Proceedings of the 2005 IJCAI Workshop on Reasoning

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 2005 IJCAI Workshop on Reasoning Proceedings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games (http://home.earthlink.net/~dwaha/research/meetings/ijcai05-rrlcgw) David W. Aha, Héctor Muñoz-Avila, & Michael van Lent (Eds.) Edinburgh, Scotland 31 July 2005 Workshop Committee David W. Aha, Naval Research Laboratory (USA) Daniel Borrajo, Universidad Carlos III de Madrid (Spain) Michael Buro, University of Alberta (Canada) Pádraig Cunningham, Trinity College Dublin (Ireland) Dan Fu, Stottler-Henke Associates, Inc. (USA) Joahnnes Fürnkranz, TU Darmstadt (Germany) Joseph Giampapa, Carnegie Mellon University (USA) Héctor Muñoz-Avila, Lehigh University (USA) Alexander Nareyek, AI Center (Germany) Jeff Orkin, Monolith Productions (USA) Marc Ponsen, Lehigh University (USA) Pieter Spronck, Universiteit Maastricht (Netherlands) Michael van Lent, University of Southern California (USA) Ian Watson, University of Auckland (New Zealand) Aha, D.W., Muñoz-Avila, H., & van Lent, M. (Eds.) (2005). Reasoning, Representation, and Learning in Computer Games: Proceedings of the IJCAI Workshop (Technical Report AIC-05). Washington, DC: Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence. Preface These proceedings contain the papers presented at the Workshop on Reasoning, Representation, and Learning in Computer Games held at the 2005 International Joint Conference on Artificial Intelligence (IJCAI’05) in Edinburgh, Scotland on 31 July 2005. Our objective for holding this workshop was to encourage the study, development, integration, and evaluation of AI techniques on tasks from complex games. These challenging performance tasks are characterized by huge search spaces, uncertainty, opportunities for coordination/teaming, and (frequently) multi-agent adversarial conditions. We wanted to foster a dialogue among researchers in a variety of AI disciplines who seek to develop and test their theories on comprehensive intelligent agents that can function competently in virtual gaming worlds. We expected that this workshop would yield an understanding of (1) state-of-the-art approaches for performing well in complex gaming environments and (2) research issues that require additional attention. Games-related research extends back to the origins of artificial intelligence, which includes Turing’s proposed imitation game and Arthur Samuel’s work on checkers. Several notable achievements have been attained for the games of checkers, reversi, Scrabble, backgammon, and chess, among several others. Several AI journals are devoted to this topic, such as the International Computer Games Association Journal, the International Journal of Intelligent Games and Simulation, and the Journal of Game Development. Similarly, many conferences are likewise devoted to this topic, including the International Conference on Computers and Games, the European Conference on Simulation and AI in Computer Games, and the new Conference on Artificial Intelligence and Interactive Digital Entertainment. Naturally, IJCAI has also hosted workshops on AI research and games, including Entertainment and AI/Alife (IJCAI’95), Using Games as an Experimental Testbed for AI Research (IJCAI’97), and RoboCup (IJCAI’97, IJCAI’99). In contrast to previous IJCAI workshops on AI and games, this one has a relatively broad scope; it was not focused on a specific sub-topic (e.g., testbeds), game or game genre, or AI reasoning paradigm. Rather, we focused on topics of general interest to AI researchers (i.e., reasoning, representation, learning) to which many different types of AI approaches could apply. Thus, this workshop provided an opportunity to share and learn from a wide variety of research perspectives, which is not feasible for meetings held at conferences on AI sub-disciplines. Therefore, our agenda was quite broad. Our invited speakers included Ian Davis, who discussed applied research at Mad Doc Software, and Michael Genesereth/Nat Love, who reported on the first annual General Game Playing Competition (at AAAI’05) and their