An Optimal Dichotic-Listening Paradigm for the Assessment of Hemispheric

Total Page:16

File Type:pdf, Size:1020Kb

An Optimal Dichotic-Listening Paradigm for the Assessment of Hemispheric 1 Research article 2 An optimal dichotic-listening paradigm for the assessment of hemispheric 3 dominance for speech processing 4 5 René Westerhausen (1,2)* & Fredrik Samuelsen (2) 6 7 (1) Department of Psychology, University of Oslo, Norway 8 (2) Department of Biological and Medical Psychology, University of Bergen, Norway 9 10 Running title: Optimal dichotic-listening paradigm 11 12 13 *Corresponding author 14 René Westerhausen 15 Department of Psychology, University of Oslo, 16 POB 1094 Blindern, 0317 Oslo, Norway 17 email: [email protected], Phone: (+47) 228 45230 18 1 19 Abstract 20 Dichotic-listening paradigms are widely accepted as non-invasive tests of hemispheric 21 dominance for language processing and represent a standard diagnostic tool for the 22 assessment of developmental auditory and language disorders. Despite its popularity in 23 research and clinical settings, dichotic paradigms show comparatively low reliability, 24 significantly threatening the validity of conclusions drawn from the results. Thus, the aim of 25 the present work was to design and evaluate a novel, highly reliable dichotic-listening 26 paradigm for the assessment of hemispheric differences. Based on an extensive literature 27 review, the paradigm was optimized to account for the main experimental variables which are 28 known to systematically bias task performance or affect random error variance. The main 29 design principle was to minimize the relevance of higher cognitive functions on task 30 performance in order to obtain stimulus-driven laterality estimates. To this end, the key 31 design features of the paradigm were the use of stop-consonant vowel (CV) syllables as 32 stimulus material, a single stimulus pair per trial presentation mode, and a free recall (single) 33 response instruction. Evaluating a verbal and manual response-format version of the 34 paradigm in a sample of N = 50 healthy participants, we yielded test-retest intra-class 35 correlations of rICC = .91 and .93 for the two response format versions. These excellent 36 reliability estimates suggest that the optimal paradigm may offer an effective and efficient 37 alternative to currently used paradigms both in research and diagnostic. 38 39 Keywords: dichotic listening test; behavioral laterality; reliability; hemispheric 40 specialisation; speech perception; neuropsychology; 41 42 2 43 Introduction 44 Verbal dichotic-listening paradigms offer well-established behavioral tests for the assessment 45 of latent hemispheric differences for language processing (1, 2) and are integral part of test 46 procedures for the diagnosis of auditory processing disorders (3-5). A significant advantage 47 of dichotic compared with alternative paradigms (e.g., visual-half field techniques or 48 neuroimaging approaches) is the simplicity of the testing procedure which can be easily 49 understood and performed also by young children (e.g., 6, 7), elderly individuals (e.g., 8, 9), 50 or patients with cognitive disabilities (e.g., 10, 11). That is, in its basic form, pairs of verbal 51 stimuli (e.g., words or syllables) are presented via headphones, with one of the stimuli 52 presented to the left ear and the other one, simultaneously, to the right ear (12). Instructed to 53 report the one of the two stimuli which was heard best, participants typically report the right- 54 ear stimulus more frequently, more accurately, and more rapidly than the left-ear stimulus. 55 This right-ear advantage is widely accepted to indicate left hemispheric dominance for speech 56 processing (2, 13, 14) and differences in the magnitude of this right-ear preferences have 57 been related to interhemispheric auditory integration (15-17). 58 However, many different versions of dichotic-listening paradigms have been 59 suggested (12, 18) and the test-retest reliability of most dichotic paradigms – even of those 60 used for diagnostic purposes – are far from optimal (19, 20). This shortcoming severely 61 threatens the inferences that can be made using dichotic-listening measures, as the reliability 62 of a test also sets the upper limit of its validity (21). At the same time, however, substantial 63 differences in reliability estimates between paradigms (19) suggest that certain design 64 features systematically affect the consistency of an individual’s dichotic listening task 65 performance. In fact, since the early conceptualization of dichotic listening more than six 66 decades ago (22, 23), a plethora of studies has accumulated a significant amount of evidence 67 on how features of the experimental set-up (e.g., stimulus order, stimulus material) and task 3 68 instructions lead to systematic response biases (for review see ref. 18). For example, it has 69 been demonstrated that paradigms instructing participants to selectively attend to only one ear 70 at a time are more difficult for participants to perform than paradigms allowing for a free 71 selection (24). Also, presenting multiple stimulus pairs per trial increases the working- 72 memory load of the task by requiring the participant to keep the representation of multiple 73 stimuli activated simultaneously, leading to a decreased right-ear advantage (25). 74 Ignoring these design variables or leaving them uncontrolled introduces error variance 75 to the obtained measures, affecting both the reliability of the obtained laterality measures and 76 the efficiency of the paradigm. In turn, however, considering these variables when designing 77 a dichotic-listening task makes it possible to tailor a paradigm which is optimized for a given 78 purpose. In the present paper, the intention is to design a dichotic listening paradigm 79 optimized for the assessment of hemispheric dominance for speech and language processing. 