Nematode-Borne Viruses of Grapevine, Their Epidemiology and Control (1)

Total Page:16

File Type:pdf, Size:1020Kb

Nematode-Borne Viruses of Grapevine, Their Epidemiology and Control (1) Nematol. medit. (1978), 6: 1·27. I stituto di Patologia vegetale, Universita degli Studi 70126 Bari, Italy NEMATODE-BORNE VIRUSES OF GRAPEVINE, THEIR EPIDEMIOLOGY AND CONTROL (1) by GIOVANNI P. MARTELLI INTRODUCTION The discovery of a nematode vector for the fanleaf disease of grapevine (Hewitt et al., 1958) together with the demonstration that the viral agent was mechanically transmissible to herbaceous hosts (Cadman et aI., 1960) greatly stimulated investigations on viruses of cultivated Vi tis. Consequently, in little less than two decades many different viruses have been manually transmitted from diseased vines in several grape-growing countries. By 1976 there were 24 viruses recorded from grapevine (Martelli, 1978) half of which are either recognized or putative members of the nepovirus group (Table I). At present, nepoviruses are the only nematode-borne pathogens known to infect grapevine in which they may cause destructive diseases. Although occurring in the major viticultural areas of the world, not all the viruses are equally widespread. Thus, with the exception of grapevine fanleaf virus (GFV) which is ubiquitous (Hewitt, 1968) and uniquely specialized for having no natural host other than grapevine, other viruses like arabis mosaic (AMV), tomato black (1) The present review is largely based on an invitation paper given at the Conference on «Plant Disease Epidemiology and Dispersal of Plant Para­ sites », London, 14-18 December, 1977. Grateful thanks are espressed to Drs. T. J. W. Alphey, H. F. Dias, R. I. B. Francki, F. Lamberti, A. F. Murant, D. C. Ramsdell, M. Rudel and J. K. Uyemoto for kindly providing unpublished data or manuscripts prior to publication. I am also much endebted to Dr. C. E. Taylor for reviewing the manuscript at a very short notice and for making many helpful suggestions. -1- ring (TBRV), raspberry ringspot (RRV), strawberry latent ringspot (SLRV), grapevine chrome mosaic (GCMV), and artichoke Italian latent (AILV) are restricted to European countries (Table I). These will be referred to as European nepoviruses as opposed to American nepoviruses, i.e. tomato ringspot (TomRSV) tobacco rings pot (TRSV) and peach rosette mosaic (PRSV) which seem confined largely to North America. Besides GFV, grapevine Bulgarian latent (GBLV) is the only grapevine nepovirus recorded, so far, in both Europe and North America. Various aspects of the biology and ecology of nematode-transmit­ ted viruses have been reviewed in recent times in articles which also contain much information on those infecting grapevine (Murant, 1970; Taylor, 1971, 1972; Vuittenez et al., 1972; Weischer, 1973, 1975; Taylor and Robertson, 1975; Harrison, 1977; Lamberti, 1978). THE DISEASES Symptomatology Most European nepoviruses induce diseases which are charac­ terized by a large and rather confusing array of symptoms. Field syndromes are often the same whether caused by anyone virus or by an association of different viruses, so that it is virtually impossible to distinguish disorders evoked by specific entities on the basis of symptomatology alone. Variability in symptom expression depends on the host (Vitis species or cultivar) and, to a greater extent, on the virus strain. In fact, severa) nepoviruses e.g. GFV (Hewitt et al., 1962), GCMV (Martelli et al., 1965), AMV (Stellmach, 1970a) and TomRSV (Gooding and Hewitt, 1962; Gilmer and Uyemoto, 1972) possess «distorting» and «yellow}} strains or isolates which mayor, more commonly, may not be serologically distinguishable but are liable to induce strikingly different syndromes. Thus for example, « distorting}} strains are associated with malformations of leaves and canes sometimes