Silly Science (Target Audience: Ages 9–12)

Total Page:16

File Type:pdf, Size:1020Kb

Silly Science (Target Audience: Ages 9–12) Silly Science (Target Audience: Ages 9–12) Recommended Silly Science Books You do not need these books to do this program. Any fun science experiment books will do. You can use them for display, to promote the science experiments collection, and for the kids to check out. Or you can use them to get other ideas for science program activities. Bill Nye the Science Guy’s Consider the Following: A Way Cool Set of Science Questions, Answers and Ideas to Ponder by Bill Nye Science Fun: Hands-on Science with Dr. Zed by Gordon Penrose First Science Experiments: The Amazing Human Body by Shar Levine and Leslie Johnstone Really Rotten Experiments by Nick Arnold Silly Science Tricks by Peter Murray Silly Science: Strange and Startling Projects to Amaze Your Family and Friends by Shar Levine and Leslie Johnstone Science Experiments You can choose one or more of the following activities for your program (approximate times for each activity are given so you can plan accordingly). Experiment #1: Make Gooey Slime and Play Putty (Similar To Silly Putty®) Have lots of fun doing this science project. Talk about slime in children’s films and books – even Harry Potter. The polymers we make here are non-toxic; however, eating the stuff is definitely not recommended! Time: 30 minutes Materials: • White glue (Elmer’s white glue preferred here) • Borax (a laundry booster available at the supermarket) • Water • Sealable plastic bags • Popsicle sticks or disposable spoons (unused and clean) • Large jar and lid (clean) • Medium-sized bowl 128 • Food colouring • Measuring cup • Sheets of newspaper to keep your work area clean • Paper towels for cleaning up Directions: 1. Pour half a cup of glue and a half a cup of water into the jar. 2. Add a few drops of food colouring, green and yellow, for instance will create a lime-green colour. 3. In the bowl, pour and mix 240 ml of water and 1 teaspoon (5 ml) of borax powder. 4. Pour the jar or glue and water into the bowl of water and borax, stirring slowly. 5. With your clean hands pick up the “slime” at the bottom of the bowl leaving behind excess water. Then knead the sticky mixture until it feels dry. 6. Have fun with your slime which can be temporarily stored in a sealed bag in the refrigerator. 7. To create play putty just keep kneading the mixture until it dries out a bit more. 8. Clean up dried slime and putty by soaking it with water. Do the same with glue that you have dropped on your clothes, and wash your hands after you are done. What’s happening? The solution of borax and water is known as a polymer (polyvinyl acetate). It’s this substance that makes the slime mixture thick. Kids will be interested to know that this putty is both a solid and a liquid! It has been called a solid-liquid and has properties of a viscoelastic liquid and an elastic solid. Those kids who have studies states of matter already in school will find this particularly fascinating! Store-bought slime has a shiny appearance because it has a small amount of a secret ingredient called “pearl swirl” containing titanium dioxide. Only a small amount of “swirl” is needed to create the iridescent look. Polymers today are used in almost everything from plastic spoons, glasses, computer hardware, clothes, nylon, table top laminates, paint, bottles and more! For more fun: 1. Visit the Silly Putty® website at www.sillyputty.com and visit the Silly Science section. You can learn all about the science and the history of Silly Putty® and even earn your Master of Silly Putty Degree! 129 2. Use your “play putty” in different ways: watch it float in water, flatten it out and press it onto a piece of newspaper (comic strips would work well) – the image will appear on the putty, roll it up into a ball and watch it bounce, etc… etc… Important Information ! • Be sure to wash your hands when you are finished • Borax should be kept out of reach of small children and clean up any spills. • The putty may stain fabric or carpets. Be careful. Experiment #2: Tendon To Be Gross This is a funny, gross science project using a freshly cut chicken foot. If you recommend that the children do all steps of this project adult supervision will be required. Materials: • 1 or 2 freshly-cut chicken feet purchased from your local butcher. The toe nails should be left attached. • Alcohol • Cotton batting Instructions: 1. Briefly boil the feet for a few minutes but not too long since over boiling causes the chicken to stiffen and loose elasticity. 