Ehrhart Polynomials of Matroid Polytopes and Polymatroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry of Generalized Permutohedra
Geometry of Generalized Permutohedra by Jeffrey Samuel Doker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Federico Ardila, Co-chair Lior Pachter, Co-chair Matthias Beck Bernd Sturmfels Lauren Williams Satish Rao Fall 2011 Geometry of Generalized Permutohedra Copyright 2011 by Jeffrey Samuel Doker 1 Abstract Geometry of Generalized Permutohedra by Jeffrey Samuel Doker Doctor of Philosophy in Mathematics University of California, Berkeley Federico Ardila and Lior Pachter, Co-chairs We study generalized permutohedra and some of the geometric properties they exhibit. We decompose matroid polytopes (and several related polytopes) into signed Minkowski sums of simplices and compute their volumes. We define the associahedron and multiplihe- dron in terms of trees and show them to be generalized permutohedra. We also generalize the multiplihedron to a broader class of generalized permutohedra, and describe their face lattices, vertices, and volumes. A family of interesting polynomials that we call composition polynomials arises from the study of multiplihedra, and we analyze several of their surprising properties. Finally, we look at generalized permutohedra of different root systems and study the Minkowski sums of faces of the crosspolytope. i To Joe and Sue ii Contents List of Figures iii 1 Introduction 1 2 Matroid polytopes and their volumes 3 2.1 Introduction . .3 2.2 Matroid polytopes are generalized permutohedra . .4 2.3 The volume of a matroid polytope . .8 2.4 Independent set polytopes . 11 2.5 Truncation flag matroids . 14 3 Geometry and generalizations of multiplihedra 18 3.1 Introduction . -
Matroid Polytopes and Their Volumes Federico Ardila, Carolina Benedetti, Jeffrey Doker
Matroid Polytopes and Their Volumes Federico Ardila, Carolina Benedetti, Jeffrey Doker To cite this version: Federico Ardila, Carolina Benedetti, Jeffrey Doker. Matroid Polytopes and Their Volumes. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.77-88. hal-01185426 HAL Id: hal-01185426 https://hal.inria.fr/hal-01185426 Submitted on 20 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FPSAC 2009, Hagenberg, Austria DMTCS proc. AK, 2009, 77–88 Matroid Polytopes and Their Volumes Federico Ardila1,y Carolina Benedetti2 zand Jeffrey Doker3 1San Francisco, CA, USA, [email protected]. 2Universidad de Los Andes, Bogota,´ Colombia, [email protected]. 3University of California, Berkeley, Berkeley, CA, USA, [email protected]. Abstract. We express the matroid polytope PM of a matroid M as a signed Minkowski sum of simplices, and obtain a formula for the volume of PM . This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian Grk;n. We then derive analogous results for the independent set polytope and the associated flag matroid polytope of M. -
Coefficients of the Solid Angle and Ehrhart Quasi-Polynomials
COEFFICIENTS OF THE SOLID ANGLE AND EHRHART QUASI-POLYNOMIALS FABR´ICIO CALUZA MACHADO AND SINAI ROBINS Abstract. Macdonald studied a discrete volume measure for a rational poly- tope P , called solid angle sum, that gives a natural discrete volume for P . We give a local formula for the codimension two quasi-coefficient of the solid angle sum of P . We also show how to recover the classical Ehrhart quasi-polynomial from the solid angle sum and in particular we find a similar local formula for the codimension one and codimension two quasi-coefficients. These local formulas are naturally valid for all positive real dilates of P . An interesting open question is to determine necessary and sufficient con- ditions on a polytope P for which the discrete volume of P given by the solid d angle sum equals its continuous volume: AP (t) = vol(P )t . We prove that d a sufficient condition is that P tiles R by