accompanied by chlorotic mottles, whereas «yellow}} strains induce bright chrome-yellow discolourations of the foliage without much deformation. Reduced vigour and low yield may be associated with infection by either type of strains. -2- Among American nepoviruses, TRSV and TomRSV cause serious decline of Vitis vinifera L. cultivars and their hybrids, whereas PRMV is a major pathogen of Vitis labrusca. In all cases symptoms consist largely of delayed spring growth, mottling, malformation and rolling of the leaves, severe stunting and poor fruit set. Ultimately, affected vines may die (Gilmer et al., 1970; Ramsdell and Myers, 1974; Uye­ moto, 1975; Dias and Cation, 1976; Dias, 1977a). However, the serologically distinct yellow vein strain of TomRSV, the causal agent of grapevine decline in Northern U.S.A. and Canada, seriously affects the yield of Californian grape cultivars without hampering the growth of diseased plants which, surprisingly, appear more vigorous than healthy ones (Gooding and Hewitt, 1962). Whether or not symptoms like leaf enations and wood pitting may be associated with infection by nepoviruses is still controversial. As discussed in previous reviews (Hewitt, 1968, 1973; Martelli, 1975b; Goheen, 1977), both types of symptoms rather than characterizing specific diseases may represent host responses to more than one viral pathogen. It should be borne in mind, however, that GFV very often has been found associated with enations in Europe and California (Hewitt, 1968; Graniti and Martelli, 1970a), whereas GFV, TomRSV and TRSV have been recovered from stem-pitted vines in several countries (Hewitt et al., 1970; Graniti and Martelli, 1970b; Uyemoto, 1975). Interestingly, field spread of stem pitting is associated with the presence of Xiphinema index in Southern Italy (Graniti and Mar­ telli, 1970b) and France (Boubals, 1976a). Economic importance Nepoviruses are detrimental to the grape industry in many ways. They may cause: a) progressive decline and death of the vines; b) low quantity and quality of yield; c) shortening of the productive life of the vineyard; d) low proportion of graft take; e) reduced rooting ability of propagating material; f) decreased resistance to adverse climatic conditions (for details see: Brlickbauer, 1962; Hewitt, 1968; Stellmach, 1970b; Gilmer et al., 1970; Ramsdell and Myers, 1978). Information on crop losses due to nepoviruses is fragmentary for no systematic assessment has been carried out in any country on a sufficiently large scale. Besides, most of the available data for European nepoviruses refer only to GFV and its strains. Thus, -3 Table I - Nematode-borne viruses of grapevine, their vectors and geographical distribution. References Vir u s Vector Geographical distribution First First Sap - transmission Nematode transmission A) Recognized nepoviruses 1. Grapevine fanleaf Distorting strains x. index Worldwide Cadman et al., 1960 Hewitt et al., 1958 X. italiae Cohn et al., 1970 Yellow mosaic strain X. index Worldwide Cadman et al., 1960 Hewitt et ai., 1962 Vein banding strain X. index Worldwide Hewitt et al., 1962 Alfaro and Goheen, 1974 2. Arabis mosaic Type strain X. diversicaudatum France, Germany, Bercks and Stellmach, Vuittenez et al., 1976 Hungary 1966 3. Tomato blackring English strain L. attenuatus Germany Stellmach and Bercks, Rudel, 1977 1963 4. Raspberry rings pot Bercks' isolate unknown Germany Bercks, 1968 Palatinate strain unknown Germany Vuittenez et al., 1970 5. Strawberry latent ring­ spot Type strain unknown Germany Vuittenez et al., 1970 6. Grapevine chrome mo- saic unknown Hungary Martelli et al., 1965 7. Artichoke Italian la- tent unknown Bulgaria Jankulova et al., 1978 8. Peach rosette mosaic X. americanum U.SA. (Michigan), Dias, 1968 Dias, 1975 Canada 9. Tomato ringspot Yellow vein strain x. americanum U.S.A. (California) Gooding and