Virtual and Mixed Reality Support for Activities of Daily Living

Total Page:16

File Type:pdf, Size:1020Kb

Virtual and Mixed Reality Support for Activities of Daily Living Virtual and Mixed Reality Support for Activities of Daily Living Item Type Thesis or dissertation Authors Day, Thomas W. Citation Day, T.W. (2019). Virtual and Mixed Reality Support for Activities of Daily Living. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 07/10/2021 01:06:17 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622175 School of Computer Science Faculty of Science & Engineering Virtual and Mixed Reality Support for Activities of Daily Living Thesis submitted in accordance with the requirements of the University of Chester for the Degree of Doctor of Philosophy by Thomas W. Day Supervisor Prof. N. W. John 28th March 2019 Statement of Originality The material being presented for examination is my own work and has not been submitted for an award of this or another HEI except in minor particulars which are explicitly noted in the body of the thesis. Where research pertaining to the thesis was undertaken collaboratively, the nature and extent of my individual contribution has been made explicit. Student: Thomas W. Day Abstract Virtual and Mixed Reality Support for Activities of Daily Living Thomas W. Day Rehabilitation and training are extremely important process that help people who have suffered some form of trauma to regain their ability to live independently and successfully complete activities of daily living. VR and MR have been used in rehabilitation and training, with examples in a range of areas such as physical and cognitive rehabilitation, and medical training. However, previous research has mainly used non-immersive VR such as using video games on a computer monitor or television. Immersive VR Head-Mounted Displays were first developed in 1965 but the devices were usually large, bulky and expensive. In 2016, the release of low-cost VR HMDs allowed for wider adoption of VR technology. This thesis investigates the impact of these devices in supporting activities of daily living through three novel applications: training driving skills for a powered wheelchair in both VR and MR; and using VR to help with the cognitive rehabilitation of stroke patients. Results from the acceptability study for VR in cognitive rehabilitation showed that patients would be likely to accept VR as a method of rehabilitation. However, factors such as visual issues need to be taken into consideration. The validation study for the Wheelchair-VR project showed promising results in terms of user improvement after the VR training session but the majority of the users experienced symptoms of cybersickness. Wheelchair-MR didn’t show statistically significant results in terms of improvements but did show a mean average improvement compared to the control group. The effects of cybersickness were also greatly reduced compared to VR. We conclude that VR and MR can be used in conjunction with modern games engines to develop virtual environments that can be adapted to accelerate the rehabilitation and training of patients coping with different aspects of daily life. Acknowledgments I would like to thank the many people who have made this thesis possible and those who have made the past three years a very enjoyable and rewarding experience. In particular, I would like to thank my Supervisor, Prof. Nigel John, for allowing me to complete my Ph.D at the University of Chester and providing me with the resources and assistance I needed to carry out my research. I would also like to thank Christopher Headleand, Serban Pop and Panagiotis Ritsos for helping me throughout these last three years. Many thanks to Dr Kausik Chatterjee, Katy Cottrell and the therapy team at the Countess of Chester Hospital NHS Trust for providing me with the feedback and resources that I needed to help me design and run the StrokeVR project. I would like to thank Liverpool Wheelchair Service, Wirral Community NHS Trust Wheelchair Service, Cardiff and Vale UHB Posture Mobility Centre, and Betsi Cadwaladr UHB Posture and Mobility Service for providing help and assistance during the Wheelchair-VR project and Invacare UK for the loan of the Spectra wheelchair. I would like to thank my family and friends for their support over the past three years, especially my grandfather John Page for being a massive inspiration to me, my partner Liz and our cat Murphy who have kept me sane and helped me throughout, and my colleagues Peter and Mark for the office banter. Contents 1 Introduction 1 1.1 Hypothesis . 