Journal of Space Law Volume 41 Number 2 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fog and Low Clouds As Troublemakers During Wildfi Res
When Our Heads Are in the Clouds Sometimes water droplets do not freeze in below- Detecting fog from space Up to 60,000 ft (18,000m) freezing temperatures. This happens if they do not have Weather satellites operated by the National Oceanic The fog comes a surface (like a dust particle or an ice crystal) upon and Atmospheric Administration (NOAA) collect data on on little cat feet. which to freeze. This below-freezing liquid water becomes clouds and storms. Cirrus Commercial Jetliner “supercooled.” Then when it touches a surface whose It sits looking (36,000 ft / 11,000m) temperature is below freezing, such as a road or sidewalk, NOAA operates two different types of satellites. over harbor and city Geostationary satellites orbit at about 22,236 miles Breitling Orbiter 3 the water will freeze instantly, making a super-slick icy on silent haunches (34,000 ft / 10,400m) Cirrocumulus coating on whatever it touches. This condition is called (35,786 kilometers) above sea level at the equator. At this and then moves on. Mount Everest (29,035 ft / 8,850m) freezing fog. altitude, the satellite makes one Earth orbit per day, just Carl Sandburg Cirrostratus as Earth rotates once per day. Thus, the satellite seems to 20,000 feet (6,000 m) Cumulonimbus hover over one spot below and keeps its “birds’-eye view” of nearly half the Earth at once. Altocumulus The other type of NOAA satellites are polar satellites. Their orbits pass over, or nearly over, the North and South Clear and cloudy regions over the U.S. -
Arbitration in Space-Related Disputes: a Survey of Industry Practices and Future Needs
70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the authors. All rights reserved. IAC-19,E7,2,3,x50661 Arbitration in Space-related Disputes: A Survey of Industry Practices and Future Needs Viva Dadwala*,**, Eytan Tepperb** a Faculty of Law, McGill University, 3644 Peel St, Montreal, Quebec H3A 1W9, [email protected] b Institute of Air & Space Law, McGill University, 3690 Peel Street Montréal, Québec, Canada H3A 1W9, [email protected] * Corresponding Author ** Both these authors contributed equally to this work Abstract To better understand the viability of arbitration in space-related disputes, we designed a survey that examines the use of arbitration clauses in contracts used by space companies, and if the use thereof is mandatory. More specifically, the survey gathers data on contracting parties’ preferred seats of arbitration, arbitration institutions, selection process for arbitrators, and choice of procedural and substantive rules. The survey also captures actual use of arbitration within space related disputes by collecting data on how often such arbitration clauses have been invoked and the number of disputes ultimately resolved by arbitration. Finally, the survey solicits industry preferences for the future development of arbitration as a form of dispute resolution in the space sector. The survey is built in a way that allows break down of results and comparing segments, inter alia, based on the type of contract (e.g., launch contract, insurance contract, investment contract, contract for supply of parts or services). The results of the survey will expose the demand for arbitration and the successes and barriers for the use thereof. -
Aviation Glossary
AVIATION GLOSSARY 100-hour inspection – A complete inspection of an aircraft operated for hire required after every 100 hours of operation. It is identical to an annual inspection but may be performed by any certified Airframe and Powerplant mechanic. Absolute altitude – The vertical distance of an aircraft above the terrain. AD - See Airworthiness Directive. ADC – See Air Data Computer. ADF - See Automatic Direction Finder. Adverse yaw - A flight condition in which the nose of an aircraft tends to turn away from the intended direction of turn. Aeronautical Information Manual (AIM) – A primary FAA publication whose purpose is to instruct airmen about operating in the National Airspace System of the