translations, together with the Hyperoctahedral group. Contents 1. Introduction1 2. Main results4 3. Preliminaries9 4. Lattice sums 12 5. Proofs of Theorem 5.2 and Corollary 5.3 15 6. Obtaining the Ehrhart quasi-coefficients ed−1(t) and ed−2(t) 21 7. Two examples in three dimensions 26 8. Concrete polytopes and further remarks 31 References 34 Appendix A. Obtaining the solid angle quasi-coefficients from the Ehrhart quasi-coefficients 35 Appendix B. Comments about local formulas and SI-interpolators 38 1. Introduction d arXiv:1912.08017v2 [math.CO] 26 Jun 2020 Given a polytope P ⊆ R , the number of integer points within P can be regarded as a discrete analog of the volume of the body. -
Ehrhart Theory for Lattice Polytopes
WASHINGTON UNIVERSITY Department of Mathematics Dissertation Examination Committee: John Shareshian, Chair Ramanath Cowsik Renato Feres Lev Gelb Mohan Kumar David Wright Ehrhart Theory for Lattice Polytopes by Benjamin James Braun A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment for the degree of Doctor of Philosophy May 2007 Saint Louis, Missouri Acknowledgements To John Shareshian, for being an excellent advisor and valued mentor; I could not have done this without your guidance. To the faculty in the mathematics department from whom I’ve learned so much, especially Renato Feres, Gary Jensen, Mohan Kumar, John McCarthy, Rachel Roberts, and David Wright. To the other graduate students who have been great friends and colleagues, especially Kim, Jeff and Paul. To Matthias Beck and Sinai Robins for teaching me about Ehrhart theory and writing a great book; special thanks to Matt for introducing me to open problems re- garding Ehrhart polynomial roots and coefficients. To Mike Develin for collaborating and sharing his good ideas. To all of the members of the combinatorics community who I have had the pleasure of working with and learning from over the last few years, especially Paul Bendich, Tristram Bogart, Pat Byrnes, Jes´us De Loera, Tyrrell McAllister, Sam Payne, and Kevin Woods. To my parents and my brother, for always being there and supporting me. Most of all, to my wife, Laura, for your love and encouragement. None of this would mean anything if you were not in my life. ii Contents Acknowledgements ii List of Figures v 1 Introduction 2 1.1 Overture................................. -
Triangulations of Integral Polytopes, Examples and Problems
数理解析研究所講究録 955 巻 1996 年 133-144 133 Triangulations of integral polytopes, examples and problems Jean-Michel KANTOR We are interested in polytopes in real space of arbitrary dimension, having vertices with integral co- ordinates: integral polytopes. The recent increase of interest for the study of these $\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}$ topes and their triangulations has various motivations; let us mention the main ones: . the beautiful theory of toric varieties has built a bridge between algebraic geometry and the combina- torics of these integral polytopes [12]. Triangulations of cones and polytopes occur naturally for example in problems of existence of crepant resolution of singularities $[1,5]$ . The work of the school of $\mathrm{I}.\mathrm{M}$ . Gelfand on secondary polytopes gives a new insight on triangulations, with applications to algebraic geometry and group theory [13]. In statistical physics, random tilings lead to some interesting problems dealing with triangulations of order polytopes $[6,29]$ . With these motivations in mind, we introduce new tools: Generalizations of the Ehrhart polynomial (counting points “modulo congruence”), discrete length between integral points (and studying the geometry associated to it), arithmetic Euler-Poincar\'e formula which gives, in dimension 3, the Ehrhart polynomial in terms of the $\mathrm{f}$-vector of a minimal triangulation of the polytope (Theorem 7). Finally, let us mention the results in dimension 2 of the late Peter Greenberg, they led us to the study of “Arithmetical $\mathrm{P}\mathrm{L}$-topology” which, we believe with M. Gromov, D. Sullivan, and P. Vogel, has not yet revealed all its beauties. -