Hewitt, Teliz et al., 1966 Type strain unknown U.S.A. (New York) 1962 Canada, Yugoslavia (?) Gilmer and Uyemoto, 1972 10. Tobacco ringspot unknown U.S.A. (New York) Gilmer et al., 1970 B) Possible nepoviruses 11. Grapevine Bulgarian latent Type strain unknown Bulgaria Martelli et al., 1977 New York strain unknown U.S.A. (New York) Uyemoto et al., 1977 12. Grapevine CM-112 * unknown Portugal Ferreira and De Sequeira, 1972 * Recent findings indicate that this virus is serologically related to Grapevine Bulgarian latent virus (R. Hull, per­ sonal communication) Vuittenez (1970) reckons that a 50% reduction in weight is the average crop loss caused by GFV to susceptible V. vinifera cultivars in European countries. Such losses are aggravated by the poor quality of clusters which are often unmarketable [see also review by Bovey, (1970) and recent reports by Legin (1972) and Prota and Garau (1978)]. Some American nepoviruses are even more destructive to cultivars and interspecific hybrids of V. vinifera, possibly because of the greater susceptibility of these hosts. For instance, Californian vines infected by the yellow vein strain of TomRSV are reported to be virtually unfruitful (Gooding and Hewitt, 1962), and in Canada, Dias (1977a) has recently recorded crop losses ranging from 76 to 95% in a French hybrid infected by the type strain of TomRSV. THE VIRUSES Nepoviruses have isodiametric particles about 30 nm in diameter which sediment as several components when centrifuged, and possess two species of functional RNA, each contained in a specific particle. As a group, these viruses have been extensively reviewed (Martelli, 1975b; Harrison and Murant, 1977; Francki and Hatta, 1977). Recent studies have established that: (i) GCMV, GFV and PRMV have properties typical of members of the nepovirus group (Martelli and Quacquarelli, 1972; Martelli et al., 1977; Quacquarelli et al., 1976, 1978; H. F. Dias, personal communication); (ii) GFV isolates, whatever their geographical origin, have similar physico-chemical properties
Recommended publications
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Diagnostic of Grapevine Fanleaf Virus (GFLV) on Durres District, Albania
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 6 Issue 3, March - 2019 Diagnostic of Grapevine fanleaf virus (GFLV) on Durres district, Albania Dhurata Shehu, Dritan Sadikaj, Thanas Ruci Agriculture University of Tirana Faculty of Agriculture and the Environment Plant Protection Department Abstract—Grapevine fanleaf virus (GFLV) is the yellowing. The slabs have the closest nodes and have viral disease of the most known and widespread rickety growth. Production and quality of grapes are in the world. Grapevine fanleaf virus (GFLV) is a always on the decrease. Healing from this virus of plant pathogenic virus of the family Secoviridae. It these vines is almost impossible, in addition to helping infects grapevines, causing chlorosis of the for a better growth through abundant fertilizers, scarce leaves and lowering the fruit quality. The study soil work, good protection from parasites [1]. The virus was conducted during 2018 in some areas of the has many stems and causes various symptoms with Durres district, in the Rrashbull, Synej, Arapaj, high intensity [5]. Grapevine fanleaf virus (GFLV) is a Ramanat area. The cultivares taken in the study plant pathogenic virus of the family Secoviridae. It are: Cardinal, Sheshi i bardhe, Shesh i zi, Moscato infects grapevines, causing chlorosis of the leaves D’ Amburgo, Regina, Tajke e kuqe, Merlot, and lowering the fruit quality. Because of its effect on Trebbiano toskano, Italia, Afuzali, Perlet which are grape yield, GFLV is a pathogen of commercial widespread in this area. The samples were importance. It is transmitted via a nematode vector, brought to the lab and tested with the Das Elisa Xiphinema index.