2. Clean the feet with alcohol. These first two steps can be done by the presenter ahead of time. Staff can do theses first two steps ahead of time. 3. Have the children close their eyes, then reveal the chicken foot. Pull the tendon at the bottom of the “hand” below the toes and watch what happens. Be ready for lots of shrieking and gross out. 4. Explain that tendons and ligaments connect the bones in the bodies of animals and that by pulling on the tendon you are manipulating the movement of the bones, the way puppeteers do to move marionettes. Activity #3: 130 Marshmallow Head (Target audience: Ages 6–12) Time: approximately 25-30 minutes This activity is sure to make kids giggle! Watch these wacky marshmallow heads grow and shrink using the scientific principle of pressure. This activity uses marshmallows. If you don’t want kids eating any marshmallows then you will have to emphasize this at the beginning of the program. If you want to have a spare supply of marshmallows for eating then make sure to inquire about any food allergies or food restrictions (e.g. some kids cannot eat marshmallows because of gelatin). Materials: • Marshmallows (at least one for each child) • Markers (a dark colour like black would be best). • Glass bottles or jars (that have a fairly narrow opening, but wide enough to fit a marshmallows through). • Some moulding or modeling clay like Plasticine® • Drinking straws (one for each child) *You will probably have to put the children into small groups in order to share supplies. They will probably have to share one glass bottle among the group (unless you are able to have enough bottles or jars for each child). Instructions: 1. Kids will draw a face on both (flat) ends of a large marshmallow. The funnier the face the better! 2. Drop the marshmallow into a glass bottle (the kids can take turns doing this in their groups). You'll have to use a bottle/jar that has an opening slightly larger than the marshmallow so you can fit the marshmallow in. Do not use a bottle/jar that has a very wide opening though because you will need to seal the opening to prevent air from escaping. 3. Wrap the clay around the straw (1 inch from the end so that the clay forms a 'ring' around the straw). Place the short end of the straw into the bottle. The clay should stop the straw from dropping all the way into the bottle and then should be pressed around the mouth of the bottle so that the bottle is completely sealed and no air can get in or out. 4. Suck air out of the bottle (make sure there are not leaks in the clay) and see what happens to the marshmallow face! Then see what happens after you stop sucking on the straw… What’s happening? 131 Marshmallows may appear solid, but they are filled with many air pockets like a sponge. When you suck the air out of the bottle the pressure inside the bottle is being decreased which causes the sponge-like marshmallow to grow (expand). When you stop sucking on the straw, the air goes back into the bottle and the pressure is increased, so that the marshmallow goes back to its normal size. Activity #4: Dr. Zed’s Dance-Till-You-Drop Popcorn (Target audience: Ages 6–12) (From Dr. Zed’s Sensational Science Activities by Gordon Penrose) Time: approximately 15 minutes Materials: • A large clear drinking glass or jar • 1 tablespoon (15 ml) baking soda • A few drops food colouring (any colour, but just make sure to keep the water somewhat translucent) • 3 tablespoons (45 ml) white vinegar • A small handful of popcorn kernels and/or some different shape pasta pieces Instructions: 1. Fill the glass container with water. 2. Add the baking soda and food colouring and stir well. 3. Drop in the popcorn kernels and/or pasta shapes and then stir in the vinegar. 4. Watch the popcorn/pasta dance! What’s happening? When baking soda (sodium bicarbonate) and vinegar are mixed there is a chemical reaction in which bubbles of carbon dioxide are formed. The bubbles attach themselves to the kernels/pasta and cause them to “dance” to the surface. When the bubbles burst at the surface, the kernels/pasta will “dance” to the bottom of the glass. For extra discussion and enrichment, you can talk about acids and bases, and the reaction between them. 132.