2 1.2 Contributions . 3 1.3 List of Publications . 3 1.4 Thesis Structure . 4 2 Background 6 2.1 Chapter Overview . 6 2.2 Human Perception . 6 2.2.1 Immersion . 7 2.2.2 Presence . 8 2.3 Virtual Reality . 9 2.3.1 Large-Volume Displays (LVDs) . 10 Monitor-based . 10 Projector-based . 11 Tracking Systems . 13 2.3.2 Head-Mounted Displays (HMDs) . 14 Tethered HMDs . 15 Mobile HMDs . 19 2.3.3 VR Content Development . 21 Desktop VR . 21 Mobile VR . 22 Web-based VR . 22 2.3.4 Current Issues . 23 2.4 Mixed Reality . 24 2.4.1 Headsets . 24 Mobile . 27 2.4.2 XR . 28 2.5 Patient support using Virtual Reality and Mixed Reality . 29 2.5.1 Rehabilitation . 29 Stroke . 30 2.5.2 Training . 34 Medical Training . 36 i Powered Wheelchair Manoeuvres . 38 2.6 Methodology for VR Human Factors Studies . 40 2.6.1 Develop the Focus of the Study . 41 2.6.2 Develop the Experimental Protocol . 41 2.6.3 Subject Recruitment . 41 Sampling Techniques . 41 2.6.4 Data Collection . 42 2.6.5 Data Analysis . 43 2.6.6 Examples of Data Analysis in VR Studies . 45 2.7 Summary . 47 3 Wheelchair-VR 49 3.1 Chapter Overview . 49 3.2 Motivation . 49 3.3 Methods and Tools . 50 3.3.1 Powered Wheelchair Specifications . 50 3.3.2 Hardware Components . 52 3.3.3 Software Implementation . 53 Wheelchair Model . 53 Training Tasks . 55 3.3.4 Testing . 58 3.4 Validation Study . 58 3.4.1 Experimental Design . 60 3.4.2 Results . 64 Simulator Sickness Questionnaire . 68 3.5 Configurations Study . 70 3.5.1 Experimental Design . 71 3.5.2 Results . 72 3.6 Conclusions . 72 4 Wheelchair-MR 75 4.1 Chapter Overview . 75 4.2 Motivation . 75 4.3 Method and Tools . 76 4.3.1 Hardware Components . 77 4.3.2 Software Implementation . 77 User Interface . 77 Spatial Understanding . 78 Chair Simulation . 83 Training Tasks . 85 4.4 Initial User Testing . 86 4.5 Validation Study . 89 ii 4.5.1 Experimental Design . 89 4.5.2 Results . 92 Simulator Sickness Questionnaire . 94 4.6 Conclusions . 98 5 StrokeVR - Stroke Rehabilitation 101 5.1 Chapter Overview . 101 5.2 Motivation . 101 5.3 Initial Implementation . .102 5.3.1 Software Implementation . .102 Tasks . .102 Interactions . .103 5.3.2 Hardware Components . 104 5.4 Initial Experiment . .105 5.4.1 Experimental Design . .105 5.4.2 Feedback . .106 5.5 Revised Implementation . 107 5.5.1 Hardware Components . 107 5.5.2 Software Implementation . 107 Interactions . 111 Visual Feedback . .112 5.6 Acceptability Study . .112 5.6.1 Inclusion Criteria . .113 5.6.2 Experimental Design . 114 Staff Training . 114 Infection Control . .115 5.6.3 Results . .115 5.7 Conclusion . .119 6 Conclusions and Future Work 121 6.1 Conclusions . 121 6.2 Future Work . .125 6.2.1 Wheelchair-VR . .125 6.2.2 Wheelchair-MR . 127 6.2.3 StrokeVR . .128 A References 130 iii iv List of Figures 2.1 Milgram’s definition of the reality-virtuality continuum [77] 9 2.2 The mock-up of a 3D view on the z-Space display from the vCath project [56] . 11 2.3 Fake Space Immersive Workbench N-239 showing skull for reconstructive surgery studies [5] . 12 2.4 The CAVE installation at the University of Keele. Here there are three projection walls but note that CAVES have been built with all four walls, the floor and the ceiling as projection surfaces. 13 2.5 A Powerwall display (left) that uses two polarized Sony 4K projectors (right) with passive stereo glasses . 13 2.6 Desktop-based VR HMDs. 17 2.7 One of the base stations used by the VIVE’s lighthouse system . 18 2.8 Mobile-based VR HMDs. 20 2.9 The Oculus Quest with controllers [80] . 21 2.10 Mixed Reality Headsets . 26 3.1 The Wheelchair-VR Hardware components consist of the PC, an Oculus Rift DK2 HMD, and an XBox controller. Insert shows the adapted joystick on the XBox controller. 52 3.2 Physics based wheelchair model with wheel colliders . 54 3.3 Kinematic Virtual Wheelchair Models . 56 3.4 Wheelchair-VR provides a first person view of the scene from the perspective of sitting in a wheelchair. 56 3.5 Snapshots taken from different rooms in Wheelchair-VR . 57 3.6 The Spectra XTR2 Rear Wheel Drive Wheelchair used in the Validation Study . ..