    [Show full text]
  • Grapevine Fanleaf Virus: Biology, Biotechnology and Resistance
    GRAPEVINE FANLEAF VIRUS: BIOLOGY, BIOTECHNOLOGY AND RESISTANCE A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by John Wesley Gottula May 2014 © 2014 John Wesley Gottula GRAPEVINE FANLEAF VIRUS: BIOLOGY, BIOTECHNOLOGY AND RESISTANCE John Wesley Gottula, Ph. D. Cornell University 2014 Grapevine fanleaf virus (GFLV) causes fanleaf degeneration of grapevines. GFLV is present in most grape growing regions and has a bipartite RNA genome. The three goals of this research were to (1) advance our understanding of GFLV biology through studies on its satellite RNA, (2) engineer GFLV into a viral vector for grapevine functional genomics, and (3) discover a source of resistance to GFLV. This author addressed GFLV biology by studying the least understood aspect of GFLV: its satellite RNA. This author sequenced a new GFLV satellite RNA variant and compared it with other satellite RNA sequences. Forensic tracking of the satellite RNA revealed that it originated from an ancestral nepovirus and was likely introduced from Europe into North America. Greenhouse experiments showed that the GFLV satellite RNA has commensal relationship with its helper virus on a herbaceous host. This author engineered GFLV into a biotechnology tool by cloning infectious GFLV genomic cDNAs into binary vectors, with or without further modifications, and using Agrobacterium tumefaciens delivery to infect Nicotiana benthamiana. Tagging GFLV with fluorescent proteins allowed tracking of the virus within N. benthamiana and Chenopodium quinoa tissues, and imbuing GFLV with partial plant gene sequences proved the concept that endogenous plant genes can be knocked down.
    [Show full text]
  • Detection of Multiple Variants of Grapevine
    Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes Shahinez Garcia, Jean-Michel Hily, Veronique Komar, Claude Gertz, Gerard Demangeat, Olivier Lemaire, Emmanuelle Vigne To cite this version: Shahinez Garcia, Jean-Michel Hily, Veronique Komar, Claude Gertz, Gerard Demangeat, et al.. Detec- tion of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes. Viruses, MDPI, 2019, 11 (12), pp.1139. 10.3390/v11121139. hal-03017540 HAL Id: hal-03017540 https://hal.archives-ouvertes.fr/hal-03017540 Submitted on 20 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. viruses Article Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes 1, 1,2, 1 1 Shahinez Garcia y, Jean-Michel Hily y ,Véronique Komar , Claude Gertz , Gérard Demangeat 1, Olivier Lemaire 1 and Emmanuelle Vigne 1,* 1 Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; [email protected] (S.G.); [email protected] (J.-M.H.); [email protected] (V.K.); [email protected] (C.G.); [email protected] (G.D.); [email protected] (O.L.) 2 Institut Français de la Vigne et du Vin (IFV), 30240 Le Grau-Du-Roi, France * Correspondence: [email protected]; Tel.: +33-389-224-955 These authors contributed equally to the work.
    [Show full text]
  • Effect of Fungicide Farmayod on Agrotechnical and Technological Indicators of Grapevine, on Viral Diseases and Oidium
    E3S Web of Conferences 273, 01020 (2021) https://doi.org/10.1051/e3sconf/202127301020 INTERAGROMASH 2021 Effect of fungicide farmayod on agrotechnical and technological indicators of grapevine, on viral diseases and oidium Nadezda Sirotkina1* 1All-Russian Research Institute named after Ya.I. Potapenko for Viticulture and Winemaking – Branch of Federal Rostov Agricultural Research Center, 346421, Novocherkassk, Russia Abstract. The paper presents the study on the effect of Farmayod’s GR (100 g/l of iodine) spraying on vineyards of Cabernet Sauvignon and Baklanovsky varieties on the degree of viral and oidium prevalence as well as on agrobiological and technological indicators. According to the aggregate agrobiological and technological indicators, the best results on Cabernet Sauvignon variety were obtained when the drug was used at a concentration of 0.06 %. On the Baklanovsky variety the best indicators were obtained at a drug concentration of 0.04%. Testing of plant samples for the presence of Grapevine fan leaf virus, Arabis mosaic virus and Oidium tuckeri showed that after two years of applying the drug, the prevalence of infected plants (P, %) with Grapevine fanleaf virus on the Cabernet Sauvignon cultivar varied from 0% (fungicide concentration 0.04 and 0.05 %) to 0.8 % (0.06 %) and 2.65 % (control). For Baklanovsky variety: Grapevine fanleaf virus - concentration 0.04 % - 1.8; 0.05 % - 0.4; 0.06 % - 2.0; control - 2.65 %. Arabis mosaic virus – 0; 0; 3.0; 12.1 %, respectively. Oidium tuckeri was 0 % in all variants with any drug concentrations. Control variant and later 80 % for 29.09. 1 Introduction The vine (Vitis spp.) is undoubtedly one of the woody crops most widely grown in temperate climates, and a very valuable agricultural commodity.