future plans. In addition to sessions of presentations and discussion periods on the workshop’s three themes (i.e., reasoning, representation, and learning), our fourth session focused on AI architectures. We also held a sizable poster session (i.e., perhaps we should have scheduled this as a 2-day event) and a wrap-up panel that generated visions for future research and development, including feasible and productive suggestions for dissertation topics. The Workshop Committee did a great job in providing suggestions and informative reviews for the submissions; thank you! Thanks also to Carlos Guestrin, ICCBR’05 Workshop Chair, for his assistance in helping us to hold and schedule this workshop. Finally, thanks to all the participants; we hope you found this to be useful! David W. Aha, Héctor Muñoz-Avila, & Michael van Lent Edinburgh, Scotland 31 July 2005 ii Table of Contents Title Page i Preface ii Table of Contents iii Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics 1 Peter J. Andersson Extending Reinforcement Learning to Provide Dynamic Game Balancing 7 Gustavo Andrade, Geber Ramalho, Hugo Santana, & Vincent Corruble Best-Response Learning of Team Behaviour in Quake III 13 Sander Bakkes, Pieter Spronck, & Eric Postma OASIS: An Open AI Standard Interface Specification to Support Reasoning, Representation and Learning in Computer Games 19 Clemens N. Berndt, Ian Watson, & Hans Guesgen Colored Trails: A Formalism for Investigating Decision-Making in Strategic Environments 25 Ya’akov Gal, Barbara J. Grosz, Sarit Kraus, Avi Pfeffer, & Stuart Shieber Unreal GOLOG Bots 31 Stefan Jacobs, Alexander Ferrein, & Gerhard Lakemeyer Knowledge Organization and Structural Credit Assignment 37 Joshua Jones & Ashok Goel Requirements for Resource Management Game AI 43 Steven de Jong, Pieter Spronck, & Nico Roos Path Planning in Triangulations 49 Marcelo Kallmann Interfacing the D’Artagnan Cognitive Architecture to the Urban Terror First-Person Shooter Game 55 Bharat Kondeti, Maheswar Nallacharu, Michael Youngblood, & Lawrence Holder Knowledge-Based Support-Vector Regression for Reinforcement Learning 61 Rich Maclin, Jude Shavlik, Trevor Walker, & Lisa Torrey Writing Stratagus-playing Agents in Concurrent ALisp 67 Bhaskara Marthi, Stuart Russell, & David Latham Defeating Novel Opponents in a Real-Time Strategy Game 72 Matthew Molineaux, David W. Aha, & Marc Ponsen Stratagus: An Open-Source Game Engine for Research in Real-Time Strategy Games 78 Marc J.V. Ponsen, Stephen Lee-Urban, Héctor Muñoz-Avila, David W. Aha, & Matthew Molineaux Towards Integrating AI Story Controllers and Game Engines: Reconciling World State Representations 84 Mark O. Riedl An Intelligent Decision Module based on CBR for C-evo 90 Rubén Sánchez-Pelegrín & Belén Díaz-Agudo iii A Model for Reliable Adaptive Game Intelligence 95 Pieter Spronck Knowledge-Intensive Similarity-based Opponent Modeling 101 Timo Steffens Using Model-Based Reflection to Guide Reinforcement Learning 107 Patrick Ulam, Ashok Goel, Joshua Jones, & William Murdock The Design Space of Control Options for AIs in Computer Games 113 Robert E. Wray, Michael van Lent, Jonathan Beard, & Paul Brobst A Scheme for Creating Digital Entertainment with Substance 119 Georgios N. Yannakakis & John Hallam Author Index 125 iv Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics Peter J. Andersson Department of Computer and Information Science, Linköping university [email protected] Abstract courages focus on the high-level control of the robot, but since there are no wrappers to high-level AI frameworks, it The gaming industry has started to look for so- does not encourage reuse of existing AI techniques. By de- lutions in the Artificial intelligence (AI) research veloping a high-level interface between Player-Stage and AI community and work has begun with common frameworks, we will also allow AI researchers to take advan- standards for integration. At the same time, few tage of the Player-Stage project. robotic systems in development use already de- veloped AI frameworks and technologies. In this The Robocup initiative [Kitano et al., 1997] uses both