U.S. A/FD – See Airport/Facility Directory. AHRS – See Attitude Heading Reference System. Ailerons – A primary flight control surface mounted on the trailing edge of an airplane wing, near the tip. AIM – See Aeronautical Information Manual. Air data computer (ADC) – The system that receives and processes pitot pressure, static pressure, and temperature to present precise information in the cockpit such as altitude, indicated airspeed, true airspeed, vertical speed, wind direction and velocity, and air temperature. Airfoil – Any surface designed to obtain a useful reaction, or lift, from air passing over it. Airmen’s Meteorological Information (AIRMET) - Issued to advise pilots of significant weather, but describes conditions with lower intensities than SIGMETs. AIRMET – See Airmen’s Meteorological Information. Airport/Facility Directory (A/FD) – An FAA publication containing information on all airports, seaplane bases and heliports open to the public as well as communications data, navigational facilities and some procedures and special notices. -
Solar Energy Generation Model for High Altitude Long Endurance Platforms
Solar Energy Generation Model for High Altitude Long Endurance Platforms Mathilde Brizon∗ KTH - Royal Institute of Technology, Stockholm, Sweden For designing and evaluating new concepts for HALE platforms, the energy provided by solar cells is a key factor. The purpose of this thesis is to model the electrical power which can be harnessed by such a platform along any flight trajectory for different aircraft designs. At first, a model of the solar irradiance received at high altitude will be performed using the solar irradiance models already existing for ground level applications as a basis. A calculation of the efficiency of the energy generation will be performed taking into account each solar panel's position as well as shadows casted by the aircraft's structure. The evaluated set of trajectories allows a stationary positioning of a hale platform with varying wind conditions, time of day and latitude for an exemplary aircraft configuration. The qualitative effects of specific parameter changes on the harnessed solar energy is discussed as well as the fidelity of the energy generation model results. Nomenclature δ Solar declination ({) EQE Quantum efficiency (%) η Efficiency (%) hg Altitude of the aircraft (m) ◦ Γ Day angle ( ) hO3 Height of max ozone concentration(m) ◦ −2 −1 λg Longitude aircraft ( ) Id Direct irradiance (W:m .µm ) ◦ −2 −1 ! Hour angle ( ) Is Diffuse irradiance (W:m .µm ) ◦ −2 −1 φg Latitude of the aircraft ( ) Itot Total irradiance (W:m .µm ) ◦ −1 ◦ τ Rayleigh optical depth ({) kPmax;T Temperature Coefficient (%: C ) 2 A Solar cell -
1 the Atmosphere of Pluto As Observed by New Horizons G
The Atmosphere of Pluto as Observed by New Horizons G. Randall Gladstone,1,2* S. Alan Stern,3 Kimberly Ennico,4 Catherine B. Olkin,3 Harold A. Weaver,5 Leslie A. Young,3 Michael E. Summers,6 Darrell F. Strobel,7 David P. Hinson,8 Joshua A. Kammer,3 Alex H. Parker,3 Andrew J. Steffl,3 Ivan R. Linscott,9 Joel Wm. Parker,3 Andrew F. Cheng,5 David C. Slater,1† Maarten H. Versteeg,1 Thomas K. Greathouse,1 Kurt D. Retherford,1,2 Henry Throop,7 Nathaniel J. Cunningham,10 William W. Woods,9 Kelsi N. Singer,3 Constantine C. C. Tsang,3 Rebecca Schindhelm,3 Carey M. Lisse,5 Michael L. Wong,11 Yuk L. Yung,11 Xun Zhu,5 Werner Curdt,12 Panayotis Lavvas,13 Eliot F. Young,3 G. Leonard Tyler,9 and the New Horizons Science Team 1Southwest Research Institute, San Antonio, TX 78238, USA 2University of Texas at San Antonio, San Antonio, TX 78249, USA 3Southwest Research Institute, Boulder, CO 80302, USA 4National Aeronautics and Space Administration, Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA 5The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 6George Mason University, Fairfax, VA 22030, USA 7The Johns Hopkins University, Baltimore, MD 21218, USA 8Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA 9Stanford University, Stanford, CA 94305, USA 10Nebraska Wesleyan University, Lincoln, NE 68504 11California Institute of Technology, Pasadena, CA 91125, USA 12Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 13Groupe de Spectroscopie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, 51687 Reims, France *To whom correspondence should be addressed. -