80 As theoretical framework, we assume that dichotic-listening performance can be best 81 explained using a two-stage model (26-28): an initial stage leading to a perceptual 82 representation of the two competing stimuli in verbal short‐term memory (29, 30), and a 83 second stage characterized by cognitive-control processes which may modulate the initial 84 representation in line with task requirements, resulting in a response selection (31, 32). It is 85 further assumed that a “true” underlying right-ear preference exists as consequence of left- 86 hemispheric specialization for speech and language processing (33, 34). That is, in the initial 87 stage, the right-ear stimulus can be expected to be more salient than the left-ear stimulus. An 88 optimal paradigm to assess this underlying perceptual, “built-in” laterality, consequently 89 needs to assure both an unbiased initial stimulus representation and a cognitively unaltered 90 response selection during second stage processing (27). Based on recent literature review 91 (18), we here aim to create and evaluate such an optimal paradigm by following the eight 92 design features listed in Table 1. 4 93 However, while many design features of dichotic paradigms have been studied 94 systematically, it appears somewhat surprising that little is known about the effect of the 95 response format on task performance (18). When using a verbal-response format, the 96 participant is typically instructed to repeat orally the stimulus she/he perceives after each 97 trial, and the response is either ad-hoc scored by an experimenter or recorded for later 98 decoding (25, 35). Manual responses are typically collected via button press on a keyboard, 99 special response box, or computer mouse (28, 36). Both alternatives come with theoretical 100 advantages and disadvantages (18). For example, the verbal-response format carries the risk 101 of increasing error variance in the recorded data as the response has to be decoded by the 102 experimenter. As compared to a verbal version, using a manual response format changes the 103 cognitive demands of the paradigm as it demands additional response mapping and selection 104 processes including visual-motor coordination (37). However, an empirical comparison of the 105 two response formats is missing from the literature and it is to date unknown if the reliability 106 of a dichotic paradigm is affected by the response format utilized. 107 In summary, the aim of the present study was to develop and test a new dichotic- 108 listening paradigm for the assessment of hemispheric dominance which considers the main 109 design feature known to affect task performance and yields high test-retest reliability. To 110 evaluate the retest reliability of this novel paradigm, participants had to complete the full 111 paradigm four times: each two times using verbal and manual response format. This setup 112 also allows evaluating possible effects of the response format on laterality estimates. 113 Table 1. Design features of the optimal dichotic-listening paradigm and arguments for their implementation # Design feature Argumentation 1 Stop consonant-vowel (CV) syllables as Proven to be valid test material (38). CV show stimulus material higher reliability than numeric or non-numeric words as stimulus material (19) 5 2 Pair only CV stimuli from the same Same-voicing category pairs are more likely to fuse voicing category into one percept than mixed pairs; reduces relevance of attention and cognitive-control processes (28) 3 Includes binaural (diotic) trials Allows to demonstrate stimulus appropriateness, i.e. whether participant is able to identify the used stimulus material (18) 4 Alternating trials of voiced and unvoiced Limits negative-priming effects (39) by preventing
Recommended publications
  • Linguistic Processing of Task-Irrelevant Speech at a Cocktail Party Paz Har-Shai Yahav*, Elana Zion Golumbic*
    RESEARCH ARTICLE Linguistic processing of task-irrelevant speech at a cocktail party Paz Har-shai Yahav*, Elana Zion Golumbic* The Gonda Center for Multidisciplinary Brain Research, Bar Ilan University, Ramat Gan, Israel Abstract Paying attention to one speaker in a noisy place can be extremely difficult, because to- be-attended and task-irrelevant speech compete for processing resources. We tested whether this competition is restricted to acoustic-phonetic interference or if it extends to competition for linguistic processing as well. Neural activity was recorded using Magnetoencephalography as human participants were instructed to attend to natural speech presented to one ear, and task- irrelevant stimuli were presented to the other. Task-irrelevant stimuli consisted either of random sequences of syllables, or syllables structured to form coherent sentences, using hierarchical frequency-tagging. We find that the phrasal structure of structured task-irrelevant stimuli was represented in the neural response in left inferior frontal and posterior parietal regions, indicating that selective attention does not fully eliminate linguistic processing of task-irrelevant speech. Additionally, neural tracking of to-be-attended speech in left inferior frontal regions was enhanced when competing with structured task-irrelevant stimuli, suggesting inherent competition between them for linguistic processing. Introduction *For correspondence: The seminal speech-shadowing experiments conducted in the 50 s and 60 s set the stage for study- [email protected] (PH-Y); ing one of the primary cognitive challenges encountered in daily life: how do our perceptual and lin- [email protected] (EZG) guistic systems deal effectively with competing speech inputs? (Cherry, 1953; Broadbent, 1958; Treisman, 1960).