ac- article, we present the development and evalua- tual robotic hardware and simulation in competition. Yet, tion of the Hazard framework that has been used there exists no common interface for using simulation league to rapidly create simulations for development of AIs with robotic league robots. This can mean that the sim- cognitive systems. Implementations include for ulation interface is unintuitive for actual robotics, or that AIs example a dialogue system that transparently can developed with the simulation are not usable with actual ro- connect to either an Unmanned Aerial Vehicle bots. In either case it is a problem worth investigating. (UAV) or a simulated counterpart. Hazard is [ found suitable for developing simulations support- The WITAS Unmanned Aerial Vehicle project Doherty ] ing high-level AI development and we identify and et al., 2000 uses several simulators in their research, both propose a solution to the factors that make the for hardware-in-the-loop simulation of the helicopter hard- framework unsuitable for lower level robotic spe- ware and for development of dialogue interaction with an ac- cific tasks such as event/chronicle recognition. tual UAV. A middleware translating actions and events from WITAS protocol to other protocols would allow experimen- tation with for example SOAR [Laird et al., 1987] as a
Recommended publications
  • An Embeddable, High-Performance Scripting Language and Its Applications
    Lua an embeddable, high-performance scripting language and its applications Hisham Muhammad [email protected] PUC-Rio, Rio de Janeiro, Brazil IntroductionsIntroductions ● Hisham Muhammad ● PUC-Rio – University in Rio de Janeiro, Brazil ● LabLua research laboratory – founded by Roberto Ierusalimschy, Lua's chief architect ● lead developer of LuaRocks – Lua's package manager ● other open source projects: – GoboLinux, htop process monitor WhatWhat wewe willwill covercover todaytoday ● The Lua programming language – what's cool about it – how to make good uses of it ● Real-world case study – an M2M gateway and energy analytics system – making a production system highly adaptable ● Other high-profile uses of Lua – from Adobe and Angry Birds to World of Warcraft and Wikipedia Lua?Lua? ● ...is what we tend to call a "scripting language" – dynamically-typed, bytecode-compiled, garbage-collected – like Perl, Python, PHP, Ruby, JavaScript... ● What sets Lua apart? – Extremely portable: pure ANSI C – Very small: embeddable, about 180 kiB – Great for both embedded systems and for embedding into applications LuaLua isis fullyfully featuredfeatured ● All you expect from the core of a modern language – First-class functions (proper closures with lexical scoping) – Coroutines for concurrency management (also called "fibers" elsewhere) – Meta-programming mechanisms ● object-oriented ● functional programming ● procedural, "quick scripts" ToTo getget licensinglicensing outout ofof thethe wayway ● MIT License ● You are free to use it anywhere ● Free software
    [Show full text]
  • Index Images Download 2006 News Crack Serial Warez Full 12 Contact
    index images download 2006 news crack serial warez full 12 contact about search spacer privacy 11 logo blog new 10 cgi-bin faq rss home img default 2005 products sitemap archives 1 09 links 01 08 06 2 07 login articles support 05 keygen article 04 03 help events archive 02 register en forum software downloads 3 security 13 category 4 content 14 main 15 press media templates services icons resources info profile 16 2004 18 docs contactus files features html 20 21 5 22 page 6 misc 19 partners 24 terms 2007 23 17 i 27 top 26 9 legal 30 banners xml 29 28 7 tools projects 25 0 user feed themes linux forums jobs business 8 video email books banner reviews view graphics research feedback pdf print ads modules 2003 company blank pub games copyright common site comments people aboutus product sports logos buttons english story image uploads 31 subscribe blogs atom gallery newsletter stats careers music pages publications technology calendar stories photos papers community data history arrow submit www s web library wiki header education go internet b in advertise spam a nav mail users Images members topics disclaimer store clear feeds c awards 2002 Default general pics dir signup solutions map News public doc de weblog index2 shop contacts fr homepage travel button pixel list viewtopic documents overview tips adclick contact_us movies wp-content catalog us p staff hardware wireless global screenshots apps online version directory mobile other advertising tech welcome admin t policy faqs link 2001 training releases space member static join health