Civilian, Military, and Commercial
Order Code IB92011 CRS Issue Brief for Congress Received through the CRS Web U.S. Space Programs: Civilian, Military, and Commercial Updated September 28, 2004 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS U.S. Government Civilian Space Programs National Aeronautics and Space Administration (NASA) Human Spaceflight and Space Launch Vehicles Science Programs Other Civilian Government Agencies Commercial Space Programs Military Space Programs Interagency Coordination International Cooperation and Competition NASA and DOD Space Budgets Space Program Issues NASA Issues Military Space Issues Early Warning Satellites: the SBIRS/STSS Programs Space-Based Lasers and Space-Based Kinetic Energy Weapons for Boost-Phase Missile Defense NFIRE Antisatellite Weapons and Space Control NRO, NIMA/NGA, and Imagery Space-Based Radar Developing New Space Launch Vehicles Commercial Space and Trade Issues International Relationships LEGISLATION For links to other current CRS reports on space activities, go to the CRS website [http://www.crs.gov] and click on “Science” in the list of Current Legislative Issues. Then click on “U.S. Space Programs.” IB92011 09-28-04 U.S. Space Programs: Civilian, Military, and Commercial SUMMARY The 108th Congress is addressing a broad SBIRS-High ( to develop a new early warning range of civilian, military, and commercial satellite), Space Based Radar, and NFIRE (in space issues. which a space-based “kinetic kill vehicle” may impact a missile as it makes close sensor The National Aeronautics and Space observations of the missile’s plume). Administration (NASA) conducts the most visible space activities. -
“Peace: the Final Frontier,” Kim Peart
Journal of Space Philosophy 6, no. 1 (Fall 2017) Peace: The Final Frontier By Kim Peart Space has often been referred to as the final frontier, but to survive in space, we will need peace on Earth, which makes peace the final frontier, if we wish to go into space. With global fanfare at a press conference in Paris on October 12, Dr Igor Ashurbeyli proposed founding a new nation, one that would be in space, called Asgardia. Over half a million curious possible citizens were attracted to Asgardia in a couple of weeks, which by itself reveals a very high level of interest on Earth in a future beyond Earth. For Asgardia to proceed as an independent nation, current laws would need to change, as the 1967 Outer Space Treaty does not permit nations to set up in space, and states: “outer space is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means” and “the exploration and use of outer space shall be carried out for the benefit and in the interests of all countries and shall be the province of all [hu]mankind.”1 1 United Nations Office for Outer Space Affairs, “The Outer Space Treaty” (New York: United Nations, 1967), www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html. 113 Journal of Space Philosophy 6, no. 1 (Fall 2017) Considering the spirit of the Outer Space Treaty, rather than launching a new nation, could a city be built in space as a United Nations trust territory, which would be open to citizens of all nations? The first celestial city could be called Celestia, in honour of the first space nation launched by James Mangan in 1948, before the Outer Space Treaty existed, which he called the Nation of Celestial Space, or Celestia.2 The shape of the new city would be an orbital space settlement, like the space habitat illustrated by Bryan Versteeg, which would be powered by the Sun, offer protection from solar and cosmic radiation, and provide an Earth-like gravity via rotation.3 To found Celestia as a UN trust territory, the support of all nations will be sought. -
European Space Policy Based on an Historical Perspective of the Involvement of the European Union (EU) in the Field