Recommended publications
  • Accidental Discoveries
    Accidental discoveries Part of the British Science Association’s British Science Week activity pack series. www.britishscienceweek.org British Science British British Science www.britishscienceweek.org 0 Accidental discoveries: Bakelite plastic Making silly putty More than one hundred years ago, electric wires were covered with ‘shellac’. It stopped people getting an electric shock if they touched the wire. It was very expensive because it was made from beetles that came from Asia. So, a man called Leo Baekeland decided to make a new type of covering. However, instead he discovered how to make the first plastic, called Bakelite. Plastics can be moulded into all kinds of shapes. They are used to make all sorts of things. You can have a go at making a bouncy plastic, called silly putty. You will need: 2 containers (such as plastic cups), a wooden stick (for This 1950s telephone is made from Bakelite stirring), some food colouring, PVA glue, borax solution (about 1 tablespoon of borax to a cup of water) What you do Put about one tablespoon of borax into one cup of water. Stir until it dissolves. Stir in two or three drops of food colouring. Put some PVA glue into the other container – just enough to cover the bottom. Pour some of the borax solution into the PVA glue. Stir the mixture until it makes a soft lump. By now the mixture should be joining together like putty. Take it out of the container and mould it into a ball in your hands. If it is still sticky, wash your hands with water and rinse the ball.
    [Show full text]
  • Understanding Silly Putty, Snail Slime and Other Funny Fluids
    IMA Annual Program Year Tutorial An Introduction to Funny (Complex) Fluids: Rheology, Modeling and Theorems September 12-13, 2009 Understanding silly putty, snail slime and other funny fluids Chris Macosko Department of Chemical Engineering and Materials Science NSF- MRSEC (National Science Foundation sponsored Materials Research Science and Engineering Center) IPRIME (Industrial Partnership for Research in Interfacial and Materials Engineering) What is rheology? ρειν (Greek) = to flow τα παντα ρει = every thing flows rheology = study of flow?, i.e. fluid mechanics? honey and mayonnaise honey and mayo stress= viscosity = f/area stress/rate rate of deformation rate of deformation What is rheology? ρειν (Greek) = to flow τα παντα ρει = every thing flows rheology = study of flow?, i.e. fluid mechanics? honey and mayo rubber band and silly putty viscosity modulus = f/area rate of deformation time of deformation 4 key rheological phenomena rheology = study of deformation of complex materials fluid mechanician: simple fluids complex flows materials chemist: complex fluids complex flows rheologist: complex fluids simple flows rheologist fits data to constitutive equations which - can be solved by fluid mechanician for complex flows - have a microstructural basis from: Rheology: Principles, Measurement and Applications, VCH/Wiley (1994). ad majorem Dei gloriam Goal: Understand Principles of Rheology: (stress, strain, constitutive equations) stress = f (deformation, time) Simplest constitutive relations: Newton’s Law: Hooke’s Law: dγ τ = η = ηγ τ = Gγ dt Key Rheological Phenomena • shear thinning (thickening) h ( g ) • time dependent modulus G(t) • normal stresses in shear N1 η η • extensional > shear stress u > k k 1 ELASTIC SOLID 1 2 The power of any spring L´ is in the same proportion with the tension thereof.