    [Show full text]
  • Procedural Content Generation for Computer Games
    Procedural Content Generation for Computer Games Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yinxuan Shi, B.S. Graduate Program in Computer Science and Engineering The Ohio State University 2016 Dissertation Committee: Dr. Roger Crawfis, Advisor Dr. Yusu Wang Dr. Eric Fosler-Lussier Dr. Neelam Soundarajan Copyrighted by Yinxuan Shi 2016 Abstract Procedural Content Generation (PCG) is no new concept for the gaming industry. From early games like Rogue (1980) and The Sentinel (1986) to more recent games like Diablo III (2012) and Path of Exile (2013), PCG is heavily used in dungeons, quests, mini bosses and even storyline creation. The advantages PCG offers is not just limited to empowering game designers with fast content prototype/creation, but can also provide in-game adaptation to player’s response and small memory footprint. While there is much research on PCG, few results contribute to the evaluation: Does the generated content makes the game more interesting/fun? To answer this question, we examine two applications of PCG. One is level creation and another is visual content creation such as crowds. For level creation, the existing techniques mainly focus on map/terrain generation. In games where the player either avoids or engages in combat against hostile targets, the player’s experience involves other aspects such as enemy and resource placement and navigation. The problem of creating a fun level can be formulated into searching for a good combination of these aspects. This leads to two problems: 1.
    [Show full text]
  • Development of an Intelligent Wheelchair 3D Simulator/Visualizer
    Faculdade de Engenharia da Universidade do Porto Development of an Intelligent Wheelchair 3D Simulator/Visualizer Maria João Tavares Barbosa Projecto de Dissertação realizado no âmbito do Mestrado Integrado em Engenharia Informática e Computação Áreas de Foco <Simulação Robótica/Motores de Jogos /Cadeiras de Rodas Inteligentes/Interacção e Multimédia> Orientador: Luís Paulo Gonçalves dos Reis (Professor Doutor) Co-orientador: Rui Pedro Amaral Rodrigues (Professor Doutor) Junho de 2011 © Maria João Tavares Barbosa, 2011 Development of an Intelligent Wheelchair 3D Simulator/Visualizer Maria João Tavares Barbosa Mestrado Integrado em Engenharia Informática e Computação Aprovado em provas públicas pelo Júri: Presidente: Pedro Manuel Henriques da Cunha Abreu (Professor Doutor) Vogal Externo: Artur José Carneiro Pereira (Professor Doutor) Orientador: Luís Paulo Gonçalves dos Reis (Professor Doutor) ____________________________________________________ 19 de Julho de 2011 Resumo Com o aumento da esperança média de vida da população dos países mais desenvolvidos, manter e aumentar a qualidade de vida das mesmas é agora uma tarefa essencial. Tal como, o aumento da qualidade de vida das pessoas com algum tipo de deficiência física ou mental que as incapacite a nível motor, pois estas pessoas têm o mesmo direito que as restantes à própria independência e autonomia. Antes de mais é necessário apresentar o projecto que se pretende desenvolver como dissertação de mestrado, cujo tema é “Development of an Intelligent Wheelchair Simulator/Visualizer”. Esta proposta de tese é uma investigação científica em torno de cadeiras de rodas inteligentes, ou seja, pretende focar principalmente as questões de independência e autonomia relacionadas com a capacidade motora. Cadeiras de rodas inteligentes são a solução considerada para permitir menor dependência de utilizadores de cadeiras de rodas.