    [Show full text]
  • Data Sheet on Arabis Mosaic Nepovirus
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Arabis mosaic nepovirus IDENTITY Name: Arabis mosaic nepovirus Synonyms: Raspberry yellow dwarf virus Taxonomic position: Viruses: Comoviridae: Nepovirus Common names: ArMV (acronym) Arabis mosaic (English) EPPO computer code: ARMXXX EU Annex designation: II/A2 HOSTS ArMV has a wide host range including a number of important crop plants. When mechanically inoculated, 93 species from 28 dicotyledonous families were shown to be infected (Schmelzer, 1963). In a survey of alternative hosts for hop viruses, positive ELISA-readings were obtained in 33 out of 152 species tested (Eppler, 1989). Principal hosts are strawberries, hops, Vitis spp., raspberries (Rubus idaeus), Rheum spp. and Sambucus nigra. The virus has also been reported from sugarbeet, celery, Gladiolus, horseradish and lettuces. A number of other cultivated and wild species have been reported as hosts. All these crop hosts and many wild plant hosts occur throughout the EPPO region. GEOGRAPHICAL DISTRIBUTION EPPO region: Belgium, Bulgaria, Cyprus (found but not established), Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Luxembourg, Moldova, Netherlands, Norway, Poland, Romania, Russia (European, Far East), Slovakia, Sweden, Switzerland, Turkey, UK, Ukraine and Yugoslavia. Asia: Japan, Kazakhstan, Russia (Far East), Turkey. Africa: South Africa. North America: Canada (British Columbia, Nova Scotia, Ontario, Quebec). Oceania: Australia (Tasmania, Victoria), New Zealand. EU: Present. BIOLOGY On the basis of polyclonal antisera, all ArMV strains known so far are closely related to one another and distantly related to grapevine fanleaf virus (GVFLV). The close relationship of ArMV and GVFLV (not only serologically) has given rise to the assumption that the two viruses may have the same origin, or even that GVFLV is the origin of ArMV (Hewitt, 1985).
    [Show full text]
  • Xiphinema Index and Its Relationship to Grapevines: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University: SUNJournals Xiphinema index and its Relationship to Grapevines: A review S. van Zyl1,3,4, M.A. Vivier1,2, M.A. Walker3* (1) Department of Viticulture and Enology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), South Africa (2) Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), South Africa (3) Department of Viticulture and Enology, University of California, 595 Hilgard Lane, Davis, CA, 95616, USA (4) Current address: Department of Viticulture and Enology, California State University, 2360 East Barstow Avenue, Fresno, CA, 93740, USA Submitted for publication: September 2011 Accepted for publication: October 2011 Key words: Xiphinema index, resistance, Grapevine fanleaf virus, DNA markers, rootstocks The dagger nematode, Xiphinema index, is considered a major pest in grape growing countries. Xiphinema index is especially important because of its ability to transmit Grapevine fanleaf virus when feeding on grapevine roots. This paper provides a comprehensive and updated review of the classification, genetics and biology of Xiphinema index, and its relationship with grapevine fanleaf virus. Current control measures, as well as past and present efforts to breed resistant grapevine rootstocks, are presented. Grapevines are cultivated in temperate and Mediterranean X. italiae Meyl (Loubser & Meyer, 1987a); the first three are climates around the world. Grapevines have been moved common in South African vineyards (Malan, 1995). They are between countries and continents, following human found in a variety of soils and are migratory ectoparasites migration and settlement, and have been imported and (Shurtleff & Averre III, 2000).