    [Show full text]
  • THE CHEMISTRY of SILLY PUTTY Silly Putty Is an Odd Substance – It Can Be Slowly Stretched Out, but Snaps If Pulled Apart with Greater Force
    THE CHEMISTRY OF SILLY PUTTY Silly putty is an odd substance – it can be slowly stretched out, but snaps if pulled apart with greater force. It can be molded into shape, but bounces if rolled into a ball. What’s behind these strange properties? Here’s a quick look at the chemical composition and explanation. WHAT IS IT MADE OF? HOW DOES IT WORK? The most important compound in silly putty The presence of PDMS alone, and its is polydimethylsiloxane (PDMS). This is the viscoelasticity, doesn’t fully explain how silly simplest member of the polymer family known putty behaves. Another ingredient, boric acid, as the silicones. also makes a telling contribution. PDMS is viscoelastic. This means that it acts The boric acid helps to create ‘crosslinks’ like a viscous liquid and flows over long time between adjacent polymer chains. These help scales. However, over short time scales (for to give silly putty its putty-like nature, and also example, being rolled into a ball and thrown at help explain its strange behaviour. a hard surface), its behaviour is elastic, and it will bounce back. R Si O O Si R – EXAMPLE BORON-MEDIATED CROSSLINK B Si Si Si (R represents the rest of the PDMS polymer chain) O O R Si O O Si R n A POLYDIMETHYLSILOXANE The polydimethylsiloxanes in silly putty end in Si-OH groups. The boric (solid filled atoms represent carbon; smaller outlined atoms represent hydrogen) acid reversibly reacts with these to form short-lived crosslinks between polymer chains. Slow deformation gives these crosslinks time to break and reform, allowing viscous flow, but rapid, forceful deformation does At high molecular weights, the flexible polymer chains become loosely not, so elastic behaviour is instead seen.
    [Show full text]
  • Fourteen K-12 Outreach Activities for Materials Scientists and Engineers
    FOURTEEN K-12 OUTREACH ACTIVITIES FOR MATERIALS SCIENTISTS AND ENGINEERS Foreward The activities described in this document were performed by volunteers from ASM International chapters as part of our volunteer leader training in 2007. The event took place in an elegant room with carpet, drapes, and wallpaper so heat treating was done in advance. A similar approach could be used to make the “heat treating” activities safe for younger students. Please take the utmost care to consider safety aspects as you plan your outreach event. Safety glasses that fit over corrective lenses are needed for many of these activities, and you may have trouble finding them small enough to fit young students. Many of the activities were gleaned from the ASM Materials Education Foundation’s “Teachers Camp” curriculum and have been proven in classrooms. I’m particularly grateful to Debbie Goodwin (Master Teacher) and Matt Perricone for their contributions to this compilation, and to Dr. Kathy Hayrynen of the Detroit Chapter of ASM International for her ongoing contributions to ASM’s outreach projects at many levels. All of the experimental descriptions in this compilation are either free of copyright protection, or have been used in accordance with the use restrictions of the original source. Original sources for each activity have been noted in the appendices. Commercial sources for some supplies have been mentioned as a convenience, and are not an endorsement of the particular company by ASM International, The ASM Foundation, or me. I hope you’ll have as much fun sharing our profession with students and teachers as I do.
    [Show full text]
  • Gak and Non-Newtonian Fluid
    1) A polymer consists of long chained molecules that are bound together. 2) Non-Newtonian fluids are those that have viscosities that change with conditions of stress or time. Background Gak – Glue consists of long chained molecules that are very loosely tied together, which explains why it has a higher viscosity than water. When mixed with Borax, the molecules are “tangled” and a chemical reaction takes place. The tangled chains are polymers which is what plastics are and other man made substances such as nylon. http://www.petervaldivia.com/technology/plastics/i mage/polymer.gif&imgrefurl=http://www.peterval divia.com/technology/plastics/index A Non-Newtonian fluid is one that is not characterized by one viscosity. Such fluids have viscosities that change as a function of stress, time or both. A mixture of cornstarch and water flows when little stress is applied, yet acts like a solid when a lot of stress is applied – for example, hitting the surface with your hand or even jumping quickly on it. Uses of such fluids may be in body armor. There are other non-Newtonian fluids that have the opposite reaction to stress. Fluids such as ketchup become less viscous when stress is applied (hence hitting the bottle of ketchup allows the ketchup to flow out). Cornstarch and water mixture Cornstarch and water mixture on a speaker http://upload.wikimedia.org/wikipedia/common s/f/f0/Non-Newtonian_fluid.PNG Materials Demonstration – polymers Gak (per group) Various plastic containers. Dixie cup for mixing Wooden stirrer Small plastic ziplock bag for storing Demonstration – Viscosity Borax/water mixture Glue/water mixture Plastic board Food Coloring if desired Various liquids of different viscosity to drip on slanted board and watch run them run off Non Newtonian fluid (per group) Ketchup in a glass bottle Dixie cup for mixing Wooden stirrer Demonstration – Pool of Small plastic ziplock bag for storing Cornstarch/water Cornstarch Water Kiddie pool of cornstarch/water.