    [Show full text]
  • Free and Open Source Software
    Free and open source software Copyleft ·Events and Awards ·Free software ·Free Software Definition ·Gratis versus General Libre ·List of free and open source software packages ·Open-source software Operating system AROS ·BSD ·Darwin ·FreeDOS ·GNU ·Haiku ·Inferno ·Linux ·Mach ·MINIX ·OpenSolaris ·Sym families bian ·Plan 9 ·ReactOS Eclipse ·Free Development Pascal ·GCC ·Java ·LLVM ·Lua ·NetBeans ·Open64 ·Perl ·PHP ·Python ·ROSE ·Ruby ·Tcl History GNU ·Haiku ·Linux ·Mozilla (Application Suite ·Firefox ·Thunderbird ) Apache Software Foundation ·Blender Foundation ·Eclipse Foundation ·freedesktop.org ·Free Software Foundation (Europe ·India ·Latin America ) ·FSMI ·GNOME Foundation ·GNU Project ·Google Code ·KDE e.V. ·Linux Organizations Foundation ·Mozilla Foundation ·Open Source Geospatial Foundation ·Open Source Initiative ·SourceForge ·Symbian Foundation ·Xiph.Org Foundation ·XMPP Standards Foundation ·X.Org Foundation Apache ·Artistic ·BSD ·GNU GPL ·GNU LGPL ·ISC ·MIT ·MPL ·Ms-PL/RL ·zlib ·FSF approved Licences licenses License standards Open Source Definition ·The Free Software Definition ·Debian Free Software Guidelines Binary blob ·Digital rights management ·Graphics hardware compatibility ·License proliferation ·Mozilla software rebranding ·Proprietary software ·SCO-Linux Challenges controversies ·Security ·Software patents ·Hardware restrictions ·Trusted Computing ·Viral license Alternative terms ·Community ·Linux distribution ·Forking ·Movement ·Microsoft Open Other topics Specification Promise ·Revolution OS ·Comparison with closed
    [Show full text]
  • 'Game' Portability
    A Survey of ‘Game’ Portability Ahmed BinSubaih, Steve Maddock, and Daniela Romano Department of Computer Science University of Sheffield Regent Court, 211 Portobello Street, Sheffield, U.K. +44(0) 114 2221800 {A.BinSubaih, S.Maddock, D.Romano}@dcs.shef.ac.uk Abstract. Many games today are developed using game engines. This development approach supports various aspects of portability. For example games can be ported from one platform to another and assets can be imported into different engines. The portability aspect that requires further examination is the complexity involved in porting a 'game' between game engines. The game elements that need to be made portable are the game logic, the object model, and the game state, which together represent the game's brain. We collectively refer to these as the game factor, or G-factor. This work presents the findings of a survey of 40 game engines to show the techniques they provide for creating the G-factor elements and discusses how these techniques affect G-factor portability. We also present a survey of 30 projects that have used game engines to show how they set the G-factor. Keywords: game development, portability, game engines. 1 Introduction The shift in game development from developing games from scratch to using game engines was first introduced by Quake and marked the advent of the game- independent game engine development approach (Lewis & Jacobson, 2002). In this approach the game engine became “the collection of modules of simulation code that do not directly specify the game’s behaviour (game logic) or game’s environment (level data)” (Wang et al, 2003).
    [Show full text]
  • Build Your Own Ambilight - 11
    Install Linux on an External Disk • eMMC Recovery • GPIO Shutdown Year Two Issue #16 Apr 2015 ODROIDMagazine KALIKALI LinuxLinuxODROID’sODROID’s advancedadvanced penetrationpenetration testingtesting distribution distribution Build • Automate your house with OpenHAB your • ODROID-C1 triple boot own • Android Dev: Low Memory Killer Daemon Ambilight • Play the original Warcraft series on Linux What we stand for. We strive to symbolize the edge of technology, future, youth, humanity, and engineering. Our philosophy is based on Developers. And our efforts to keep close relationships with developers around the world. For that, you can always count on having the quality and sophistication that is the hallmark of our products. Simple, modern and distinctive. So you can have the best to accomplish everything you can dream of. We are now shipping the ODROID U3 devices to EU countries! Come and visit our online store to shop! Address: Max-Pollin-Straße 1 85104 Pförring Germany Telephone & Fax phone : +49 (0) 8403 / 920-920 email : [email protected] Our ODROID products can be found at http://bit.ly/1tXPXwe EDITORIAL ali Linux is one of our favorite distributions, as it in- cludes a wide variety of security penetration testing Ksoftware. Offensive Security, the developers of Kali, are ODROID fans, and have released a version for every model so far. Kali on the ODROID can be the basis for a lucrative busi- ness, offering something that every company needs: peace of mind. Learn how to install Kali Linux on the ODROID-C1,and you may be able to offer affordable security testing with minimum startup costs. Also featured is another amazing technical guide by Venkat showing us how to make our homes smarter using OpenHAB, as well as a tutorial by Marian on Ambilight, which makes it more fun to watch videos and listen to music.