European space Historical perspective, specificpolicy aspects and key challenges IN-DEPTH ANALYSIS EPRS | European Parliamentary Research Service Author: Vincent Reillon Members' Research Service January 2017 — PE 595.917 EN This publication aims to provide an overview of European space policy based on an historical perspective of the involvement of the European Union (EU) in the field. The in-depth analysis focuses on the role played by the different EU institutions and the European Space Agency in defining and implementing a space policy in Europe and the current issues and challenges. PE 595.917 ISBN 978-92-846-0552-1 doi:10.2861/903178 QA-04-17-069-EN-N Original manuscript, in English, completed in January 2017. Disclaimer The content of this document is the sole responsibility of the author and any opinions expressed therein do not necessarily represent the official position of the European Parliament. It is addressed to the Members and staff of the EP for their parliamentary work. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the European Parliament is given prior notice and sent a copy. © European Union, 2017. Photo credits: © Atlantis / Fotolia. [email protected] http://www.eprs.ep.parl.union.eu (intranet) http://www.europarl.europa.eu/thinktank (internet) http://epthinktank.eu (blog) European space policy Page 1 of 35 EXECUTIVE SUMMARY In the 1950s, development of the space sector in Europe was limited to investments made by individual Member States (France, Italy, the United Kingdom). The failure of the first European partnerships in space activities in the 1960s led to the establishment of the European Space Agency (ESA), an intergovernmental institution, in 1975. -
The Air Force Role in Developing International Outer Space Law
The Air Force Role in Developing International Outer Space Law DELBERT R. TERRILL JR., Colonel, USAFR Air Force History and Museums Program Air University Press Maxwell Air Force Base, Alabama May 1999 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release, distribution unlimited. ii For USAFA ’70 Contents Chapter Page DISCLAIMER . ii FOREWORD . ix ABOUT THE AUTHOR . xi ACKNOWLEDGMENTS . xiii INTRODUCTION . xv 1 GERMINATION OF OUTER SPACE AS A LEGAL CONCEPT . 1 Eisenhower, a Nuclear Pearl Harbor, and Air Force Balloons . 3 “Space-for-Peace” and the International Geophysical Year . 6 Who Would Be First in Space? . 10 Notes . 13 2 AIR FORCE OPPOSITION TO INTERNATIONAL CONVENTIONS ON SPACE . 19 Early Air Force Actions Affecting Outer Space Law . 19 Air Force Actions before and after Sputnik . 27 Project RAND: Supporting the Air Force Position . 35 Notes . 39 3 AIR FORCE AS A BACKSEAT “DRIVER” IN SPACE LAW DEBATES . 45 Internal DOD Strife and Movement toward a National Outer Space Policy . 46 Air Force as a Background Player in the Sovereignty Debate . 54 Notes . 60 v Chapter Page 4 PROJECT WEST FORD . 63 Notes . 67 5 MAJ GEN ALBERT M. KUHFELD AND AIR FORCE LEADERSHIP OF SPACE LAW DEVELOPMENT . 69 Notes . 78 6 THE 1972 LIABILITY FOR DAMAGES CONVENTION . 81 Notes . 89 EPILOGUE . 93 Appendices A Air Staff Reaction to Project RAND Report Dated 28 October 1957 . -
About the New PCA Rules and Their Application to Satellite Communication Disputes Frans G
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Space, Cyber, and Telecommunications Law Law, College of Program Faculty Publications 2015 About the New PCA Rules and Their Application to Satellite Communication Disputes Frans G. von der Dunk University of Nebraska-Lincoln College of Law, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/spacelaw Part of the Air and Space Law Commons, Comparative and Foreign Law Commons, International Law Commons, Military, War, and Peace Commons, National Security Law Commons, and the Science and Technology Law Commons von der Dunk, Frans G., "About the New PCA Rules and Their Application to Satellite Communication Disputes" (2015). Space, Cyber, and Telecommunications Law Program Faculty Publications. 