Recommended publications
  • Albere Albe 1
    a b 1 ALBERE ALBERE ALBERE ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH PRODUCT-LIST 2020 All Products Excluding Shipping Fees TM Price per Unit (or otherwise explained) 2 In Euro albere TM albere TM albereGamepads ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH a b 1 ALBERE ALBERE ALBERE ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH ID CATEGORY TITLE TM 2 albere TM albere TM albere ALBERE ELECTRONICS GmbH GAMEPADS Lanjue USB GamePad 13001-S (PC) ALBERE ELECTRONICS GmbH ALBERE ELECTRONICS GmbH GAMEPADS Tracer Gamepad Warrior PC GAMEPADS VR Bluetooth Gamepad White GAMEPADS Esperanza Vibration Gamepad USB Warrior PC/PS3 GAMEPADS Gembird JPD-UDV-01 GAMEPADS Competition PRO Powershock Controller (PS3/PC) GAMEPADS PDP Rock Candy Red GAMEPADS PC Joystick USB U-706 GAMEPADS Konix Drakkar Blood Axe GAMEPADS Gembird USB Gamepad JPD-UB-01 GAMEPADS Element GM-300 Gamepad GAMEPADS Intex DM-0216 GAMEPADS Esperanza Corsair Red GAMEPADS Havit HV-G69 GAMEPADS Nunchuck Controller Wii/Wii U White GAMEPADS Esperanza Fighter Black GAMEPADS Esperanza Fighter Red GAMEPADS VR Bluetooth Gamepad 383346582 GAMEPADS 744 GAMEPADS CO-100 GAMEPADS Shinecon SC-B01 GAMEPADS Gamepad T066 GAMEPADS Media-Tech MT1506 AdVenturer II GAMEPADS Scene It? Buzzers XBOX 360 Red GAMEPADS Media-Tech MT1507 Corsair II Black GAMEPADS Esperanza EGG107R Black/Red GAMEPADS Esperanza Wireless Gladiator Black GAMEPADS 239 GAMEPADS PowerWay USB GAMEPADS Nunchuck Controller Wii/Wii U Red GAMEPADS Powertech BO-23
    [Show full text]
  • Play Any PC Game with a Gamepad Using Joytokey for Those Who Prefer Controllers to Keyboards
    Play Any PC Game with a Gamepad Using JoyToKey For those who prefer controllers to keyboards There was a time when “hardcore” PC gamers would look down on the idea of using a gamepad to play PC games. The mouse and keyboard reigned supreme, especially in the golden age of first person shooters. The truth is that joysticks and gamepads have a rich and storied history on the PC, with genres such as racing and flight simulation virtually requiring it to be playable. The problem is that, for a very long time, gamepads on PC were not really standardized. Without a solid idea of what players would be using, many developers simply didn’t bother developing gamepad support for their titles. Now, largely thanks to console ports, the Xbox controller has become the de facto standard for PC gaming too. Better yet, since so many games are also developed for the Xbox, it’s easy for developers to simply include the control scheme. The end result is that if you hook up an Xbox controller to a modern Windows PC, modern games will seamlessly switch over, even changing the in-game UI to reflect gamepad controls. This is the best of time for those of us who love to game with a gamepad on PC, especially from a couch. However, there are thousands of older PC games that only support a keyboard and mouse. Which leaves us with a bit of an issue. Luckily JoyToKey provides an affordable solution. How To Use JoyToKey JoyToKey is a small application sold for a few dollars that takes gamepad input and converts it to mouse and keyboard output.