    [Show full text]
  • Groomstick: a Study to Determine Its Potential to Deposit Residues Author(S): Sara A
    Article: Groomstick: A study to determine its potential to deposit residues Author(s): Sara A. Moy Source: Objects Specialty Group Postprints, Volume Eleven, 2004 Pages: 29-42 Compilers: Virginia Greene and Patricia Griffin th © 2007 by The American Institute for Conservation of Historic & Artistic Works, 1156 15 Street NW, Suite 320, Washington, DC 20005. (202) 452-9545 www.conservation-us.org Under a licensing agreement, individual authors retain copyright to their work and extend publications rights to the American Institute for Conservation. Objects Specialty Group Postprints is published annually by the Objects Specialty Group (OSG) of the American Institute for Conservation of Historic & Artistic Works (AIC). A membership benefit of the Objects Specialty Group, Objects Specialty Group Postprints is mainly comprised of papers presented at OSG sessions at AIC Annual Meetings and is intended to inform and educate conservation-related disciplines. Papers presented in Objects Specialty Group Postprints, Volume Eleven, 2004 have been edited for clarity and content but have not undergone a formal process of peer review. This publication is primarily intended for the members of the Objects Specialty Group of the American Institute for Conservation of Historic & Artistic Works. Responsibility for the methods and materials described herein rests solely with the authors, whose articles should not be considered official statements of the OSG or the AIC. The OSG is an approved division of the AIC but does not necessarily represent the AIC policy or opinions. AIC Objects Specialty Group Postprints, Volume 11, 2004 GROOMSTICK: A STUDY TO DETERMINE ITS POTENTIAL TO DEPOSIT RESIDUES Sara A. Moy Abstract The use of kneadable eraser products for dry surface cleaning on works of art is a common practice adopted from paper and book conservation, but questions as to their suitability consistently arise with the availability of each new product.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0261026 A1 Mcclure Et Al
    US 20140261026A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0261026 A1 McClure et al. (43) Pub. Date: Sep. 18, 2014 (54) COMPOSITIONS AND METHODS FOR (52) U.S. Cl. MAKING PUTTY TRANSFER BOOKS CPC ..................................... B4IM 5/025 (2013.01) USPC ............................................. 101/35; 101/492 (71) Applicant: CRAYOLA LLC, Easton, PA (US) (57) ABSTRACT (72) Inventors: David McClure, Roanoke, VA (US); The present invention provides kits and methods for selec Keith Ketchman Rosemont IL (US); tively transferringaportion of an image from a substrate (e.g., Michael Craig Sciota, PA (US) s paper) to a dough (e.g., Silly Putty R) comprising pressing the s s dough onto an image printed on the Substrate. The image comprises transferable ink and non-transferable ink. At least (73) Assignee: Crayola LLC, Easton, PA (US) a portion of the image comprising transferable ink transfers from the substrate to the dough and the non-transferable ink (21) Appl. No.: 13/800,780 does not transfer from the substrate to the dough. The dough can be used to reveal an image that was “hidden within the (22) Filed: Mar 13, 2013 visible image printed on the substrate. The present invention also provides methods for making a Substrate with an image Publication Classification comprising transferable ink (e.g., cold-set web ink) and non transferable ink (e.g., sheet-fed offset ink) printed thereon, (51) Int. Cl. comprising using a sheet-fed offset press to print the image B4LM 5/025 (2006.01) onto the substrate. US 2014/0261026 A1 Sep. 18, 2014 COMPOSITIONS AND METHODS FOR substrate to the dough.