100. http://digitalcommons.unl.edu/spacelaw/100 This Article is brought to you for free and open access by the Law, College of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Space, Cyber, and Telecommunications Law Program Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published as a chapter in Dispute Settlement in the Area of Space Communication: 2nd Luxembourg Work- shop on Space and Satellite Communication Law, Mahulena Hofmann (editor), Baden-Baden, Germany: Nomos Verlagsgesellschaft and Hart Publishing, 2015, pp. 93–125. Copyright © 2015 Nomos Verlagsgesellschaft. Used by permission. About the New PCA Rules and Their Application to Satellite Communication Disputes Frans G. von der Dunk Harvey and Susan Perlman Alumni and Othmer Professor of Space Law, University of Nebraska– Lincoln College of Law, Lincoln, Nebraska, USA Abstract In 2011 the PCA Optional Rules for Arbitration of Disputes Relating to Outer Space Activities were adopted. -
Altitude Sickness Fact Sheet
Altitude Sickness Fact Sheet At high elevation, you may experience a potentially life threatening condition called altitude sickness. This is exacerbated if you ascend in elevation quickly. At 8,000 feet, there is only ~75% of the available oxygen at sea level. Oxygen decreases ~3% with each 1000 feet in elevation. Altitude sickness is caused by the body not being able to get enough oxygen. There are three types of altitude sickness: Acute Mountain Sickness, High Altitude Pulmonary Edema, and High Altitude Cerebral Edema. SYMPTOMS Acute Mountain Sickness • Lack of appetite, nausea, or vomiting • Fatigue • Dizziness • Insomnia • Shortness of breath upon exertion • Nosebleed • Persistent rapid pulse • Swelling of hands, feet, and/or face High Altitude Pulmonary Edema (HAPE) • Symptoms similar to bronchitis • Persistent dry cough • Fever • Shortness of breath even at rest High Altitude Cerebral Edema (HACE) • Headache that does not respond to medication • Difficulty walking • Altered mental state (confusion, changes in alertness, disorientation, irrational behavior) • Loss of consciousness • Increased nausea • Blurred vision or retinal hemorrhage PREVENTION If your hike starts at high elevation, spend a few days adjusting to the altitude prior to any major physical exertion. It is best to sleep no more than 1,500 feet (457.2 m) higher than you did the night before. This helps the body adjust gradually to the decreased amount of oxygen. Contact your primary care physician for an evaluation prior to travelling to areas with high elevation. FIRST AID TREATMENT If you have any of these symptoms at altitude, assume that it is altitude sickness until proven otherwise. Do not ascend any further with symptoms. -
Space Tourism
International Journal of Multidisciplinary Research and Development 2015; 2(3): 806-818 IJMRD 2015; 2(3): 806-818 www.allsubjectjournal.com Received: 20-03-2015 Space Tourism Accepted: 30-03-2015 e-ISSN: 2349-4182 Manzoor Ahmad Khan p-ISSN: 2349-5979 Impact Factor: 3.762 Abstract "Space Tourism" denotes any commercial activity that offers customers direct or indirect experience Manzoor Ahmad Khan with space travel. Such activities have many different designs, ranging from long-term stays in orbital M.A (Tourism) National facilities to short-term orbital or suborbital flights, and even parabolic flights in an aircraft exposing Eligibility Test (Net) Qualified. passengers to short periods of weightlessness. Flights into outer space by private individuals are Srinagar (J&K) India 190023 finding increased attention in the public. While there are not yet chartered flights, occasional orbital flights with "space tourists" have taken place. So far, seven "space tourists" have been taken to the International Space Station ("ISS"), all of whom were charged large sums of money for the experience. In this paper an attempt has been made by me to give the well understandable definition of Space Tourism. The concept of space and space station is also touched in a very well in a very well detail in this paper and also the details of first space station is given in this paper. I have also touched the history and development of Space Tourism in this research paper. Advantages and disadvantages of the Space Tourism are also discussed in this paper. Further I have also make an attempt to discuss the effect of space travel on humans and the development and future of Space Tourism is also discussed.