147 Lattice Platonic Solids and Their Ehrhart
Acta Math. Univ. Comenianae 147 Vol. LXXXII, 1 (2013), pp. 147{158 LATTICE PLATONIC SOLIDS AND THEIR EHRHART POLYNOMIAL E. J. IONASCU Abstract. First, we calculate the Ehrhart polynomial associated with an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive rela- tionships between the Ehrhart polynomials for regular lattice tetrahedra and those for regular lattice octahedra. These relations allow one to reduce the calculation of these polynomials to only one coefficient. 1. INTRODUCTION In the 1960's, Eug`eneEhrhart ([14], [15]) proved that given a d-dimensional com- pact simplicial complex in Rn (1 ≤ d ≤ n), denoted here generically by P, whose vertices are in the lattice Zn, there exists a polynomial L(P; t) 2 Q[t] of degree d, associated with P and satisfying n (1) L(P; t) = the cardinality of ftPg \ Z ; t 2 N: It is known that 1 L(P; t) = Vol(P)tn + Vol(@P)tn−1 + ::: + χ(P); 2 where Vol(P) is the usual volume of P, Vol(@P) is the surface area of P normalized with respect to the sublattice on each face of P and χ(P) is the Euler characteristic of P. In general, the other coefficients are less understandable, but significant progress has been done (see [5], [27] and [28]). In [13], Eug`eneEhrhart classified the regular convex polyhedra in Z3. It turns out that only cubes, regular tetrahedra and regular octahedra can be embedded in the usual integer lattice. We arrived at the same result in [23] using a construction of these polyhedra from equilateral triangles. -
Tropical Linear Algebra
Tropical Linear Algebra Jorge Alberto Olarte February 18, 2019 Joint work with Alex Fink, Benjamin Schr¨oter and Marta Panizzut Jorge Alberto Olarte Tropical Linear Algebra February 18, 2019 1 / 14 2 As the solution set of n − d linear equations. This can be represented by a matrix A? 2 K(n−d)×n where rows give the coefficients of the linear equations. 3 By its Plucker¨ coordinates. Classical linear spaces Let K be any field. A d-dimensional linear subspace L ⊆ Kn can be given in several forms: d 1 As a span of vectors d vectors v1;:::; vd 2 K . This can be represented by a d×n matrix A 2 K where the rows are given by the vectors v1;:::; vd . Jorge Alberto Olarte Tropical Linear Algebra February 18, 2019 2 / 14 3 By its Plucker¨ coordinates. Classical linear spaces Let K be any field. A d-dimensional linear subspace L ⊆ Kn can be given in several forms: d 1 As a span of vectors d vectors v1;:::; vd 2 K . This can be represented by a d×n matrix A 2 K where the rows are given by the vectors v1;:::; vd . 2 As the solution set of n − d linear equations. This can be represented by a matrix A? 2 K(n−d)×n where rows give the coefficients of the linear equations. Jorge Alberto Olarte Tropical Linear Algebra February 18, 2019 2 / 14 Classical linear spaces Let K be any field. A d-dimensional linear subspace L ⊆ Kn can be given in several forms: d 1 As a span of vectors d vectors v1;:::; vd 2 K . -
Isotropical Linear Spaces and Valuated Delta-Matroids
Journal of Combinatorial Theory, Series A 119 (2012) 14–32 Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A www.elsevier.com/locate/jcta Isotropical linear spaces and valuated Delta-matroids Felipe Rincón University of California, Berkeley, Department of Mathematics, 1045 Evans Hall, Berkeley, CA, United States article info abstract Article history: The spinor variety is cut out by the quadratic Wick relations Received 3 June 2010 among the principal Pfaffians of an n × n skew-symmetric matrix. Availableonline27August2011 Its points correspond to n-dimensional isotropic subspaces of a 2n-dimensional vector space. In this paper we