    [Show full text]
  • Cs 480/680: Game Engine Programming Introduction
    CS 480/680: GAME ENGINE PROGRAMMING INTRODUCTION 1/10/2013 Santiago Ontañón [email protected] https://www.cs.drexel.edu/~santi/teaching/2013/CS480-680/intro.html CS 480/680 • Focus: • basic and advanced techniques for game engine programming. • Topics: • What is a game engine? • The game loop • 2D/3D Graphics • Sound • Physics simulation • Collision detection • Networking • Game AI Outline • Course Structure • Project • Schedule • Papers • Introduction to Game Engine Programming • Group Formation / Paper Assignment Outline • Course Structure • Project • Schedule • Papers • Introduction to Game Engine Programming • Group Formation / Paper Assignment Course Structure: Evaluation • Undergraduate students: • Game Engine Project (85%) • Class attendance and participation (15%) • Graduate students: • Game Engine Project (70%) • One paper presentation in class (20%) • Class attendance and participation (10%) • Online students: • Participation will be measured by activity in the class discussion board • Presentations will be delivered electronically (via a powerpoint/ keynote presentation with audio, youtube video, etc.) Course Structure • Every week (3 hour class): 1 hour Lecture Student presentations 1 hour Project Progress Reports 1 hour Time to work on your projects Course Structure • Every week (3 hour class): Also: If you find a new game that uses an original concept in terms of game engine programming (or one that you’d 1 hour Lecture like to learn how it’s programmed), please bring it up in class, or send me a link to it before class,
    [Show full text]
  • UCT for Tactical Assault Planning in Real-Time Strategy Games
    UCT for Tactical Assault Planning in Real-Time Strategy Games Radha-Krishna Balla and Alan Fern School of EECS, Oregon State University Corvallis, OR, 97331, USA {balla, afern}@eecs.oregonstate.edu Abstract effective tactical assault plans, in order to most effectively exploit limited resources to optimize a battle objective. We consider the problem of tactical assault plan- In this paper, we focus on automated planning for the ning in real-time strategy games where a team of RTS tactical assault problem. In particular, the goal is to friendly agents must launch an assault on an ene- develop an action selection mechanism that can control my. This problem offers many challenges including groups of military units to conduct effective offensive as- a highly dynamic and uncertain environment, mul- saults on a specified set of enemy forces. This type of as- tiple agents, durative actions, numeric attributes, sault is common after a player has built up forces and ga- and different optimization objectives. While the thered information about where enemy troops are located. dynamics of this problem are quite complex, it is Here the effectiveness of an assault is measured by an ob- often possible to provide or learn a coarse simula- jective function, perhaps specified by a user, which might tion-based model of a tactical domain, which ask the planner to minimize the time required to defeat the makes Monte-Carlo planning an attractive ap- enemy or to destroy the enemy while maximizing the re- proach. In this paper, we investigate the use of maining health of friendly units at the end of the battle.