    [Show full text]
  • Molecular Characterization of Novel Soybean-Associated Viruses Identified by High-Throughput Sequencing
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository MOLECULAR CHARACTERIZATION OF NOVEL SOYBEAN-ASSOCIATED VIRUSES IDENTIFIED BY HIGH-THROUGHPUT SEQUENCING BY TUBA YASMIN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Master’s Committee: Associate Professor Leslie L. Domier, adviser Associate Professor Kristopher N. Lambert Professor Glen L. Hartman ABSTRACT High-throughput sequencing of mRNA from soybean leaf samples collected from North Dakota and Illinois soybean fields revealed the presence of two novel soybean-associated viruses. The first virus has a single-stranded positive-sense RNA genome consisting of 8,693 nt that contains two large open reading frames (ORFs). The predicted amino acid sequence of the first ORF showed similarity to structural proteins, of members of the invertebrate-infecting Dicistroviridae and the sequence of the second ORF which is a nonstructural proteins lack affinity to other virus sequences available in GenBank. The presence of separate ORFs for the structural and nonstructural proteins was similar to members of the family Dicistroviridae, but the order of the two ORFs in the new virus was opposite to that of the family Dicistroviridae. Because of the virus’ unique genome organization and the lack of strong phylogenetic association with previously described virus families, the soybean-associated virus may represent a novel virus family. The second virus also has a single stranded positive sense RNA genome, but has two genomic segments.
    [Show full text]
  • Genetic Diversity of the Grapevine Vector Nematode Xiphinema Index and Application to Optimize the Resistance Strategy Van Chung Nguyen
    Genetic diversity of the grapevine vector nematode Xiphinema index and application to optimize the resistance strategy van Chung Nguyen To cite this version: van Chung Nguyen. Genetic diversity of the grapevine vector nematode Xiphinema index and appli- cation to optimize the resistance strategy. Symbiosis. Université Côte d’Azur, 2018. English. NNT : 2018AZUR4079. tel-01981947 HAL Id: tel-01981947 https://tel.archives-ouvertes.fr/tel-01981947 Submitted on 15 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Diversité génétique du nématode vecteur Xiphinema index sur vigne et application pour optimiser la stratégie de résistance Van Chung NGUYEN Unité de recherche : UMR ISA INRA1355-UNS-CNRS7254 Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en : M. Pierre FRENDO, Professeur, UNS President Biologie des Interactions et Ecologie, INRA CNRS ISA de l’Université Côte d’Azur M. Gérard DEMANGEAT, IRHC, HDR, Rapporteur UMR SVQV, Colmar Dirigée par : Daniel ESMENJAUD, M. Jean-Pierre PEROS, DR2, HDR, UMR Rapporteur IRHC, HDR, UMR ISA AGAP, Montpellier M. Benoît BERTRAND, Chercheur, HDR, Examinateur CIRAD, UMR IPME, Montpellier Soutenue le : 23 octobre 2018 Mme Elisabeth DIRLEWANGER, DR2, Examinateur HDR, UMR BFP, Bordeaux M.
    [Show full text]
  • PM 3/85 (1) Inspection of Places of Production – Vitis Plants for Planting
    Bulletin OEPP/EPPO Bulletin (2018) 48 (3), 330–349 ISSN 0250-8052. DOI: 10.1111/epp.12502 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 3/85 (1) Procedures phytosanitaires Phytosanitary procedures PM 3/85 (1) Inspection of places of production – Vitis plants for planting Specific scope carried out according to this Standard may be used for export, for internal country movements of materials, for This Standard describes the procedure for inspection of general surveillance or to help demonstrate freedom from places of production of Vitis plants for planting and relevant pests. The Standard does not cover any provision includes relevant sampling criteria and the main regulated about the adoption of phytosanitary measures. pests. It mainly focuses on the pests which are present in the EPPO region and affect Vitis plants. Additional infor- mation on some soil-borne pests is also reported, as they Specific approval could be of phytosanitary relevance, including those that are vectors of pests. Evidence gathered from inspections This Standard was first approved in 2018-09. 2008), or any equivalent phytosanitary certification system, Introduction are generally considered to provide high phytosanitary The Eurasian grapevine (Vitis vinifera) is one of the most guarantees, which is especially important for certain widely cultivated and economically important fruit crops in viruses. This Standard does not cover pests which are rele- the world. Other species of Vitis are also cultivated, mainly vant only for marketing purposes within EPPO countries. for rootstock production for grafting. Plants for planting are Nevertheless, some pests are categorized as a quarantine commonly grafted onto interspecific hybrids which are tol- pest in some EPPO countries and pests of quality concern erant to phylloxera (Viteus vitifoliae), although grapevine in other EPPO countries, on a risk-based approach.