    [Show full text]
  • Dichotic Training in Children with Auditory Processing Disorder
    International Journal of Pediatric Otorhinolaryngology 110 (2018) 114–117 Contents lists available at ScienceDirect International Journal of Pediatric Otorhinolaryngology journal homepage: www.elsevier.com/locate/ijporl Dichotic training in children with auditory processing disorder T ∗ Maryam Delphia, Farzaneh Zamiri Abdollahib, a Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran b Audiology Department, Tehran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Keywords: Objectives: Several test batteries have been suggested for auditory processing disorder (APD) diagnosis. One of Dichotic listening the important tests is dichotic listening tests. Significant ear asymmetry (usually right ear advantage) can be Auditory training indicative of (APD). Two main trainings have been suggested for dichotic listening disorders: Differential Auditory processing Interaural Intensity Difference (DIID) and Dichotic Offset Training (DOT). The aim of the present study was comparing the efficacy of these two trainings in resolving dichotic listening disorders. Methods: 12 children in the age range of 8 to 9 years old with APD were included (mean age 8.41 years old ± 0.51). They all had abnormal right ear advantage based on established age-appropriate norms for Farsi dichotic digit test. Then subjects were randomly divided into two groups (each contained 6 subjects): group 1 received DIID training (8.33 years old ± 0.51) and group 2 received DOT training (8.50 years old ± 0.54). Results: Both trainings were effective in improvement of dichotic listening. There was a significant difference between two trainings with respect to the length of treatment (P-value≤0.001). DOT needed more training sessions (12.83 ± 0.98 sessions) than DIID (21.16 ± 0.75 sessions) to achieve the same amount of performance improvement.
    [Show full text]
  • Neural Encoding of Attended Continuous Speech Under Different Types of Interference
    Neural Encoding of Attended Continuous Speech under Different Types of Interference Andrea Olguin, Tristan A. Bekinschtein, and Mirjana Bozic Abstract ■ We examined how attention modulates the neural encoding Critically, however, the type of the interfering stream significantly of continuous speech under different types of interference. In modulated this process, with the fully intelligible distractor an EEG experiment, participants attended to a narrative in English (English) causing the strongest encoding of both attended and while ignoring a competing stream in the other ear. Four different unattended streams and latest dissociation between them and types of interference were presented to the unattended ear: a nonintelligible distractors causing weaker encoding and early dis- different English narrative, a narrative in a language unknown to sociation between attended and unattended streams. The results the listener (Spanish), a well-matched nonlinguistic acoustic inter- were consistent over the time course of the spoken narrative. ference (Musical Rain), and no interference. Neural encoding of These findings suggest that attended and unattended information attended and unattended signals was assessed by calculating can be differentiated at different depths of processing analysis, cross-correlations between their respective envelopes and the with the locus of selective attention determined by the nature EEG recordings. Findings revealed more robust neural encoding of the competing stream. They provide strong support to flexible for the attended envelopes compared with the ignored ones. accounts of auditory selective attention. ■ INTRODUCTION “late selection” approaches. The early selection theory Directingattentiontoasinglespeakerinamultitalker (Broadbent, 1958) argued that, because of our limited environment is an everyday occurrence that we manage processing capacity, attended and unattended informa- with relative ease.