    [Show full text]
  • Online Build-Order Optimization for Real-Time Strategy Agents Using Multi-Objective Evolutionary Algorithms Jason M
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-14-2014 Online Build-Order Optimization for Real-Time Strategy Agents Using Multi-Objective Evolutionary Algorithms Jason M. Blackford Follow this and additional works at: https://scholar.afit.edu/etd Recommended Citation Blackford, Jason M., "Online Build-Order Optimization for Real-Time Strategy Agents Using Multi-Objective Evolutionary Algorithms" (2014). Theses and Dissertations. 589. https://scholar.afit.edu/etd/589 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. ONLINE BUILD-ORDER OPTIMIZATION FOR REAL-TIME STRATEGY AGENTS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS THESIS Jason M. Blackford, Captain, USAF AFIT-ENG-14-M-13 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-14-M-13 ONLINE BUILD-ORDER OPTIMIZATION FOR REAL-TIME STRATEGY AGENTS USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Jason M.
    [Show full text]
  • Curriculum Vitae Stephen M
    Stephen M. Lee-Urban 1475 Mecaslin St. NW [email protected] Atlanta, GA 30309 610-217-6459 Curriculum Vitae Stephen M. Lee-Urban Education Ph.D. Computer Science Diss.: Hierarchical Planning Knowledge for Refining Partial-Order Plans Lehigh University Advisor: Dr. Héctor Muñoz-Avila 2012 M.S. Computer Science Thesis: TMK Models to HTNs: Translating Process Models into Hierarchical Lehigh University Task Networks 2005 B.S. Computer Engineering Cumulative G.P.A.: 3.87 / 4.0 Lehigh University Participant in the “Engineering Co-Op” program, a selective program that 2003 provides eight months of paid, full-time work experience Professional Experience Research Scientist II Fundamental and applied research in several domains, including spectrum Georgia Tech Research Institute (communications and radar), cyber operations, and process visualization Fall 2013–present Emphasis on creating, implementing, and evaluating cognitive systems Postdoctoral Fellow, Primarily researched narrative computing – creating computational systems that Research Scientist understand and use “narrative,” a fundamental part of human cognition Georgia Institute of Technology Techniques applied include plan repair, genetic algorithms, and crowd-sourcing Winter 2011–Fall 2013 Responsibilities beyond research include project management and mentoring Technical Lead Technical lead on AI project contracted for Walt Disney Imagineering CaseWorks LLC., through A non-disclosure agreement limits my ability to discuss details Georgia Institute of Technology (for
    [Show full text]
  • An Artificial Intelligence System to Help the Player of Real
    SBC - Proceedings of SBGames 2010 Computing Track - Full Papers An Artificial Intelligence system to help the player of Real-Time Strategy games Renato L. de Freitas Cunha Luiz Chaimowicz Departamento de Cienciaˆ da Computac¸ao˜ Instituto de Cienciasˆ Exatas Universidade Federal de Minas Gerais Abstract 2 Related work Real Time Strategy (RTS) games pose a series of challenges to RTS Games are very good testbeds for Artificial Intelligence (AI) players and AI Agents due to its dynamical, distributed and multi- algorithms. As discussed in [Buro 2004], the characteristics of RTS objective fashion. In this paper, we propose and develop an Artificial Games require the development of algorithms that deal with temporal Intelligence (AI) system that helps the player during the game, giving and spacial reasoning, uncertainty planning, learning, and opponent him tactical and strategical tips about the best actions to be taken modeling. Moreover, the algorithms have to cope with the dynamics according to the current game state with the objective of improving and time constraints of the RTS games. Thus, in the last few years, the player’s performance. We describe the main features of the several works have explored different aspects of AI in RTS Games. system, its implementation and perform experiments using a real For example, the use of traditional planning approaches such as game to evaluate its effectiveness. PDDL, SHOP and HTN [Alcazar´ et al. 2008; Lee-Urban et al. 2007; Hoang et al. 2005] for strategic planning, the implementation of Keywords:: Real-time Strategy, Artificial Intelligence evolutionary techniques for generating tactics [Ponsen et al. 2006], the use of multi-agent potential fields for path planning and unit control [Hagelback¨ and Johansson 2008] and the use of different Author’s Contact: learning approaches for opponent modeling and strategy prediction [Baumgarten et al.
    [Show full text]