    [Show full text]
  • Evaluating Performance Benefits of Head Tracking in Modern Video
    Evaluating Performance Benefits of Head Tracking in Modern Video Games Arun Kulshreshth Joseph J. LaViola Jr. Department of EECS Department of EECS University of Central Florida University of Central Florida 4000 Central Florida Blvd 4000 Central Florida Blvd Orlando, FL 32816, USA Orlando, FL 32816, USA [email protected] [email protected] ABSTRACT PlayStation Move, TrackIR 5) that support 3D spatial in- teraction have been implemented and made available to con- We present a study that investigates user performance ben- sumers. Head tracking is one example of an interaction tech- efits of using head tracking in modern video games. We nique, commonly used in the virtual and augmented reality explored four di↵erent carefully chosen commercial games communities [2, 7, 9], that has potential to be a useful ap- with tasks which can potentially benefit from head tracking. proach for controlling certain gaming tasks. Recent work on For each game, quantitative and qualitative measures were head tracking and video games has shown some potential taken to determine if users performed better and learned for this type of gaming interface. For example, Sko et al. faster in the experimental group (with head tracking) than [10] proposed a taxonomy of head gestures for first person in the control group (without head tracking). A game ex- shooter (FPS) games and showed that some of their tech- pertise pre-questionnaire was used to classify participants niques (peering, zooming, iron-sighting and spinning) are into casual and expert categories to analyze a possible im- useful in games. In addition, previous studies [13, 14] have pact on performance di↵erences.
    [Show full text]
  • The Ergonomic Development of Video Game Controllers Raghav Bhardwaj* Department of Design and Technology, United World College of South East Asia, Singapore
    of Ergo al no rn m u ic o s J Bhardwaj, J Ergonomics 2017, 7:4 Journal of Ergonomics DOI: 10.4172/2165-7556.1000209 ISSN: 2165-7556 Research Article Article Open Access The Ergonomic Development of Video Game Controllers Raghav Bhardwaj* Department of Design and Technology, United World College of South East Asia, Singapore Abstract Video game controllers are often the primary input devices when playing video games on a myriad of consoles and systems. Many games are sometimes entirely shaped around a controller which makes the controllers paramount to a user’s gameplay experience. Due to the growth of the gaming industry and, by consequence, an increase in the variety of consumers, there has been an increased emphasis on the development of the ergonomics of modern video game controllers. These controllers now have to cater to a wider range of user anthropometrics and therefore manufacturers have to design their controllers in a manner that meets the anthropometric requirements for most of their potential users. This study aimed to analyse the evolution of video game controller ergonomics due to increased focus on user anthropometric data and to validate the hypothesis that these ergonomics have improved with successive generations of video game hardware. It has analysed and compared the key ergonomic features of the SEGA Genesis, Xbox, Xbox 360, and PS4 controllers to observe trends in their development, covering a range of 25 years of controller development. This study compared the dimensions of the key ergonomic features of the four controllers to ideal anthropometric values that have been standardised for use in other handheld devices such as TV remotes or machinery controls.
    [Show full text]
  • Download the User Manual and Keymander PC Software from Package Contents 1
    TM Quick Start Guide KeyMander - Keyboard & Mouse Adapter for Game Consoles GE1337P PART NO. Q1257-d This Quick Start Guide is intended to cover basic setup and key functions to get you up and running quickly. For a complete explanation of features and full access to all KeyMander functions, please download the User Manual and KeyMander PC Software from www.IOGEAR.com/product/GE1337P Package Contents 1 1 x GE1337P KeyMander Controller Emulator 2 x USB A to USB Mini B Cables 1 x 3.5mm Data Cable (reserved for future use) 1 x Quick Start Guide 1 x Warranty Card System Requirements Hardware Game Consoles: • PlayStation® 4 • PlayStation® 3 • Xbox® One S • Xbox® One • Xbox® 360 Console Controller: • PlayStation® 4 Controller • PlayStation® 3 Dual Shock 3 Controller (REQUIRED)* • Xbox® 360 Wired Controller (REQUIRED)* • Xbox® One Controller with Micro USB cable (REQUIRED)* • USB keyboard & USB mouse** Computer with available USB 2.0 port OS • Windows Vista®, Windows® 7 and Windows® 8, Windows® 8.1 *Some aftermarket wired controllers do not function correctly with KeyMander. It is strongly recommended to use official PlayStation/Xbox wired controllers. **Compatible with select wireless keyboard/mouse devices. Overview 2 1. Gamepad port 1 2 3 2. Keyboard port 3. Mouse port 4. Turbo/Keyboard Mode LED Gamepad Keyboard Mouse Indicator: a. Lights solid ORANGE when Turbo Mode is ON b. Flashes ORANGE when Keyboard Mode is ON 5. Setting LED indicator: a. Lights solid BLUE when PC port is connected to a computer. b. Flashes (Fast) BLUE when uploading a profile from a computer to the KeyMander.