    [Show full text]
  • Individual Differences in Working Memory Capacity and Divided Attention in Dichotic Listening
    Psychonomic Bulletin & Review 2007, 14 (4), 699-703 Individual differences in working memory capacity and divided attention in dichotic listening GREGORY J. H. COLFLESH University of Illinois, Chicago, Illinois AND ANDREW R. A. CONWAY Princeton University, Princeton, New Jersey The controlled attention theory of working memory suggests that individuals with greater working memory capacity (WMC) are better able to control or focus their attention than individuals with lesser WMC. This re- lationship has been observed in a number of selective attention paradigms including a dichotic listening task (Conway, Cowan, & Bunting, 2001) in which participants were required to shadow words presented to one ear and ignore words presented to the other ear. Conway et al. found that when the participant’s name was presented to the ignored ear, 65% of participants with low WMC reported hearing their name, compared to only 20% of participants with high WMC, suggesting greater selective attention on the part of high WMC participants. In the present study, individual differences in divided attention were examined in a dichotic listening task, in which participants shadowed one message and listened for their own name in the other message. Here we find that 66.7% of high WMC and 34.5% of low WMC participants detected their name. These results suggest that as WMC capacity increases, so does the ability to control the focus of attention, with high WMC participants being able to flexibly “zoom in” or “zoom out” depending on task demands. Since Baddeley and Hitch (1974) first published their tasks). They found no difference between high and low seminal chapter on working memory (WM), many theo- WMC participants in the prosaccade task but high WMC ries regarding the construct have been proposed.
    [Show full text]
  • Broadbent's Filter Theory Cherry: the Cocktail Party Problem
    194 Part II ● Cognitive psychology KEY STUDY EVALUATION — Cherry Cherry: The cocktail party problem The research by Colin Cherry is a very good example of how a psycholo- gist, noticing a real-life situation, is able to devise a hypothesis and carry Cherry (1953) found that we use physical differences between out research in order to explain a phenomenon, in this case the “cocktail the various auditory messages to select the one of interest. party” effect. Cherry tested his ideas in a laboratory using a shadowing These physical differences include differences in the sex of the technique and found that participants were really only able to give infor- speaker, in voice intensity, and in the location of the speaker. mation about the physical qualities of the non-attended message When Cherry presented two messages in the same voice to (whether the message was read by a male or a female, or if a tone was both ears at once (thereby removing these physical differences), used instead of speech). Cherry’s research could be criticised for having moved the real-life phenomenon into an artificial laboratory setting. the participants found it very hard to separate out the two However, this work opened avenues for other researchers, beginning with messages purely on the basis of meaning. Broadbent, to elaborate theories about focused auditory attention. Cherry (1953) also carried out studies using a shadowing task, in which one auditory message had to be shadowed (repeated back out aloud) while a second auditory message was presented to the other ear. Very little information seemed to be obtained from the second or non-attended message.
    [Show full text]
  • Evaluating CAPDOTS Training for Children and Adolescents with APD by Jay R
    ONLINE EXCLUSIVE Evaluating CAPDOTS Training for Children and Adolescents with APD By Jay R. Lucker, EdD, CCC-A/SLP, FAAA; Cydney Fox, AuD; and Bea Braun, AuD uditory processing disorders (APD) in school-age children can lead to learning problems.1 Audiolo- gists may determine the presence or absence of APD in this population and make specific thera- Apeutic recommendations. However, many therapies for APD have not been peer-reviewed or examined with statistical analysis to determine efficacy. The present study evaluates a therapeutic option called CAPDOTS-Integrated (also referred to as CAPDOTS), an online training program that aims to im- prove dichotic listening problems. According to Jerger, “Dichotic listening (DL) tests are at the core of the diagnostic evaluation of auditory processing disorder... [Such tests] have been used for decades both as 2 screening tools and as diagnostic tests in APD evaluation.” Thus, audiologists evaluating school-aged children for APD AdobeStock may find these children to have dichotic listening problems. Those diagnosed with dichotic listening problems are rec- subjects.2 The 27-year-old subject identified as diagnosed ommended to try a dichotic listening training program, such with “binaural integration deficit” only completed 80 percent as CAPDOTS-Integrated.1 Presently, CAPDOTS-Integrated of the CAPDOTS training. The 16-year-old subject is re- claims to treat binaural auditory integration problems known ported diagnosed with a binaural integration (dichotic listen- as dichotic listening difficulties. CAPDOTS is a treatment ing) auditory processing disorder. Results of mid-latency program requiring access to the internet and good quality electrophysiological measures revealed increased response headphones.