tropicalize this Keywords: picture, and we develop a combinatorial theory of tropical Wick Tropical linear space Isotropic subspace vectors and tropical linear spaces that are tropically isotropic. We Delta matroid characterize tropical Wick vectors in terms of subdivisions of - Coxeter matroid matroid polytopes, and we examine to what extent the Wick Valuated matroid relations form a tropical basis. Our theory generalizes several Spinor variety results for tropical linear spaces and valuated matroids to the class Wick relations of Coxeter matroids of type D. Matroid polytope © 2011 Elsevier Inc. All rights reserved. Tropical basis 1. Introduction Let n be a positive integer, and let V be a 2n-dimensional vector space over an algebraically closed field K of characteristic 0. Fix a basis e1, e2,...,en, e1∗ , e2∗ ,...,en∗ for V , and consider the symmetric bilinear form on V defined as n n Q (x, y) = xi yi∗ + xi∗ yi, i=1 i=1 for any two x, y ∈ V with coordinates x = (x1,...,xn, x1∗ ,...,xn∗ ) and y = (y1,...,yn, y1∗ ,...,yn∗ ). -
Tensor Valuations on Lattice Polytopes
Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng DISSERTATION Tensor Valuations on Lattice Polytopes ausgef¨uhrtzum Zwecke der Erlangung des akademischen Grades einer Doktorin der technischen Wissenschaften unter der Leitung von Univ. Prof. Dr. Monika Ludwig Institutsnummer E104 Institut f¨urDiskrete Mathematik und Geometrie eingereicht an der Technischen Universit¨atWien Fakult¨atf¨urMathematik und Geoinformation von Laura Silverstein M.A. Matrikelnummer 1329677 Kirchengasse 40/1/22 1070 Wien Wien, am 22. June 2017 Kurzfassung In dieser Dissertation wird ein Uberblick¨ ¨uber Tensorbewertungen auf Gitterpolytopen gege- ben, der auf zwei Arbeiten basiert, in denen mit der Entwicklung der Theorie dieser Bew- ertungen begonnen wurde. Dabei wird einerseits eine Klassifikation von Tensorbewertungen hergeleitet und andererseits werden die Basiselemente des Vektorraums dieser Bewertungen untersucht. Basierend auf der gemeinsamen Arbeit [43] mit Monika Ludwig wird f¨ursymmetrische Tensorbewertungen bis zum Rang 8, die kovariant bez¨uglich Translationen und der speziellen linearen Gruppe ¨uber den ganzen Zahlen sind, eine vollst¨andigeKlassifikation hergeleitet. Der Spezialfall der skalaren Bewertungen stammt von Betke und Kneser, die zeigten, dass alle solche Bewertungen Linearkombinationen der Koeffizienten des Ehrhart-Polynoms sind. Als Verallgemeinerung dieses Resultats wird gezeigt, dass f¨urRang kleiner gleich 8 alle solchen Tensorbewertungen Linearkombinationen der entsprechenden Ehrhart-Tensoren sind und, dass dies f¨urRang 9 nicht mehr gilt. F¨urRang 9 wird eine neue Bewertung beschrieben und f¨ur Tensoren h¨oherenRanges werden ebenfalls Kandidaten f¨ursolche Bewertungen ange- geben. -
LMS Undergraduate Summer School 2016 the Many Faces of Polyhedra
LMS Undergraduate Summer School 2016 The many faces of polyhedra 1. Pick's theorem 2 2 Let L = Z ⊂ R be integer lattice, P be polygon with vertices in L (integral polygon) Figure 1. An example of integral polygon Let I and B be the number of lattice points in the interior of P and on its boundary respectively. In the example shown above I = 4; B = 12. Pick's theorem. For any integral polygon P its area A can be given by Pick's formula B (1) A = I + - 1: 2 12 In particular, in our example A = 4 + 2 - 1 = 9, which can be checked directly. The following example (due to Reeve) shows that no such formula can be found for polyhedra. Consider the tetrahedron Th with vertices (0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; h), h 2 Z (Reeve's tetrahedron, see Fig. 2). Figure 2. Reeve's tetrahedron Th It is easy to see that Th has no interior lattice points and 4 lattice points on the boundary, but its volume is Vol(Th) = h=6: 2 2. Ehrhart theory d Let P ⊂ R be an integral convex polytope, which can be defined as the convex hull of its vertices v1; : : : ; vN 2 d Z : P = fx1v1 + : : : xNvN; x1 + : : : xN = 1; xi ≥ 0g: For d = 2 and d = 3 we have convex polygon and convex polyhedron respectively. Define d LP(t) := jtP \ Z j; which is the number of lattice points in the scaled polytope tP; t 2 Z: Ehrhart theorem. LP(t) is a polynomial in t of degree d with rational coefficients and with highest coefficient being volume of P: d LP(t) = Vol(P)t + ··· + 1: LP(t) is called Ehrhart polynomial. -