    [Show full text]
  • Xiphinema Index and Its Relationship to Grapevines: a Review
    Xiphinema index and its Relationship to Grapevines: A review S. van Zyl1,3,4, M.A. Vivier1,2, M.A. Walker3* (1) Department of Viticulture and Enology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), South Africa (2) Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch), South Africa (3) Department of Viticulture and Enology, University of California, 595 Hilgard Lane, Davis, CA, 95616, USA (4) Current address: Department of Viticulture and Enology, California State University, 2360 East Barstow Avenue, Fresno, CA, 93740, USA Submitted for publication: September 2011 Accepted for publication: October 2011 Key words: Xiphinema index, resistance, Grapevine fanleaf virus, DNA markers, rootstocks The dagger nematode, Xiphinema index, is considered a major pest in grape growing countries. Xiphinema index is especially important because of its ability to transmit Grapevine fanleaf virus when feeding on grapevine roots. This paper provides a comprehensive and updated review of the classification, genetics and biology of Xiphinema index, and its relationship with grapevine fanleaf virus. Current control measures, as well as past and present efforts to breed resistant grapevine rootstocks, are presented. Grapevines are cultivated in temperate and Mediterranean X. italiae Meyl (Loubser & Meyer, 1987a); the first three are climates around the world. Grapevines have been moved common in South African vineyards (Malan, 1995). They are between countries and continents, following human found in a variety of soils and are migratory ectoparasites migration and settlement, and have been imported and (Shurtleff & Averre III, 2000). This review focus on X. cultivated in numerous countries. These events have index, its interaction with grapevines and its role as vector increased the incidence and spread of injurious pests and for grapevine fanleaf virus (GFLV).
    [Show full text]
  • Tobacco Ringspot Virus
    Bulletin OEPP/EPPO Bulletin (2017) 47 (2), 135–145 ISSN 0250-8052. DOI: 10.1111/epp.12376 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 7/2 (2) Diagnostics Diagnostic PM 7/2 (2) Tobacco ringspot virus Specific scope Specific approval and amendment This Standard describes a diagnostic protocol for Tobacco First approved in 2000-09. ringspot virus1 Revision approved in 2017-03 This Standard should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. A flow diagram describing the procedure for detection 1. Introduction and identification of TRSV is given in Fig. 1. Tobacco ringspot virus (TRSV) is the type member of the genus Nepovirus within the family Secoviridae. It has isomet- 2. Identity ric particles of approximately 28 nm and is readily transmit- Name: Tobacco ringspot virus ted by sap inoculation. It is transmitted in nature by the Synonym: Anemone necrosis virus, blueberry necrotic ring- nematode vector Xiphinema americanum and closely related spot virus Xiphinema species. Thrips tabaci, spider mites, grasshoppers Taxonomic position: Viruses: Picornovirales: Secoviridae: and aphids have also been reported as possible vectors (Stace- Comovirinae: Secoviridae: Nepovirus Smith, 1985) but their significance for the natural spread of EPPO Code: TRSV00 TRSV is currently unclear. The same holds true for Apis Phytosanitary categorization: EPPO A2 List no. 228; EU mellifera (the European honeybee), in which TRSV was Annex I/A1 found to systemically spread and propagate (Li et al., 2014). TRSV is transmitted by seed in several host plants. It naturally 3.
    [Show full text]