    [Show full text]
  • Attentional Strategies in Dichotic Listening
    Memory & Cognition 1979, Vol. 7 (6),511.520 Attentional strategies in dichotic listening JACK BOOKBINDER and ELI OSMAN Brooklyn College ofthe City University ofNew York, Brooklyn, New York 11210 A person can attend to a message in one ear while seemingly ignoring a simultaneously presented verbal message in the other ear. There is considerable controversy over the extent to which the unattended message is actually processed. This issue was investigated by presenting dichotic messages to which the listeners responded by buttonpressing (not shadow­ ing) to color words occurring in the primary ear message while attempting to detect a target word in either the primary ear or secondary ear message. Less than 40% of the target words were detected in the secondary ear message, whereas for the primary ear message (and also for either ear in a control experiment), target detection was approximately 80%. Furthermore. there was a significant negative correlation between buttonpressing performance and secondary ear target-detection performance. The results were interpreted as being inconsistent with automatic processing theories of attention. The dichotic listening paradigm, beginning with the processing system. Early selection models (Broadbent, experiments of Broadbent (1958) and Cherry (1953), 1958,1971; Treisman, 1960, 1964; Treisman & Geffen, has played a central role in the study of attention during 1967) allow for analyses of simple physical features the past two decades. In a dichotic presentation, differ­ simultaneously (e.g., spatial location, voice pitch), while ent auditory messages are simultaneously presented to it is postulated that the simultaneous higher order (Le., the subject's right and left ears by means of stereo head­ semantic context) analysis of all inputs would overload phones.
    [Show full text]
  • A Listening Program, in the Treatment Of
    The use of LACETM, a listening program, in the treatment of problems associated with dichotic listening disorders. A Thesis Presented in Partial Fulfillment of the Requirements for The Degree Bachelors of Arts in Speech and Hearing Science with Honors in Research Distinction in the College of Arts and Sciences of The Ohio State University By Mariah N. Cheyney **** The Ohio State University 2009 Dr. Gail M. Whitelaw, Adviser Abstract Dichotic listening, or how two ears work together as a team, is critical for localizing sound sources and when listening in the presence of complex background noise. Disorders of dichotic listening can be caused by a number of issues, including neurological diseases such as multiple sclerosis and traumatic brain injury, and can result in communication difficulties in daily listening situations. A number of diagnostic protocols and management programs have recently been developed to address this population, based in part from interest in veterans returning from the Middle East with these types of disorders. Currently, there is no standard for assessment or rehabilitation of dichotic listening disorders. This study utilized a single-subject research design to address the potential effectiveness of a treatment program for dichotic listening difficulties. The subject presented with clinical deficits following a stroke, despite having normal hearing acuity. Auditory processing evaluation revealed severe deficits in the area of dichotic listening, most remarkably for the left ear. The patient was enrolled in the LACETM (Listening and Communications Enhancement) program, a computer-based aural rehabilitation program developed to assist patients with hearing loss acclimatize to hearing aids. The program is designed to improve listening skills through use of an adaptive program that addresses a number of auditory processing skills.
    [Show full text]
  • What Can Be Learned About Brain Function from Dichotic Listening ?
    Revista Española de Neuropsicología Copyright ©2000 de REN Vol. 2, No. 3, 62-84 ISSN: 1139-9872 What can be learned about brain function from dichotic listening ?. Kenneth Hugdahl University of Bergen A series of studies on the use of dichotic listening as a method to study brain-behavior interactions, including hemispheric asymmetry are reviewed. The dichotic listening method is presented from a historical perspective, followed by an outline of the empirical procedure used in our laboratory. Different methods of validating the dichotic listening procedure against both invasive and non-invasive techniques, including PET blood flow recordings are then presented. The paper is ended with some examples of clinical applications of the dichotic listening technique on brain damaged patients. A major argument in the present paper is that the dichotic listening technique is a method to study the interaction between bottom-up, or stimulus-driven, versus top-down, or instruction-driven laterality. This opens up for a more dynamic and interactive view of brain laterality than the traditional static view that the brain is lateralized only for specific stimuli and stimulus properties. ¿Qué se puede Aprender sobre el Funcionamiento del Cerebro a partir de la Escucha Dicótica? Se revisan una serie de estudios sobre el uso del estudio de la escucha dicótica como método para estudiar las interacciones entre cerebro y comportamiento, incluyendo la asimetría interhemisférica. Se presenta el método de la escucha dicótica desde una perspectiva histórica seguido por una revisión de los métodos empíricos utilizados en nuestro laboratorio. Posteriormente, se presentan diferentes métodos para validar este procedimiento en contra de las técnicas invasivas y no invasivas.