    [Show full text]
  • Bachelorscriptie De Waarde Van Virtual Reality in Het Toekomstige Ontwerpproces
    Bachelorscriptie De waarde van virtual reality in het toekomstige ontwerpproces Auteurs Student T. de Haas 568847 Student R. Versloot 566305 Afstudeerbegeleiders Bedrijfsbegeleider 1e begeleider ir. J. Janssen ABT ir. T. van Dooren 2e begeleider ing. M.A.A. van Muijden MSc Onderwijsinstelling Hogeschool van Arnhem en Nijmegen Afstudeerbedrijf ABT 29 mei 2018, Velp Bachelorscriptie De waarde van virtual reality in het toekomstige ontwerpproces Auteurs Student T. de Haas Studentnummer 568847 Opleiding Bouwkunde Afstudeerrichting Architectuur Student R. Versloot Studentnummer 566305 Opleiding Bouwkunde Afstudeerrichting Architectuur 29 mei 2018, Velp Voorwoord Bij dezen willen wij graag ABT bedanken voor het bieden van de ruimte en ondersteuning in het bepalen van de richting Dit is de scriptie: De waarde van virtual reality in het van het afstudeeronderzoek. toekomstige ontwerpproces. Het onderzoek is gedaan in het kader van het afstuderen aan de opleiding bouwkunde Nadrukkelijk willen wij graag de bedrijfsbegeleider T. van aan de Hogeschool van Arnhem en Nijmegen en is Dooren bedanken voor het mede mogelijk maken van de uitgevoerd in opdracht van ABT. Dit is een multidisciplinair afstudeerplaats binnen ABT en de prettige samenwerking ingenieursbureau met een breed scala aan projecten, zoals: die van het begin tot eind van het afstuderen heeft terminals, rechtbanken, musea en woon/werk complexen. plaatsgevonden. Wij hebben vaak de gelegenheid gekregen om te sparren, wat tot veel waardevolle input voor de scriptie Van februari tot en met mei zijn wij, Reinder Versloot en Timmo heeft geleid. de Haas, bezig geweest met het opstellen, onderzoeken en uitschrijven van de scriptie. Daarnaast willen wij graag de respondenten van de interviews bedanken.
    [Show full text]
  • About Your SHIELD Controller SHIELD Controller Overview
    About Your SHIELD controller Your NVIDIA® SHIELD™ controller works with your SHIELD tablet and SHIELD portable for exceptional responsiveness and immersion in today’s hottest games. It is the first-ever precision controller designed for both Android™ and PC gaming. Your controller includes the following features: Console-grade controls Ultra-responsive Wi-Fi performance Stereo headset jack with chat support Microphone for voice search Touch pad for easy navigation Rechargeable battery and USB charging cable Your controller is compatible with the SHIELD portable and the SHIELD tablet. It can also be used as a wired controller for a Windows 7 or Windows 8 PC running GeForce Experience. Learn more about wired PC support here. Your controller cannot be used with other Android devices at this time. SHIELD controller Overview The SHIELD controller box includes one SHIELD controller, one USB charging cable, one Support Guide, and one Quick Start Guide. Shield controller D-pad NVIDIA button Android navigation and Start buttons A B X Y buttons Left thumbstick Right thumbstick Touchpad Volume control Turn on or Turn Off your controller How to Turn On the Controller Tap the NVIDIA button. How to Turn Off the Controller Hold the NVIDIA button for 6 seconds. The controller automatically turns off when you turn off the SHIELD device the controller is connected to. The controller also automatically turns off after 10 minutes of idle time. NOTE The controller stays on during video and music playback on the SHIELD device. This allows the controller to be active to control media playback. How to Connect Your Controller to a SHIELD Device Your controller is compatible with the SHIELD portable and the SHIELD tablet.
