Aubriot, Tel: +33 623 744 393, Email: xavier.aubriot@univ- 18rennes1.fr; Sven Buerki, Tel: +1 208 426 3262, Email: [email protected] 19 20ABSTRACT 21PREMISE OF THE STUDY: While brinjal eggplant (Solanum melongena L.) is the second most 22important solanaceaous vegetable crop, we lack firm knowledge of its evolutionary relationships. This 23in turn limits efficient use of crop wild relatives in eggplant improvement. Here, we examine the 24hypothesis of linear step-wise expansion of the eggplant group from Africa to Asia. 25METHODS: We use museum collections to generate nuclear and full-plastome data for all species of 26the eggplant clade. We combine a phylogenomic approach with distribution data to infer a 27biogeographic scenario for the clade.
    [Show full text]
  • Sites of Botanical Significance Vol1 Part1
    Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Prepared By Matthew White, David Albrecht, Angus Duguid, Peter Latz & Mary Hamilton for the Arid Lands Environment Centre Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Matthew White 1 David Albrecht 2 Angus Duguid 2 Peter Latz 3 Mary Hamilton4 1. Consultant to the Arid Lands Environment Centre 2. Parks & Wildlife Commission of the Northern Territory 3. Parks & Wildlife Commission of the Northern Territory (retired) 4. Independent Contractor Arid Lands Environment Centre P.O. Box 2796, Alice Springs 0871 Ph: (08) 89522497; Fax (08) 89532988 December, 2000 ISBN 0 7245 27842 This report resulted from two projects: “Rare, restricted and threatened plants of the arid lands (D95/596)”; and “Identification of off-park waterholes and rare plants of central Australia (D95/597)”. These projects were carried out with the assistance of funds made available by the Commonwealth of Australia under the National Estate Grants Program. This volume should be cited as: White,M., Albrecht,D., Duguid,A., Latz,P., and Hamilton,M. (2000). Plant species and sites of botanical significance in the southern bioregions of the Northern Territory; volume 1: significant vascular plants. A report to the Australian Heritage Commission from the Arid Lands Environment Centre. Alice Springs, Northern Territory of Australia. Front cover photograph: Eremophila A90760 Arookara Range, by David Albrecht. Forward from the Convenor of the Arid Lands Environment Centre The Arid Lands Environment Centre is pleased to present this report on the current understanding of the status of rare and threatened plants in the southern NT, and a description of sites significant to their conservation, including waterholes.
    [Show full text]
  • Solanum (Solanaceae) in Uganda
    Bothalia 25,1: 43-59(1995) Solanum (Solanaceae) in Uganda Z.R. BUKENYA* and J.F. CARASCO** Keywords: food crops, indigenous taxa, key. medicinal plants, ornamentals, Solanum. Solanaceae. Uganda, weeds ABSTRACT Of the 41 species, subspecies and cultivar groups in the genus Solanum L. (Solanaceae) that occur in Uganda, about 30 are indigenous. In Uganda several members of the genus are utilised as food crops while others are put to medicinal and ornamental use. Some members are notorious weeds. A key to the species and descriptions of all Solanum species occurring in Uganda are provided. UITTREKSEL Van die 41 spesies, subspesiesen kultivargroepe indie genus Solanum L. (Solanaceae) wat in Uganda voorkom. is sowat 30 inheems. Verskeie lede van die genus word as voedselgewasse benut. terwyl ander vir geneeskundige en omamentele gebruike aangewend word. Sommige lede is welbekend as onkruide. n Sleutel tot die spesies en beskrvw ings van al die Solanum-spes\cs wat in Uganda voorkom word voorsien. CONTENTS C. Subgenus Leptostemonum (Dunal) Bitter ........ 50 Section Acanthophora Dunal ............................... 51 Introduction............................................................... 44 15. S. mammosum L............................................. 51 Materials and m ethods............................................ 45 16. S. aculeatissimum Jacq................................... 51 Key to species........................................................... 45 Section Aeuleigerum Seithe .................................. 51 Solanum L.................................................................
    [Show full text]
  • CHAPTER 5 Molecular Genetic Diversity of E. Urophylla
    ABSTRACT PAYN, KITT GARNET. Molecular Genetic Diversity and Population Genetic Structure of the Commercially Important Tropical Forest Tree Species Eucalyptus urophylla. (Under the direction of William S. Dvorak.) Eucalyptus urophylla is an economically important plantation tree species in countries with tropical and subtropical climates. Its natural distribution is limited to a series of populations on seven islands of the Sunda archipelago in eastern Indonesia. The largest populations are found on the islands of Timor and Wetar, whereas smaller populations occur on the islands of Alor, Pantar, Lomblen, Adonara and Flores. Of concern is the depletion in the species’ genetic resource, primarily on the latter five islands, as a consequence of land conversion to agriculture. Proficient management of the E. urophylla genetic resource, with respect to both conservation and breeding programs, requires a good understanding of the level of genetic diversity and population genetic structure across the species’ native range. This may be achieved through the application of DNA marker techniques that measure genetic diversity at different levels (e.g. organellar vs. nuclear, or genome-wide vs. gene locus). Historical events such as range expansion and genetic bottlenecks can leave an imprint on contemporary levels of genetic diversity. Therefore, the geographical distribution of chloroplast DNA sequence variation in E. urophylla was studied to gain insight into its historical seed migration routes along the island archipelago. Chloroplast DNA sequence data were obtained from 198 plants broadly representing the native range of the species. Twenty haplotypes were identified. A moderate to high level of chloroplast genetic differentiation (GST = 0.581, NST = 0.724) and significant phylogeographic structure (NST > GST; P < 0.01) were observed, suggesting low levels of recurrent seed-mediated gene flow among the islands.
    [Show full text]
  • The Eucalypts of Northern Australia: an Assessment of the Conservation Status of Taxa and Communities
    The Eucalypts of Northern Australia: An Assessment of the Conservation Status of Taxa and Communities A report to the Environment Centre Northern Territory April 2014 Donald C. Franklin1,3 and Noel D. Preece2,3,4 All photographs are by Don Franklin. Cover photos: Main photo: Savanna of Scarlet-flowered Yellowjacket (Eucalyptus phoenicea; also known as Scarlet Gum) on elevated sandstone near Timber Creek, Northern Territory. Insets: left – Scarlet-flowered Yellowjacket (Eucalyptus phoenicea), foliage and flowers centre – reservation status of eucalypt communities right – savanna of Variable-barked Bloodwood (Corymbia dichromophloia) in foreground against a background of sandstone outcrops, Keep River National Park, Northern Territory Contact details: 1 Ecological Communications, 24 Broadway, Herberton, Qld 4887, Australia 2 Biome5 Pty Ltd, PO Box 1200, Atherton, Qld 4883, Australia 3 Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia 4 Centre for Tropical Environmental & Sustainability Science (TESS) & School of Earth and Environmental Sciences, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia Copyright © Donald C. Franklin, Noel D. Preece & Environment Centre NT, 2014. This document may be circulated singly and privately for the purpose of education and research. All other reproduction should occur only with permission from the copyright holders. For permissions and other communications about this project, contact Don Franklin, Ecological Communications, 24 Broadway, Herberton, Qld 4887 Australia, email [email protected], phone +61 (0)7 4096 3404. Suggested citation Franklin DC & Preece ND. 2014. The Eucalypts of Northern Australia: An Assessment of the Conservation Status of Taxa and Communities. A report to Kimberley to Cape and the Environment Centre NT, April 2014.
    [Show full text]