    [Show full text]
  • Silly Putty Lab Chemistry
    Name: _____________________________________ Partner____________________________________ Silly Putty Lab Chemistry: Elmer’s Glue is made up of polyvinyl acetate. The borax molecules react with glue molecules (relatively long polymer chains) to form new bonds between one borax and two glue molecules. The linking of two glue molecules via one borax molecule is called polymer cross-linking and it makes a bigger polymer molecule, which is now less liquid-like and more solid. The silly putty is held together by very weak intermolecular bonds that provide flexibility around the bond and rotation about the chain of the cross-linked polymer Directions: 1. Wear goggles. 2. Add one cup of glue and one cup of water to empty, clean plastic milk jug. 3. Mix thoroughly with popsicle stick. 4. Add 2-3 drops of food coloring. 5. Mix thoroughly with popsicle stick. 6. Add one cup of borax solution. 7. Mix thoroughly with popsicle stick. 8. Take silly putty out of jug and knead with hands Observations: 1. Observations of pulling the silly putty slowly: 2. Observations of pulling the silly putty quickly: Questions: 1. How do the physical properties of the glue/water mixture change as a result of adding the borax solution? 2. What would be the effect (your thoughts) of adding more borate solution? 3. Press the silly putty against your hand. Describe what happens. Don’t forget to clean up and wash your hands! 4. Try to roll the silly putty into a ball on the table. Describe what happens. 5. Stretch the silly putty slowly. How long can you stretch it? (cm) 6.
    [Show full text]
  • The Cambridge Polymer Group Silly Putty™ “Egg” Silly Putty™ Is a Registered Trademark of Binney and Smith
    CPGAN #026 Characterization of Silly Putty ©Cambridge Polymer Group, Inc. (2014). All rights reserved The Cambridge Polymer Group Silly Putty™ “Egg” Silly Putty™ is a registered trademark of Binney and Smith Introduction Silly Putty™ is a material that vividly demonstrates the richness and complexity of behavior that apparently simple materials can produce. When first handled, the initial impression given by Silly Putty™ is that of a plastic material. It can be easily kneaded, much like dough, into any shape desired. On short time scales these complex shapes appear to be permanent distortions of the material. However, upon longer inspection the material is seen to sag under its own weight although the putty does not flow indefinitely on a flat surface. If rolled into a ball and dropped, the material bounces like an elastic material. In addition, if a shock or impulsive load is applied to the putty, it will shatter. The behavior of this fascinating material gives insight into the rheological behavior of many materials. In rheological terms the experimenter is distorting the Silly Putty™ over a range of Deborah numbers. This non-dimensional parameter describes the ratio of the fluid relaxation time scale to that of the experimental time scale. A high Deborah number therefore corresponds to a fast experiment in which the load or impulse is applied over a very short time scale. Composition Silly Putty™ is a silicone material produced by Dow Corning® Corporation (under the name of Dow Corning® 3179 Dilatant Compound). According to Dow Corning the composition (by weight percentage) is as outlined in the table below.
    [Show full text]
  • Non-Newtonian​ ​Fluids How​ ​Slow​ ​Can​ ​You​ ​Go?
