ORIGINAL RESEARCH ARTICLE published: 18 December 2013 doi: 10.3389/fmicb.2013.00394 Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale Anastasia Bragina 1, Massimiliano Cardinale 1,2, Christian Berg 2 and Gabriele Berg 1* 1 Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria 2 Institute of Plant Sciences, Karl-Franzens University of Graz, Graz, Austria Edited by: The betaproteobacterial genus Burkholderia is known for its versatile interactions with Michael Schloter, Helmholtz its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental Zentrum München, Germany (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still Reviewed by: little is known about burkholderial diversity, distribution, colonization, and transmission David J. Studholme, University of Exeter, UK patterns on plants. In our study, we applied a combination of high-throughput molecular Michael Schmid, Helmholtz Zentrum and microscopic methods to examine the aforementioned factors for Burkholderia München, Germany communities associated with Sphagnum mosses – model plants for long-term *Correspondence: associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons Gabriele Berg, Institute of libraries revealed that most of the Burkholderia are part of the PBE group, but Environmental Biotechnology, Graz University of Technology, a minor fraction was closely related to B. glathei and B. andropogonis from the Petersgasse 10-12/I, Graz, 8010, pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for Austria each moss species independent of the geographic region, and Burkholderia-specific e-mail:
[email protected] fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales.