Field Studies of Spheniscus Penguins DAVID CAMERON Duffy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Humboldt Penguin Spheniscus Humboldti Population in Chile: Counts of Moulting Birds, February 1999–2008
Wallace & Araya: Humboldt Penguin population in Chile 107 HUMBOLDT PENGUIN SPHENISCUS HUMBOLDTI POPULATION IN CHILE: COUNTS OF MOULTING BIRDS, FEBRUARY 1999–2008 ROBERTA S. WALLACE1 & BRAULIO ARAYA2 1Milwaukee County Zoo, 10001 W. Blue Mound Road, Milwaukee, WI 53226, USA ([email protected]) 2Calle Lima 193. Villa Alemana, V Región, Chile Received 19 August 2014, accepted 9 December 2014 SUMMARY WALLACE, R.S. & ARAYA, B. 2015. Humboldt Penguin Spheniscus humboldti population in Chile: counts of moulting birds, February 1999–2008. Marine Ornithology 43: 107–112 We conducted annual counts of moulting Humboldt Penguins roosting on the mainland coast and on offshore islands in north and central Chile during 1999–2008. The census area included the known major breeding colonies in Chile, where many penguins moult, as well as other sites. Population size was relatively stable across years, with an average of 33 384 SD 2 372 (range: 28 642–35 284) penguins counted, but the number of penguins found at any individual site could vary widely. Shifting penguin numbers suggest that penguins tend to aggregate to moult where food is abundant. While many of the major breeding sites are afforded some form of protected status, two sites with sizable penguin populations, Tilgo Island and Pájaros-1 Island, have no official protection. These census results provide a basis upon which future population trends can be compared. Key words: penguin, Spheniscus humboldti, census, Chile INTRODUCTION penguin taking less than three weeks to moult (Paredes et al. 2003). Penguins remain on land during moult, and they return to The Humboldt Penguin Spheniscus humboldti is a species endemic sea immediately after moulting (Zavalaga & Paredes 1997). -
Southernmost Record of the Magellanic Penguin Spheniscus Magellanicus in Antarctica
Barbosa et al.: Southernmost record of the Magellanic Penguin in Antarctica 79 SOUTHERNMOST RECORD OF THE MAGELLANIC PENGUIN SPHENISCUS MAGELLANICUS IN ANTARCTICA ANDRÉS BARBOSA1, LUIS M. ORTEGA-MORA2, FRANCISCO T. GARCÍA-MORENO3, FRANCISCO VALERA1 & MARIA JOSÉ PALACIOS1 1Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC C/General Segura, 1, E-04001, Almería, Spain ([email protected]) 2Grupo SALUVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain 3Jefatura de Apoyo Veterinario, Inspección General de Sanidad de la Defensa, Clínicas Especiales, planta 5, Glorieta del Ejército s/n, E-28047, Madrid, Spain Received 15 June 2006, accepted 4 November 2006 The Magellanic Penguin Spheniscus magellanicus breeds along We photographed a single Magellanic Penguin on Avian Island the southern South American coast from Cape Horn to central (67°46′S, 68°43′W), Marguerite Bay, Antarctic Peninsula on Chile on the Pacific coast and to central Argentina on the Atlantic 18 February 2006 in the presence of Adélie Penguins Pygoscelis coast. It also breeds in the Falkland Islands at 54°S (del Hoyo et al. adeliae. The bird was completing its moult into adult plumage and 1992, Williams 1995). During winter, the non-breeding distribution appeared to be healthy (Fig. 1). From the pale brown appearance extends northwards as far as 30°S on the Pacific Chilean coast and of the few old feathers still attached to the bird, it is likely, but to southern Brazil (23°S) on the Atlantic (del Hoyo et al. 1992). not completely certain, that it was in juvenile plumage when it There are vagrant non-breeding records from Australia and New commenced its moult. -
African Penguin Colony
An Innovative and Inspiring Space for a Growing African Penguin Colony enguins are among the most iconic and beloved avian groups, and the PCincinnati Zoo & Botanical Garden is embarking on an opportunity to further their engagement in care and conservation of African Penguins. This species in particular is endangered in their native range and requires the collective focus of zoos, aquariums, and other conservation organizations to ensure its survival into the future. The Cincinnati Zoo is seeking to construct a new habitat space for African Penguins that will allow for our colony to grow from 11 birds to 30+, which will contribute immensely to ex-situ conservation efforts, not to mention inspiring our visitors to care more about the species’ plight. A brand new habitat offers the opportunity to dream and innovate and truly bring the best experience to its animal residents. The new African Penguin habitat at the Cincinnati Zoo will be three times larger than the current space and offer a variety of new habitat feature to maximize their welfare, including: a dynamic pool area to encourage natural swimming behavior and exercise, natural substrates to dig into and to promote improved foot health, outdoor heating and cooling so that penguins can stay outside longer in the year, and a dramatically larger indoor bedroom area with a pool and UV-transmitting skylights to ensure health and comfort during our Cincinnati winter. African Penguin reproduction will be a key goal of this new habitat, and the new habitat and bedroom area will offer the opportunity to expand our nesting sites and maximize successful rearing of chicks. -