    [Show full text]
  • 2 - Player Input Handling Csc 165 Computer Game Architecture Overview
    CSc 165 Lecture Notes 2 - Player Input Handling CSc 165 Computer Game Architecture Overview • Device Types • Device Abstractions 2 - Input Handling • Controllers • Input Handling Packages • Event Queues • Input Action Commands (making the inputs do things) 2 CSc 165 Lecture Notes CSc 165 Lecture Notes 2 - Player Input Handling 2 - Player Input Handling Types of Input Devices Input Handling Goals • Keyboard • Steering Wheel Keep games device-independent o Game shouldn’t contain hard-coded device details • Mouse • Dance Pad o Game shouldn’t fail when a particular device is absent • Joystick (“POV”) • Guitar (allow substitution) • “POV Hat Switch” • WiiMote Keep engine device-independent o Engine components should not contain hard-coded • Gamepad • Kinect device details • Paddle • others? … isolate details in an Input Manager 3 4 CSc 165 Lecture Notes CSc 165 Lecture Notes 2 - Player Input Handling 2 - Player Input Handling Device Abstractions “D-pad” (Directional-pad) Axes Two fundamental device types: Discrete axis devices D-pad o Can have either one or two axes . Button – returns pressed or not pressed Frequently represented as 1.0 or 0.0 Single-axis form: one component; U returns one value: L R . Axis – returns a float .25 D Two types of Axis: .125 .375 Dual axis form: two components; each returns a value: . Continuous: returns a value in a range 1.0 0 .5 e.g. { -1 … 1 } or { 0 … 1 } L N R X: . Discrete: returns a value from a set .875 .625 -1 0 +1 e.g. [ 0, 1 ] or [ -1, 0, 1 ] .75 D N U Can be absolute or relative N UL U UR R DR D DL L Y: -1 0 +1 0 .125 .25 .375 .5 .625 .75 .875 1.0 5 6 CSc 165 Lecture Notes CSc 165 Lecture Notes 2 - Player Input Handling 2 - Player Input Handling Controllers Controller Example: GamePad Most “devices” are really collections : o Keyboard: collection of (e.g.
    [Show full text]
  • Virtual Reality Controllers
    Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets By Summer Lindsey Bachelor of Arts Psychology Florida Institute of Technology May 2015 A thesis Submitted to the College of Aeronautics at Florida Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science In Aviation Human Factors Melbourne, Florida April 2017 © Copyright 2017 Summer Lindsey All Rights Reserved The author grants permission to make single copies. _________________________________ The undersigned committee, having examined the attached thesis " Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets," by Summer Lindsey hereby indicates its unanimous approval. _________________________________ Deborah Carstens, Ph.D. Professor and Graduate Program Chair College of Aeronautics Major Advisor _________________________________ Meredith Carroll, Ph.D. Associate Professor College of Aeronautics Committee Member _________________________________ Neil Ganey, Ph.D. Human Factors Engineer Northrop Grumman Committee Member _________________________________ Christian Sonnenberg, Ph.D. Assistant Professor and Assistant Dean College of Business Committee Member _________________________________ Korhan Oyman, Ph.D. Dean and Professor College of Aeronautics Abstract Title: Evaluation of Low Cost Controllers for Mobile Based Virtual Reality Headsets Author: Summer Lindsey Major Advisor: Dr. Deborah Carstens Virtual Reality (VR) is no longer just for training purposes. The consumer VR market has become a large part of the VR world and is growing at a rapid pace. In spite of this growth, there is no standard controller for VR. This study evaluated three different controllers: a gamepad, the Leap Motion, and a touchpad as means of interacting with a virtual environment (VE). There were 23 participants that performed a matching task while wearing a Samsung Gear VR mobile based VR headset.