    Student Name: ____________________________ Date: ____________ ​ ​ ​ ​​ ​ ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​ ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​ Non-Newtonian Fluids ​ ​ How slow can you go? ​ ​ ​ ​ ​ ​ ​ ​ Background Have you heard of Sir Isaac Newton? Newton (1643-1727) is a famous scientist ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ and mathematician who discovered gravity! In addition, he created the three laws of ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ motion, contributed to creating calculus and predicted the shape of the earth. Newton also ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ did a lot of work with fluids. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Newton described how “normal” fluids, like water, behave. For example, these ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ fluids have a constant viscosity. For Newtonian fluids (or “normal” fluids), viscosity only ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ changes with temperature. Viscosity refers to a fluid’s resistance to flow. A highly ​ ​ ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ viscous substance flows slowly. For example, peanut butter is more viscous than water ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ because it is more difficult to pour. There are some fluids that do not have a constant ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ viscosity, and these are called non-Newtonian fluids. These fluids can be affected by ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ other factors besides temperature, such as stress. Applying
    [Show full text]
  • Crosslinked Polymers Based on Polyborosiloxanes: Synthesis and Properties
    Journal of Organometallic Chemistry 891 (2019) 72e77 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Crosslinked polymers based on polyborosiloxanes: Synthesis and properties * Fedor V. Drozdov a, , Sergey A. Milenin a, Vadim V. Gorodov a, Nina V. Demchenko a, Michail I. Buzin b, Aziz M. Muzafarov a, b a N.S. Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 117393, Moscow, Russian Federation b A.N. Nesmeyanov Institute of Organic Element Compounds, Russian Academy of Sciences, 119991, Moscow, Russian Federation article info abstract Article history: In current work, crosslinked polyborosiloxanes (PBS) were synthesized by the Piers-Rubinsztajn reaction Received 13 February 2019 based on polydimethylsiloxanes (PDMS) with terminal dimethylhydrosilyl or distributed methylhy- Received in revised form drosilyl groups in the polymer chain and boronic or phenyl boronic acid methyl esters. Depending on the 9 April 2019 number and location of the methylhydrosilyl groups in the initial PDMS, as well as on the functionality of Accepted 18 April 2019 the boronic component (2 for phenyl boronic and 3 for boronic acid methyl esters), PBS with different Available online 20 April 2019 macromolecular architecture and crosslinking density were obtained. PBS based on PDMS with terminal dimethylhydrosilyl groups, crosslinked with trimethyl borate, are soluble in common solvents such as THF, toluene and chloroform, whereas PBS based on PDMS with distributed methylhydrosilyl groups are non-soluble. Investigations in an environmental chamber showed hydrolytic stability of the PBS samples under experimental conditions, which was confirmed by gel permeation chromatography (GPC) and infrared spectroscopy (FTIR). In the investigations of thermal stability of obtained PBS, 5% weight loss was observed at 380e430 C.
    [Show full text]
  • Silly Putty Investigation
    Activity: Silly Putty Investigation Although not inventing in the strictest sense, this activity is a wonderful way to reinforce the scientific process and strategies for problem-solving as students experiment with silly putty recipes. Alignment with Materials State Goals White school glue Liquid laundry starch (one 32 oz bottle or smaller) State Goal 4 Measuring spoons of different sizes to share Listen and speak Cups and stirrers effectively in a variety Food coloring (optional) of situations Data chart (included) State Goal 7 Procedure Estimate, make and use measurements 1. Tell the Silly Putty story (on the next page) to your students. of objects, quantities and relationships and 2. Discuss! Ask your students if Silly Putty was a planned invention or determine acceptable if it happened accidentally. (In a sense it was both.) levels of accuracy 3. Then ask the class if they think they could make a Silly Putty through their State Goal 11 own testing. Sure they can! Just like Peter Hodgson, we have the basic Understand the ingredients needed and have played with this substance before, most processes of scientific likely. Now all we need to do is conduct some tests with the ingredients. inquiry and technologi- 4. Experiment using the glue and starch. Students can work with partners cal design to investigate or in small groups to create their own Silly Putty. Use the chart (included) questions, conduct to have students log their process and record the amounts of glue and experiments and solve starch used. problems 5. Remind them that collecting data is an essential part of the scientific process.
    [Show full text]