Arxiv:0905.4405V1 [Math.CO] 27 May 2009
Matroid Polytopes: Algorithms, Theory, and Applications By DAVID CARLISLE HAWS B.S. (University of California, Davis) 2004 DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA DAVIS Approved: Jes´usA. De Loera (chair) Matthias K¨oppe arXiv:0905.4405v1 [math.CO] 27 May 2009 Eric Babson Committee in Charge 2009 -i- c David Carlisle Haws, 2009. All rights reserved. Contents Abstract iii Acknowledgments iv Chapter 1. What are Matroids and who are their polytopes?1 1.1. Matroids1 1.2. Matroid Polytopes & Polymatroids7 Chapter 2. Volume and Ehrhart Polynomial Computation 17 2.1. Computing the Ehrhart Polynomials 18 2.2. Preliminaries on Rational Generating Functions. 18 2.3. On the Tangent Cones of Matroid Polytopes 20 2.4. Polymatroids 30 2.5. The construction of a short multivariate rational generating function 32 2.6. Polynomial-time specialization of rational generating functions in varying dimension 35 Chapter 3. Results on the Algebraic Combinatorics of Matroid Polytopes 43 3.1. Algebraic Properties of h∗-vectors and Ehrhart polynomials of Matroid Polytopes 43 3.2. Unimodular Simplices of Matroid Polytopes 53 3.3. Two Dimensional Faces of Matroid Polytopes 64 Chapter 4. Applications to Optimization Through the Structure of Matroid Polytopes 67 4.1. Description of the Algorithms and Heuristics 67 4.2. Software Implementation 79 4.3. Computational Results 80 Bibliography 126 -ii- Matroid Polytopes: Algorithms, Theory and Applications. Abstract This dissertation presents new results on three different themes all related to matroid polytopes. -
Analytical Computation of Ehrhart Polynomials: Enabling More Compiler Analyses and Optimizations
Analytical Computation of Ehrhart Polynomials: Enabling more Compiler Analyses and Optimizations Sven Verdoolaege Rachid Seghir Kristof Beyls Dept. of Computer Science ICPS-LSIIT UMR 7005 Dept. of Electronics and K.U.Leuven Universite´ Louis Pasteur, Information Systems [email protected] Strasbourg Ghent University [email protected] [email protected] ABSTRACT nomial, parametric polytope, polyhedral model, quasi-poly- Many optimization techniques, including several targeted nomial, signed unimodular decomposition specifically at embedded systems, depend on the ability to calculate the number of elements that satisfy certain condi- 1. INTRODUCTION tions. If these conditions can be represented by linear con- In many program analyses and optimizations, questions straints, then such problems are equivalent to counting the starting with “how many” need to be answered, e.g. number of integer points in (possibly) parametric polytopes. It is well known that this parametric count can be rep- • How many memory locations are touched by a loop?[16] resented by a set of Ehrhart polynomials. Previously, in- • How many operations are performed by a loop?[23] terpolation was used to obtain these polynomials, but this technique has several disadvantages. Its worst-case compu- • How many cache lines are touched by a loop?[16] tation time for a single Ehrhart polynomial is exponential in the input size, even for fixed dimensions. The worst-case • How many array elements are accessed between two size of such an Ehrhart polynomial (measured in bits needed points in time?[3] to represent the polynomial) is also exponential in the input • How many array elements are live at a given iteration size.