Colour Aberrations in African Penguins 19 COLOUR ABERRATIONS in AFRICAN PENGUINS SPHENISCUS DEMERSUS
Traisnel et al.: Colour aberrations in African Penguins 19 COLOUR ABERRATIONS IN AFRICAN PENGUINS SPHENISCUS DEMERSUS GWENDOLINE TRAISNEL1, LORIEN PICHEGRU1, HENVIK J. VISSER2 & LLOYD C. EDWARDS3 1 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research and Department of Zoology at the Nelson Mandela University, Port Elizabeth, South Africa ([email protected]) 2 Addo Elephant Marine Section, South African National Parks, Port Elizabeth, South Africa 3 Raggy Charters, Port Elizabeth, South Africa Received 31 July 2017, accepted 3 October 2017 ABSTRACT TRAISNEL, G., PICHEGRU, L., VISSER, H.J. & EDWARDS, L.C. 2018. Colour aberrations in African Penguins Spheniscus demersus. Marine Ornithology 46: 19–22. Colour aberrations among wild birds are of long-time interest because they are uncommon, particularly in seabirds, although recent publications have revealed varying forms of aberrations in cormorants and penguins. In African Penguins Spheniscus demersus, there have been previous sightings of abnormal plumages, particularly in Algoa Bay, South Africa. This paper reveals new cases of plumage aberrations in African Penguins: leucism, “brown,” and phaeomelanism, all within Algoa Bay. While all aberrations seemed of natural origin, one in the shape of a number eight may have resulted from human actions. Key words: African Penguin, abnormal plumages, Algoa Bay, leucism, phaeomelanism, “brown” INTRODUCTION but also an effort on the part of the scientific community to report these rare observations. For example, albinism has been recently Production of melanin pigments eumelanin and phaeomelanin recorded in shags and cormorants (Cook et al. 2012, Crossland can be subject to alterations, both of heritable and non-heritable 2012), as has isabel (incorrect term, as the mutation involved was origin, resulting in abnormalities in plumage colour (van Grouw “brown”) (Oosthuizen & De Bruyn, 2009) and ino (Juàres et al. -
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2). -
A New Home for Penguins a New Front Door to the Zoo
A New Home for Penguins A New Front Door to the Zoo A new, state-of-the-art exhibit draws visitors directly into our mission, educating them about ennis Conner the plight of these enchanting, flightless birds and the actions people can take to save them. D Ryan Hawk AT A GLANCE HABITAT They are the zoo’s natural comedians, a delightful must- natural home. The exhibit also enhances the penguins’ lives Humboldt penguins live along the rugged see animal for visitors of all ages. Yet the penguins’ current with a state-of-the-art biofiltration and rain water harvest- coastline of Peru and Chile exhibit — originally built for seals and sea lions 60 years ing system that dramatically minimizes water loss. Because ago — is well below today’s standards for animal care and Humboldt penguins reside in coastal habitats, the new NUMBER conservation education. penguin exhibit will tell a compelling conservation story Only 10,000-12,000 remain in the wild that resonates with the marine-savvy, Pacific Northwest You can help build a stunning new, naturalistic home OPPORTUNITY specifically designed for penguins, inspiring our guests to community. A new state-of-the art, environmentally take conservation actions on their behalf! With a glass- And, what better way to meet the penguins than through friendly home for breeding endangered Humboldt penguins helps visitors learn wall, underwater viewing is a cornerstone of this signature a new entry to the zoo! Revolutionizing how we welcome how to make choices that keep marine exhibit,COMPLETED allowing guests to see these aquatic acrobats fly and serve our guests, this new “front door” will provide environments healthy while immersing visitors through water at up to 20 m.p.h. -
46 1 85-88.Pdf