    [Show full text]
  • Dichotic Listening Deficits in Amblyaudia Are Characterized by Aberrant Neural Oscillations in Auditory Cortex
    Clinical Neurophysiology 132 (2021) 2152–2162 Contents lists available at ScienceDirect Clinical Neurophysiology journal homepage: www.elsevier.com/locate/clinph Dichotic listening deficits in amblyaudia are characterized by aberrant neural oscillations in auditory cortex ⇑ Sara Momtaz a, , Deborah Moncrieff a, Gavin M. Bidelman a,b,c a School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA b Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA c University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA article info highlights Article history: Amblyaudia is characterized by a stark interaural asymmetry in dichotic listening performance. Accepted 29 April 2021 Stronger phase-locked b/c oscillations within the bilateral auditory cortex for stimuli presented to the Available online 4 June 2021 right ear in amblyaudia. Weaker functional connectivity in amblyaudia from right to left auditory cortex, despite overall stron- Keywords: Auditory processing disorders (APD) ger neural responses. Event-related brain potentials (ERPs) Gamma/beta band response Hemispheric asymmetries abstract Phase-locking Time-frequency analysis Objective: Children diagnosed with auditory processing disorder (APD) show deficits in processing com- plex sounds that are associated with difficulties in higher-order language, learning, cognitive, and com- municative functions. Amblyaudia (AMB) is a subcategory of APD characterized by abnormally large ear asymmetries in dichotic listening tasks. Methods: Here, we examined frequency-specific neural oscillations and functional connectivity via high- density electroencephalography (EEG) in children with and without AMB during passive listening of non- speech stimuli. Results: Time-frequency maps of these ‘‘brain rhythms” revealed stronger phase-locked beta-gamma (~35 Hz) oscillations in AMB participants within bilateral auditory cortex for sounds presented to the right ear, suggesting a hypersynchronization and imbalance of auditory neural activity.
    [Show full text]
  • Language Processing and the Human Brain
    01:615:201 Introduction to Linguistic Theory Adam Szczegielniak Language Processing and the Human Brain Copyright in part: Cengage learning The Human Mind at Work • Psycholinguistics: the study of linguistic performance in speech production and comprehension – Linking psychological mechanisms to grammar to understand language production and comprehension Comprehension: The Speech Signal • When we push air through the glos, vibrang vocal cords produce variaons in air pressure – The speed of these variaons in air pressure determines the fundamental frequency of the sounds • Fundamental frequency is perceived as pitch by the hearer – The magnitude of the variaons (or intensity) determines the loudness of the sound Comprehension: The Speech Signal • An image of the speech signal is displayed in a spectrogram • Vowels are indicated by dark bands called formants Parsing of sound • Categorical percep5on – We do not perceive linguis5c sounds as a connuum • Duplex percepon – Are able to integrate ‘spliced’ parts of a sound played into each ear VOT • Voice onset 5me differen5ates voiced sounds from voiceless p b t d k g The six English plosives [p, b, t, d, k, g], each followed by the vowel [a]. Top picture is of spectrograms. The y-axis represents frequency range 0-5kHz, with each 1kHz marked by a horizontal gray line. The x-axis is time - about 4s overall. The bottom picture is the same data in time aligned waveforms. ©Kate Morton 1995 http://www.essex.ac.uk/speech/material/kate/ref/vot-13.html VOT percepon %identifying identical cat ba pa VOT Formants - how to splice a sound Frequency response curves (indicating the preferred resonating frequencies of the vocal tract).
    [Show full text]
  • Dichotic Listening Among Adults Who Stutter
    DICHOTIC LISTENING AMONG ADULTS WHO STUTTER A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Audiology at the University of Canterbury by Wanita L. Lynn University of Canterbury 2010 Table of Contents List of Figures ..................................................................................................................... 1 List of Tables ....................................................................................................................... 4 Acknowledgments ............................................................................................................... 5 Abstract ............................................................................................................................... 6 Introduction ........................................................................................................................ 8 Dichotic Listening ......................................................................................................... 8 Models of REA ........................................................................................................... 10 Interaural Intensity Differences ................................................................................... 20 Dichotic Listening and Stuttering ................................................................................ 21 Statement of the Problem ................................................................................................. 27 Method .............................................................................................................................
    [Show full text]