    [Show full text]
  • A Review of Extended Reality (XR) Technologies for Manufacturing Training
    technologies Article A Review of Extended Reality (XR) Technologies for Manufacturing Training Sanika Doolani * , Callen Wessels, Varun Kanal, Christos Sevastopoulos, Ashish Jaiswal and Harish Nambiappan and Fillia Makedon * Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] (C.W.); [email protected] (V.K.); [email protected] (C.S.); [email protected] (A.J.); [email protected] (H.N.) * Correspondence: [email protected] (S.D.); [email protected] (F.M.) Received: 30 October 2020; Accepted: 5 December 2020; Published: 10 December 2020 Abstract: Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task.
    [Show full text]
  • The Trackball Controller: Improving the Analog Stick
    The Trackball Controller: Improving the Analog Stick Daniel Natapov I. Scott MacKenzie Department of Computer Science and Engineering York University, Toronto, Canada {dnatapov, mack}@cse.yorku.ca ABSTRACT number of inputs was sufficient. Despite many future additions Two groups of participants (novice and advanced) completed a and improvements, the D-Pad persists on all standard controllers study comparing a prototype game controller to a standard game for all consoles introduced after the NES. controller for point-select tasks. The prototype game controller Shortcomings of the D-Pad became apparent with the introduction replaces the right analog stick of a standard game controller (used of 3D games. The Sony PlayStation and the Sega Saturn, for pointing and camera control) with a trackball. We used Fitts’ introduced in 1995, supported 3D environments and third-person law as per ISO 9241-9 to evaluate the pointing performance of perspectives. The controllers for those consoles, which used D- both controllers. In the novice group, the trackball controller’s Pads, were not well suited for 3D, since navigation was difficult. throughput was 2.69 bps – 60.1% higher than the 1.68 bps The main issue was that game characters could only move in eight observed for the standard controller. In the advanced group the directions using the D-Pad. To overcome this, some games, such trackball controller’s throughput was 3.19 bps – 58.7% higher than the 2.01 bps observed for the standard controller. Although as Resident Evil, used the forward and back directions of the D- the trackball controller performed better in terms of throughput, Pad to move the character, and the left and right directions for pointer path was more direct with the standard controller.
    [Show full text]
  • X-Reality Museums: Unifying the Virtual and Real World Towards Realistic Virtual Museums
    applied sciences Article X-Reality Museums: Unifying the Virtual and Real World Towards Realistic Virtual Museums George Margetis 1 , Konstantinos C. Apostolakis 1, Stavroula Ntoa 1, George Papagiannakis 1,2 and Constantine Stephanidis 1,2,* 1 Foundation for Research and Technology Hellas, Institute of Computer Science, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Greece; [email protected] (G.M.); [email protected] (K.C.A.); [email protected] (S.N.); [email protected] (G.P.) 2 Department of Computer Science, University of Crete, GR-700 13 Heraklion, Greece * Correspondence: [email protected]; Tel.: +30-2810-391-741 Abstract: Culture is a field that is currently entering a revolutionary phase, no longer being a privilege for the few, but expanding to new audiences who are urged to not only passively consume cultural heritage content, but actually participate and assimilate it on their own. In this context, museums have already embraced new technologies as part of their exhibitions, many of them featuring augmented or virtual reality artifacts. The presented work proposes the synthesis of augmented, virtual and mixed reality technologies to provide unified X-Reality experiences in realistic virtual museums, engaging visitors in an interactive and seamless fusion of physical and virtual worlds that will feature virtual agents exhibiting naturalistic behavior. Visitors will be able to interact with the virtual agents, as they would with real world counterparts. The envisioned approach is expected to not only provide refined experiences for museum visitors, but also achieve high quality entertainment combined with more effective knowledge acquisition. Keywords: extended reality; diminished reality; true mediated reality; augmented reality; virtual reality; natural multimodal interaction; unified user experiences; interactive museum exhibits Citation: Margetis, G.; Apostolakis, K.C.; Ntoa, S.; Papagiannakis, G.; Stephanidis, C.
    [Show full text]