Traisnel & Pichegru: Nest usurpation in African Penguins 85 POSSIBLE DRIVERS OF NEST USURPATION IN AFRICAN PENGUINS SPHENISCUS DEMERSUS GWENDOLINE TRAISNEL & LORIEN PICHEGRU DST-NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research and Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa ([email protected]) Received 10 January 2018, accepted 27 February 2018 ABSTRACT TRAISNEL, G. & PICHEGRU, L. 2018. Possible drivers of nest usurpation in African Penguins Spheniscus demersus. Marine Ornithology 46: 85–88. Nest usurpation is a relatively common phenomenon in birds but remains poorly documented in penguins. This behaviour may advantage bolder and aggressive individuals and influence population dynamics by affecting breeding success. African Penguins Spheniscus demersus are aggressive towards conspecifics during the breeding season when competing for territory. However, nest usurpation is rarely observed in this species. We describe three records of nest usurpation in African Penguins from Bird Island, Algoa Bay (South Africa) in 2017. After a climate-related massive breeding failure, late breeders in search of a territory attacked occupants of earlier-breeding nests, sometimes leading to the death of their brood. These observations may be the consequence of an extreme weather event, which created a marked asynchrony in breeding stages in this specific year, with many birds tending chicks, while others were just beginning to look for territories. This mismatch provided the opportunity for particularly aggressive individuals to decrease the breeding output of less aggressive birds, thereby possibly influencing the species’ population dynamics. Key words: African Penguin, nest displacement, nest stealing, asynchrony INTRODUCTION summer may result in nest desertion (Frost et al. -
SHORT NOTE Prey Seizing in African Penguins Spheniscus Demersus
SHORT NOTE Prey seizing in African Penguins Spheniscus demersus For seabirds, foraging behaviour can be divid- ink. Strips of one millimetre graph paper backed by card & (10 x 50 mm), were laid across these surfaces to make irn- ed into three sequential phases (Din Eltring- prints. The surface areas of the imprints were determined by ham 1974): 1) choosing where to forage and lo- counting the number of. quarter-millimetre squares filled cation of prey, i.e. in different habitats, socially with ink. or alone, close to a nest site or at a distance We made direct measurements on the strength of the bite of five live adult African Penguins. Two Pesola balances, ac- (Brown 1980), the use of vision vs olfaction curate to five grams, were attached with tape to both the up- (Wenzel 1980); 2) the mode of attack on prey per and lower mandible tips. The pull was measured when (e.g. plunging, dipping or surface diving, Ash- the beak was slightly opened by inducing the penguin to bite at a finger laid between the two mandibles. We examined mole 1971); and 3) capture and handling of prey approximately 6000 fishes from 556 African Penguin regur- (e.g. spearing, seizing, filtering, Owre 1967, gitations (Wilson 1985) for marks made by the birds' beaks. Ashmole 1971, Zusi 1962, 1975). Much atten- tion has been devoted to the first two aspects of The beak length, from the tip of the unguis to foraging, but relatively little work has been the quadrate, was 105 mm. A single tomium done on the capture and handling of prey. -
WAVE on Wheels Outreach Penguin Presentation Grades 9 – 12
WAVE on Wheels Outreach Penguin Presentation Grades 9 – 12 Time requirement 1 Hour Group size and grade Up to 50 students maximum Materials 1 African Penguin Penguin Artifacts Bin Penguin Emergency Backpack Penguin Pedestal WAVE Tablecloth Goal Through a live penguin encounter, students will be excited, engaged, and educated about the wonders of aquatic life and the importance of conservation. Objectives 1. Students will be able to list 5 adaptations a penguin has for aquatic life including a combination of internal and external body parts as well as behaviors. 2. Students will be able to define natural selection and discuss its effects on penguin adaptations. 3. Students will be able to list at least 5 species of penguin and identify that some penguins live in warm environments. WAVE Foundation • One Aquarium Way • Newport, KY 41071 • www.wavefoundation.org • (859) 815-1442 Rev 3/16 4. Students will be able to discuss biological factors relating to penguin population numbers, individual growth rates, and reproductive success. 5. Students will be able to discuss social behavior strategies among penguins. 6. Students will be able to discuss penguin conservation efforts as well as how they can help save penguins and other aquatic animals. 7. Students will be able to design and describe a method for monitoring and minimizing human impacts on penguin environments. Theme Penguins are unique aquatic birds that play an important role in their environment. Kentucky Core Academic Standards – Science HS. Interdependent Relationships in Ecosystems HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity. -
Classroomsecrets.Com
Penguins King Penguin Galapagos Penguin Penguins live in both hot and cold places in the This penguin species is the This penguin is the only Southern Hemisphere, the bottom half of the world, second largest. They have penguin to breed near the below the equator. They have wings but they can orange cheeks and look equator. They feed on not fly, so they use them as flippers. There are 17 similar to Emperor small fish like sardines. different species of penguin. penguins. King penguins do The Galapagos Penguin not make a nest, instead lays its eggs in crevices, All penguins forage for food in the sea. They have the female lays a single egg caves or a burrow to spines in their mouths to stop their prey (fish, squid which the male keeps warm protect them from getting and krill) from swimming away. in a pouch in his belly and too much heat from the balances it on his feet. sun. There are only 1000 Baby penguins are called chicks, born with very fluffy They live around the edges breeding pairs of these feathers and unable to go into the water until they of Antarctica and live on a penguins and so they are have grown their adult feathers. The parents hunt diet of mainly lanternfish at risk of extinction. for food, swallow it down and then bring it back up and squid. to feed to their chicks. Yellow-eyed Penguin Rockhopper Penguin Chinstrap Penguin This type of penguin can be There are three types of Chinstrap penguins have found in New Zealand and Rockhopper Penguin: Northern a black line across their has a band of yellow Rockhopper, Eastern cheeks that looks like a feathers on its head as well Rockhopper and Southern chinstrap. -
Sentinels of the Ocean the Science of the World’S Penguins
A scientific report from The Pew Charitable Trusts April 2015 Sentinels Of the Ocean The science of the world’s penguins Contents 1 Overview 1 Status of penguin populations 1 Penguin biology Species 3 22 The Southern Ocean 24 Threats to penguins Fisheries 24 Increasing forage fisheries 24 Bycatch 24 Mismatch 24 Climate change 25 Habitat degradation and changes in land use 25 Petroleum pollution 25 Guano harvest 26 Erosion and loss of native plants 26 Tourism 26 Predation 26 Invasive predators 26 Native predators 27 Disease and toxins 27 27 Protecting penguins Marine protected areas 27 Ecosystem-based management 29 Ocean zoning 29 Habitat protections on land 30 31 Conclusion 32 References This report was written for Pew by: Pablo García Borboroglu, Ph.D., president, Global Penguin Society P. Dee Boersma, Ph.D., director, Center for Penguins as Ocean Sentinels, University of Washington Caroline Cappello, Center for Penguins as Ocean Sentinels, University of Washington Pew’s environmental initiative Joshua S. Reichert, executive vice president Tom Wathen, vice president Environmental science division Becky Goldburg, Ph.D., director, environmental science Rachel Brittin, officer, communications Polita Glynn, director, Pew Marine Fellows Program Ben Shouse, senior associate Charlotte Hudson, director, Lenfest Ocean Program Anthony Rogers, senior associate Katie Matthews, Ph.D., manager Katy Sater, senior associate Angela Bednarek, Ph.D., manager Acknowledgments The authors wish to thank the many contributors to Penguins: Natural History and Conservation (University of Washington Press, 2013), upon whose scholarship this report is based. Used by permission of the University of Washington Press The environmental science team would like to thank Dee Boersma, Pablo “Popi” Borboroglu, and Caroline Cappello for sharing their knowledge of penguins by writing and preparing this report. -
Spheniscus Demersus) Provisioning Chicks at Robben Island, South Africa
Factors influencing the foraging behaviour of African Penguins (Spheniscus demersus) provisioning chicks at Robben Island, South Africa by Kate Campbell Student number: RBNKAT008 Thesis presented for the Degree of Doctor of Philosophy (PhD) Department of Biological Sciences Faculty of Science UniversityUNIVERSITY ofOF CAPE Cape TOWN Town Supervised by Professor Les G. Underhill Co-supervised by: Dr. Richard B. Sherley Dr. Antje Steinfurth Dr. Rob J. M. Crawford December 2016 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town DECLARATION I, Katrina (Kate) Jane Campbell, formerly Robinson, hereby declare that this thesis and the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorise the University to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. SIGNED:_____________________________Signature Removed KATRINA JANE CAMPBELL DATE:______________________________11 December 2016 ii "COURAGE IS NOT THE ABSENCE OF FEAR, BUT THE TRIUMPH OVER IT."